• Keine Ergebnisse gefunden

D if fe re n t e v o lu ti o n fo r d if fe re n t m a s s e s

N/A
N/A
Protected

Academic year: 2021

Aktie "D if fe re n t e v o lu ti o n fo r d if fe re n t m a s s e s"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

7–1

7 . H o ri z o n ta l B ra n c h a n d b e y o n d

7–2 HorizontalBranchandbeyond:Lowmassstars1

D if fe re n t e v o lu ti o n fo r d if fe re n t m a s s e s

Evolutionofcentraltemperatureanddensityforstarsofdifferentmasses

7–3 HorizontalBranchandbeyond:Lowmassstars2

D if fe re n t e v o lu ti o n fo r d if fe re n t m a s s e s

initialmass

M /M

<

0

.

5verylowmassHeburningnotignited,nosignificant evolutionduringlifetimeofUniverse 0

.

5

.. .

2

.

3lowmassHeburningignitedindegeneratecore (heliumflash),noCburning 2

.

3

.. .

8intermediateHeburningignitedinnon-degenerate core,noCburning

>

8highmassHe,Cburning,ignitedinnon- degeneratecore→supernova 7–4 Low-massstars:0

.

5

.. .

2

.

3

M

1

L o w -m a s s s ta rs : T h e h o ri z o n ta l b ra n c h

•⇒heatconductionheatsthecore. ConditionsfortheignitionofHeburningarereachedforacoremassof

M

c=0

.

48

M

(independentofthetotalstellarmass)

(2)

7–5 Low-massstars:0

.

5

.. .

2

.

3

M

2

H e liu m fl a s h

•HeburningstartsinthedegenerateHe core •energyproductionincreasestheenergy ofions(i.e.thetemperature)andelec- trons,butbecauseof

P

ρ

5 3noadia- baticcoolingbyexpansion •⇒temperatureincreases⇒energypro- ductionincreases⇒temperaturein- creases⇒... •thermalrunawayprocess •comesonlytoahalt,whentheelectron degeneracyislifted •quickevolutionfromRGBtothehorizon- talbranch 7–6 Low-massstars:0

.

5

.. .

2

.

3

M

3

H e liu m fl a s h

•non-nuclearneutrinoproduction •⇒

T

maxcoolinglargestatcentre ⇒Temperaturemaximumoff-centre:

T

max •Energyproductionratesdepend stronglyontemperature •⇒He-burningignitesoff-centre

7–7 Low-massstars:0

.

5

.. .

2

.

3

M

4

H e liu m fl a s h

Modelfor

M

=0

.

645

M

(Sweigart1994) •He-burningignitesintheelectron- degenerateHe-coreof

M

= 0

.

48

M

T

maxat

M

r≈0

.

16:placeoffirst ignition •Degeneracyliftedalsointheouter layers •convectionzonedevelopesbut doesnotreachtheH-burningshell ⇒nomixing Aseriesofflashesoccursmovinginwardsuntilelectrondegeneracyislifted. ⇒stableburningestablished:HeinthecoreandHinashell 7–8 Low-massstars:0

.

5

.. .

2

.

3

M

5

H e liu m fl a s h

Luminosityevolutionduringtheflashes •strongincreaseofenergyproductionintheHe-burningregion •Expansionofoutercorelayersduetoliftingofdegeneracy •⇒MaterialintheH-burningshellcools⇒

L

Hdecreases •Changesofthestellarluminosity

L

arealotsmallerthanthatof

L

He

(3)

7–9 Low-massstars:0

.

5

.. .

2

.

3

M

6

H e liu m fl a s h

EvolutionintheHRD •Flashphaselastforabout1

.

5·106 years •totalHorizontalbranchlifetime1

.. .

2·108 years 7–10 Low-massstars:0

.

5

.. .

2

.

3

M

7

T h e h o ri z o n ta l b ra n c h

•HorizontalbranchstarsarecoreHeburningwithaHburningshell •Theyhaveidenticalcoremasses,causedbytheHeflash •positiononthehorizontal branchdependontheen- velopemass:thelowerthe envelopemass,thebluerthe star •

q

=Mc M

>

0

.

95:noHburn- ingshell,ExtendedHorizontal Branch(EHB) •

q <

0

.

95:Hburningshell

7–11 Low-massstars:0

.

5

.. .

2

.

3

M

8

B e y o n d th e h o ri z o n ta l b ra n c h : O v e rv ie w

Dorman,Rood&O’Connell(1993,ApJ419,596) 7–12 Intermediatemassstars1

In te rm e d ia te m a s s s ta rs : R G B a n d H B

Intermediatemassstars(M=2.3...8M): Heliumignitionwhenelectrongasisstillnon-degenerate Evolutionofa5M-star: NoHeflash,nohorizontalbranchbutblueloops

(4)

7–13 Intermediatemassstars2

In te rm e d ia te m a s s s ta rs : R G B a n d H B

AC:mainsequencephase CD:evolutiontotheHayashi-limit C→Drapidly:HertzsprunggapinHR-diagram DE:redgiantphase(RGB): 1.dredge-upphase deepenvelopeconvectionbringsproductsofH-burningtothesurface EG:atEheliumignitesinthecoreenergyproductionlimitedtotheinnermost 5%ofthemass.coreisconvective,envelopeisradiative. duration:20%ofmainsequencephase He-coreburningproduces6%(E),20%(F),48%(G)oftheenergy. GH:coreHe-burningterminates(G)andtwoburningshellsexist. 7–14 Beyondthehorizontalbranch:LowandIntermediatemassstars1

B e y o n d th e h o ri z o n ta l b ra n c h : O v e rv ie w

Evolutionbeyondthehorizontalbranch:electron-degenerateC/O-core,Cdoes notignite.dependingonthestellarmass: AGB-Manqueevolution:lowestmasses:stardoesnotascendtheasymptotic giantbranchbutevolvesdirectlytothewhitedwarfgraveyard,validforHB starswithverytinyenvelopes(i.e.theextremeHBstars) Early-AGBevolution:AGBevolutionstartsbutterminatesbeforethermal pulsesoccur. TP-AGB-evolutionthermalpulses

7–15 Beyondthehorizontalbranch:LowandIntermediatemassstars2

B e y o n d th e h o ri z o n ta l b ra n c h : O v e rv ie w

TerminationofAGBevolutionandbeyond: •AGBevolutionterminatesbecausethestarexperiencesdrasticmassloss (so-calledsuperwind)leadingtothelossofalmosttheentireenvelope. •starevolvesatconstantluminositytoveryhightemperatures (

T

eff

>

100000K). •Evolutionarytimescaleisshort(103 ...105 years). •H-andHe-burningshellsarestillactivebutmoveoutwards •Hburningceasescausingtheluminositytodrop •Heburningceasescausingtheluminositytodrop •stardoesnothaveanythermonuclearenergysourceandstartstocool⇒ whitedwarfcoolingsequence 7–16 Beyondthehorizontalbranch:LowandIntermediatemassstars3

B e y o n d th e h o ri z o n ta l b ra n c h : O v e rv ie w

Evolutionofa3Mstar

(5)

7–17 Beyondthehorizontalbranch:LowandIntermediatemassstars4

A G B e v o lu ti o n – th e rm a l p u ls e s

•⇒H-shellburningisignited •Thiscausestheconvectionzonetomoveoutwards(outerconvectiondriven byH-ionisationand–temperaturedependent–highopacity). •TheresultsisathermalinstabilityoftheHeshellthermalpulses 7–18 Beyondthehorizontalbranch:LowandIntermediatemassstars5

A G B e v o lu ti o n – th e rm a l p u ls e s

•TheHshellburnssteadilymostofthetimeuntilasufficientamountofHeis produced. •HeburningconditionsarereachedatthebaseoftheHerichlayer •Heburningisignited

7–19 Beyondthehorizontalbranch:LowandIntermediatemassstars6

A G B e v o lu ti o n – th e rm a l p u ls e s

•Thethermalinstabilitycausesrunawayburningwithveryhighluminositiesfor ashortamountoftime •ThehighluminosityintheHeburningshellcausestheformationofa convectionzone,whichmixesmostoftheintershellHeintotheburningregion 7–20 1

A G B e v o lu ti o n – th e rm a l p u ls e s

•Temperatureincreaseleadstoexpansionoftheintershellregion •DensityintheHburningshelldropsandHburningisextinguished •Heburningceasesdown,whenmostoftheHeisconsumedandHburning resumes •...andthecyclestartsagain

(6)

7–21 PlanetaryNebulae1

P la n e ta ry N e b u la e

PlanetaryNebulaNGC6853 7–22 PlanetaryNebulae2

P la n e ta ry N e b u la e

Abell39(WIYN,AURA,NOAO,NSF)

7–23 PlanetaryNebulae3

P la n e ta ry N e b u la e

RingNebula(HST/STScI/NASA) 7–24 PlanetaryNebulae4

P la n e ta ry N e b u la e

NGC6853/M27(“DumbbellNebula”;ESOVLT/FORS)

(7)

7–25 PlanetaryNebulae5

P la n e ta ry N e b u la e

IC4406(ESOVLT) 7–26 PlanetaryNebulae6

P la n e ta ry N e b u la e

HourglassNebula(HST/Sahai/Trauger)

7–27 PlanetaryNebulae7

P la n e ta ry N e b u la e

Kurucz(1979)

planetarynebulae: materialejected duringAGBphase, photoionizedonce thecentralstar’sTeff exceeds25000K. 7–28 PlanetaryNebulae8

P la n e ta ry N e b u la e

Ringnebula:MAISobservatory:http://mais-ccd-spectroscopy. com/images/wpe24.jpg

planetarynebulae: Emissionlinespectra: recombinationlines (hydrogen) andcollisionallyex- citedforbiddenlines. Temperatures: 10000K densities≈104 cm3

(8)

7–29 PlanetaryNebulae9

P la n e ta ry N e b u la e

HIIregions:star formingregions:very similarspectra 7–30 Massloss,stellarwinds1

E v id e n c e fo r m a s s lo s s d u ri n g s te lla r e v o lu ti o n

•Uppermasslimitforwhitedwarfs:1

.

4

M

Doallstarswith

M >

1

.

4

M

explodeassupernovae? •Inthiscasethesupernovaratesingalaxiesshouldbemuchhigherthan observed⇒masslimitforWD/SNevolution≈8

M

. •⇒substantialmasslossduringtheevolution •Mainsequencestars: sun:masslossrate:˙

M

=1014

M

,negligibleeverovertheentirelife timeofthesun. earlytypestars:radiationdrivenwind.Radiationpressurehigh. •Empiricalformula(Reimers,1975),calibratedforredgiants: ˙

M

=4·1013

η L g R g

:surfacegravity

η

:“efficiencyparameter”(1 3

< η <

1)

7–31 Massloss,stellarwinds2

E v id e n c e fo r m a s s lo s s d u ri n g s te lla r e v o lu ti o n

•Motivation: GM R=

g R

potentialenergy L gR=const:aconstantfractionoftheluminositypermassunitisusedto overcomegravitationalpotential(≈105

L

forRGBstars) 7–32 Massloss,stellarwinds3

E v id e n c e fo r m a s s lo s s d u ri n g s te lla r e v o lu ti o n

Initialmass–finalmassrelation: Semi-empiricalrelationbetweenthe initialstellarmass

M

ionthemain sequenceandthemassofthewhite dwarfremnant

M

f. Datepointsinthisplotwerederivedfromwhitedwarfsinopenclusters(known ageandturn-offmass).

(9)

7–33 Massloss,stellarwinds4

E v id e n c e fo r m a s s lo s s d u ri n g s te lla r e v o lu ti o n

Spectralenergydistribution.Fitofmeasuredflux valueswith3350Kblackbodyforthestarand 200Kblackbodyforthedust.Excessatthe longestwavelengthspointstoevencoolercir- cumstellardust.. •Directobservationsofmassloss:dustyenvelopesofsomeredgiants.These aremosteasilydetectedasstrongfluxexcessinthemid-IR. •Planetarynebulae 7–34 Massloss,stellarwinds5

A G B s ta rs : D u s t d ri v e n m a s s lo s s

IR-SpectrumofanAGB-star+modelfit

•manyAGB-starsshowinfrared(IR) excess,→evidenceforcircumstel- larDust(temperatures:afew100K ⇒fluxmaximuminIR) •strongdustextinction→manyAGB invisibleinopticallightbutde- tectableinIR •importantclasses:OH/IR-stars,de- tectedatIRonly,maseremissionof OH-lineat1612MHz(radioastron- omy) •dusthullformsthroughcondensa- tionofdustparticlee.g.silicatesin thewindofanAGBstar

7–35 Massloss,stellarwinds6

A G B s ta rs : D u s t d ri v e n m a s s lo s s

masslossontheAGBandbeyondforstarofvariousinitialmasses. Bcker(1995) 7–36 Massloss,stellarwinds7

T h e e n d o f A G B e v o lu ti o n

Evolutionofa3Mstar

•AGBevolutionendsaftermostoftheen- velopeislostduetointensivemassloss •whentheenvelopemassdropsbelowa few0.01Mthegiantdimensionscannot besustainedanymoreandthestarsstarts toshrink •thestarsmovesquickly(103 ...105 years) toveryhightemperatures.Shellburning stillactive⇒constantluminosity(

T

eff

>

100000K). •HandHeburningshellsmoveoutwards untilburningcannolongerbesustained •⇒evolutionalongthewhitedwarfcooling sequence

(10)

7–37 Whitedwarfcooling1

S tr u c tu re o f a w h it e d w a rf

nonuclearenergyproduction potentialsourcesofenergy:gravitational

E

G,internal

E

I C/Ocorestabilisedbypressureofdegenerateelectrongas →coolingoftheionicgas 7–38 Whitedwarfcooling2

C o o lin g o f W h it e D w a rf s

7–39 Whitedwarfcooling3

W h it e D w a rf lu m in o s it y fu n c ti o n a n d th e a g e o f th e G a la x y

Leggettetal.,1998coolestwhitedwarf=oldestwhitedwarf ageoftheGalaxy(solarneighbourhood):8-11Gyrs 7–40 Whitedwarfcooling4

M a s s e s o f w h it e d w a rf s

Kepleretal.,2007,MNRAS375,1315

Referenzen

ÄHNLICHE DOKUMENTE

However, Eroded zones of erosion are surfaces attacked by different classes and categories of erosion that are classified in accordance with appropriate methods of erosion

Herein, simulated front velocities and flow areas are compared with the field data, allowing us to constrain appropriate model parameters; video analysis of large boulder motion

Die auf Grund von Naturgefahr und Standortstyp festgelegten Anforderungsprofile gelten nicht nur für einen Einzelbestand, sondern können auch auf grössere Flächen mit vergleichba-

Figg10-11: L’attuale canale alimentatore principale del cono alluvionale dell’Arroyo del Medio reincide i vecchi depositi di conoide, lasciando superfici terrazzate (anche

Si riassumo in tabella 2 i risultati delle indagini effettuate, includendo anche il valore della pendenza (i 0 ) del tratto di torrente prima della sistemazione, la larghezza media

Wie beim Steinschlag führt die Akkumulation zu einer Auflast, welche als Begleiteinwirkung zu berücksichtigen ist.. Ein dadurch behinderter Wasserabfluss führt zu einer

Wir möchten freundlich darauf hinweisen, dass in allen unseren Gerichten Spuren der 14 Hauptallergene enthalten sein können.. Sie finden dort ein vielfältiges Sortiment

Früchtee Früchtemischung Wilde Waldbeere Hibiskus, Hagebutten, Apfel, Holunderbeeren, Aroma 4,80 € *. 0958