• Keine Ergebnisse gefunden

Derivatives and irreducible polynomials

N/A
N/A
Protected

Academic year: 2022

Aktie "Derivatives and irreducible polynomials"

Copied!
3
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Elem. Math. 56 (2001) 170 – 172 0013-6018/01/040170-3 $ 1.50+0.20/0

c Birkha¨user Verlag, Basel, 2001

Elemente der Mathematik

Derivatives and irreducible polynomials

Radu-Nicolae Gologan

Radu-Nicolae Gologan received his Ph.D. from the University of Bucharest in 1981.

He is now a professor at the Polytechnical University of Bucharest. His main mathe- matical interests are ergodic theorems, operator theory and operator algebras, ergodic theoretical methods in number theory. In addition, he is involved in the Romanian Olympiad for high-school mathematics.

1 Introduction

It is well-known that formal derivatives provide useful techniques, not only in analysis but in various other domains of mathematics such as algebra of polynomials. The aim of this note is to present a simple technique, based mainly on the use of formal derivatives, that provides simple results with amazing proofs on irreducibility properties for some classes of polynomials with integer coefficients. Although derivatives can be replaced by algebraic calculations, their use gives more elegance and sometimes, significance, in proofs.

2 Main results

By Z[X]we shall denote, as usual, the ring of polynomials with integer coefficients in the variable X. For f Z[X], degf will stand for the degree of f. A polynomial f with degf =n, is called monic, if the coefficient ofXn is 1. Recall also that f Z[X]

is called irreducible (overZ) if it cannot be written as the product of two polynomials

.

Die Untersuchung von Polynomen, welche u¨ber dem Ring der ganzen Zahlen irreduzi- bel sind, hat eine lange Geschichte. Zum Beispiel fu¨hrt die Frage nach der Irreduzibilita¨t quadratischer Polynome u¨ber den ganzen Zahlen auf das Studium quadratischer Irra- tionalita¨ten, welches bereits in der Antike eine prominente Rolle spielte. Ein weiteres Beispiel ist das Eisensteinsche Irreduzibilita¨tskriterium fu¨r Polynome u¨ber einem Inte- grita¨tsbereich, das vielen Lesern bekannt sein du¨rfte. Im nachfolgenden Beitrag werden mit Hilfe formaler Ableitungen auf elementare Weise einige Klassen irreduzibler Po- lynome gefunden. Es wird zum Beispiel fu¨r ein Polynom f u¨ber den ganzen Zahlen mitnverschiedenen ganzzahligen Nullstellen gezeigt, dass das Polynom f2+1 einen irreduziblen Faktor vom Grad gro¨sser oder gleichnbesitzt.

(2)

Elem. Math.56(2001) 171

inZ[X], each with positive degree. The multiplicity of an integer rootaof f Z[X]is the largest positivensuch that(X−a)n divides f.

The first result we consider is the following:

Theorem 1 Suppose f Z[X]hasn distinct integer roots, each of order at least two.

Then each of the polynomials f ±1has an irreducible factor of degree≥n.

Proof.Consider the case for f+1. The other case will be similar. Suppose that f+1= f1f2· · ·fp is the decomposition in irreducible factors over Z, and leta1,a2, . . . ,an Z be thendistinct multiple roots (of order2) off. We thus have f1(ai)· · ·fp(ai) =1 for alli=1,2, . . . ,n. As fj(ai)Zfor alli=1,2, . . . ,n, j=1,2, . . . ,p, the last relation can be written

f1(ai)· · ·fˇk(ai)· · ·fp(ai) =fk(ai), i=1,2, . . . ,n, k=1,2, . . . ,p, (1) where the symbol ˇ stands for the fact that the respective factor is missing.

Taking derivatives in f+1=f1f2· · ·fp, the fact thatx=ai,i=1,2, . . . ,nare multiple zeros of f, implies

n

k=1

f1(ai)· · ·fk(ai)· · ·fp(ai) =0, i=1,2, . . . ,n.

By (1), the last equality can be written

p

k=1

fk(ai)fk(ai) =0 for all i=1,2, . . . ,n. (2)

As fk2(aj) =1 for all k =1,2, . . . ,p, j =1,2, . . . ,n, equation (2) simply says that the polynomial

n

k=1

fk2 −n

hasa1,a2, . . . ,an as roots of multiplicity at least two. As p k=1

f2k−ncannot be null, we must have deg

p k=1

f2k 2n, implying that one of the fk has degree at leastn. 䊐 A simple argument on the parity ofnhas as consequence the following:

Corollary Suppose that f Z[X]hasn>1distinct integer roots. Then, the polynomial f2+1has at least one irreducible factor of degree≥2n+1

2

, where[·]represents the integer part.

Proof.Look at the case whennis odd. Asf2+1 has no real roots, the irreducible factors must have even degree, that is, one of them must have degree≥n+1. 䊐 The idea used in the proof of Theorem 1 can be used to describe a class of irreducible polynomials that extends Problem 123, Ch. VIII from [1].

(3)

172 Elem. Math.56(2001)

Theorem 2 Suppose that f Z[X]hasndistinct multiple roots anddegf 3n1. If f+1has no real roots, then it is irreducible. Moreover, if f is monic, the result remains true fordegf =3n.

Proof.We may assume without loss of generality that f(x) +1 is positive for all realx.

Suppose that f+1=pq, wherep,q∈Z[X]are positive onRand non-constant. We have p(ai) =q(ai) = 1, i=1,2, . . . ,n; in particular degp≥n, degq≥n. Considering the derivative, we inferp(ai) +q(ai) =0,i=1,2, . . . ,n. Thusp+q−2 hasa1,a2, . . . ,an

as roots of multiplicity at least two, that is, it is the null polynomial, or one of the polynomialsporqhas degree2n. In the first case we conclude f+1+q2=2pwhich contradicts degp<2n. In the later case, asn≤degp, degq<3nwe conclude that one of the factors must be a constant, a contradiction.

In the case when f is monic of degree 3n, then the degrees ofpandqare, in some order, nand 2nrespectively. This would implyp+q−2= (X−a1)2(X−a2)2· · ·(X−an)2 andp= (X−a1)(X−a2)· · ·(X−an). As f = (X−a1)2(X−a2)2· · ·(X−an)2s(X) wheres is a monic positive polynomial in Z[X], we conclude from the previous form ofpandq, thatsis divisible by X−ai for i=1,2, . . . ,n, a contradiction.References

[1] G. Polya and G. Szego¨:Aufgaben und Lehrsa¨tze aus der Analysis, Third edition, Springer, Berlin 1964.

[2] S. Lang:Algebra, Addison-Wesley, 1965.

Radu-Nicolae Gologan

Institute of Mathematics of the Romanian Academy and

University “Politehnica” Bucharest P.O. Box 1-764

70700 Bucharest, Romania e-mail:rgologan@theta.ro

To access this journal online:

http://www.birkhauser.ch

Referenzen

ÄHNLICHE DOKUMENTE

Mit der folgenden Reihe von Beispielen leiten wir die allgemeine Lösungsformel für quadratische Gleichungen

Zeichnen Sie die Graphen der Funktionen f, g und h in ein und dasselbe Koordinatensystem. b) Die Abbildung zeigt die Graphen von zwei..

Die Abbildung 1 zeigt eine Hängebrücke. Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Wirklichkeit. Die Profillinie der Hängebrücke ist in Abbildung

e) Bestimme den gewinnoptimalen Preis (=Cournotscher Punkt) f) Zeichne die Erlös-, Kosten-

Wir m¨ ussen nun zeigen, dass a genau dann als Summe von drei Quadraten darstellbar ist, wenn −a kein Quadrat in Q 2 ist. F¨ ur rationale Quadrate ist dies genau die Aussage von

W i r wollen die Beziehungen zwischen q&gt; und xp studieren, die vorliegen müssen, damit eine der Körpererweiterungen K(xp\ £, S auf q&gt; graderhöhend wirkt. Dabei werden wir

In einem maximalen Gitter M eines nicht ausgearteten quadratischen Raumes über diskret bewertetem (komplettem) Grundkörper sind Vektoren gleicher Länge und Skala assoziiert 1 )..

[r]