• Keine Ergebnisse gefunden

Experimentelle und konstruktive Algebra

N/A
N/A
Protected

Academic year: 2022

Aktie "Experimentelle und konstruktive Algebra"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

algebra Experimental

constructive Graduiertenkolleg and

Experimentelle und konstruktive Algebra

Kolloquiumsvortrag

Dienstag, 15. Januar 2019, 14:15 Uhr, Hörsaal IV

Matthias Seiß (Universität Kassel):

On the Structure ofG-Primitive Picard-Vessiot Extensions for the Classical Groups In classical Galois theory there is the well-known construction of the general equation with Galois group the symmetric group Sn. One starts with n indeterminates T = (T1, . . . , Tn) and considers the rational function field Q(T). The group Sn acts on Q(T) by permuting the indeterminatesT1, . . . , Tn. One can show then thatQ(T)is a Galois extension of the fixed field Q(T)Sn for a polynomial equation of degree nwhose coefficients are the elementary symmetric polynomials s1(T), . . . , sn(T)in T. Moreover the fixed field is generated by these polynomials and they are algebraically independent over Q.

In this talk we do a similar construction in differential Galois theory for the classical Lie groups. Let G be one of these groups and denote by l its Lie rank. We start our construction with a differential field Chηi which is differentially generated by l differential indeterminates η = (η1, . . . , ηl)over the constants C. We use this purely differential transcendental extension to build our final general extension field E ⊃ Chηi by taking into account the structure of G-primitive Picard-Vessiot extensions. These are Picard-Vessiot extensions with differential Galois groupGwhose fundamental solution matrices satisfy the algebraic relations defining the groupG. The structural information of these extensions is obtained by connecting results from the theory of Lie groups with differential Galois theory. As above we define a group action of G on E and show that E is a Picard-Vessiot extension of the fixed field EG with differential Galois group G. The fixed field is then generated by l invariants h = (h1, . . . , hl) which are differentially algebraically independent over the constants and the coefficients of the linear differential equation defining the extension are differential polynomials in these invariants.

Two matrix differential equations ∂(y) = A1y and ∂(y) = A2y are called gauge equivalent if there exists B ∈GLn such that

BA1B−1+∂(B)B−1 =A2.

Gauge equivalent differential equations define differentially isomorphic Picard-Vessiot exten- sions. Using the Lie structure of the group we show that every equation defining aG-primitive extension of a specific type is gauge equivalent to a specialization of the above constructed

(2)

equation. Our construction yields so sections of isomorphism classes of G-primitive Picard- Vessiot extensions and we use the obtained structural information for a classification of all these extensions.

Wir laden alle Interessierten herzlich ein.

Referenzen

ÄHNLICHE DOKUMENTE

In this talk I will present results to better understand a known definition of surface measures on path spaces of Riemannian manifolds, which are generated by a Brownian motion. Let

Im Banachraumfall (p ≥ 1) sind bereits Bedingungen an die verschwindenen Momente (vanishing moments) für Wavelets bekannt, sodass diese eine atomic decomposition des

Given that the stabilizer of a full flag is a Borel subgroup of the general linear group, we can relate the defined distance functions to three functions on the symmetric group S n

In diesem Vortrag soll ein Algorithmus vorgestellt werden, wie in dieser Situation zumindest eine schwächere Version eines lokalen Abschlusses eines Hauptideals, d.h. p K[x

In diesem Vortrag wird ein algorithmisches Verfahren beschrieben, wie sich gute Erzeuger und Relationen für den multiplikativen Invariantenring finden lassen. Ebenso soll der

Analog zur gewöhnlichen Invariantentheorie lässt sich auch im Fall von multiplikativen Ringen eine Strukturtheorie aufbauen. Beispielsweise besitzen diese Ringe im Fall

, x n i in n Variablen über einem Körper K bietet die Mög- lichkeit, bestimmte Objekte aus algebraischen Strukturen wie Halbgruppen, Gruppen, Ringen und Algebren als Elemente der

Ausgehend davon können wir die sogenannten Paramodulformen zu einer gewissen normalen Erweiterung bestimmen. Am Ende des Vortrags betrachten wir dann jeweils die null-