• Keine Ergebnisse gefunden

Two-block Springer fibers and Springer representations in types C & D

N/A
N/A
Protected

Academic year: 2022

Aktie "Two-block Springer fibers and Springer representations in types C & D"

Copied!
124
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Two-block Springer fibers and Springer representations in types C & D

Arik Wilbert

Hausdorff Research Institute for Mathematics

November 30, 2017

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 1 / 17

(2)

GLm(C)-conjugacy classes of nilpotent endomorphisms ofCm

partitions λofm

complex, finite-dimensional, irreducibleSm-representations

(up to isomorphism)

1:1 1:1

deeper/direct connection?

Oλ BGLλ

m Springer fiber H(BλGL

m,C)

Definition (Springer fiber of type A)

x:Cm→Cm nilpotent endomorphism of Jordan typeλ

BGLλ m ={{0}(F1(F2(. . .(Fm=Cm|xFi⊆Fi−1}

Theorem (Springer, 1978)

There exists a gradedSm-action onH(BλGL

m,C)such that Htop(BGLλ

m,C)is the irreducibleSm-representation labeled byλ. This yields a correspondence

Irrf.d.C (Sm)−−→ {1:1 nilpotent endomorphisms ofCm}.

GLm(C).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 2 / 17

(3)

GLm(C)-conjugacy classes of nilpotent endomorphisms ofCm

partitions λofm

complex, finite-dimensional, irreducibleSm-representations

(up to isomorphism)

1:1

1:1 deeper/direct

connection?

Oλ BGLλ

m Springer fiber H(BλGL

m,C)

Definition (Springer fiber of type A)

x:Cm→Cm nilpotent endomorphism of Jordan typeλ

BGLλ m ={{0}(F1(F2(. . .(Fm=Cm|xFi⊆Fi−1}

Theorem (Springer, 1978)

There exists a gradedSm-action onH(BλGL

m,C)such that Htop(BGLλ

m,C)is the irreducibleSm-representation labeled byλ. This yields a correspondence

Irrf.d.C (Sm)−−→ {1:1 nilpotent endomorphisms ofCm}.

GLm(C).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 2 / 17

(4)

GLm(C)-conjugacy classes of nilpotent endomorphisms ofCm

partitions λofm

complex, finite-dimensional, irreducibleSm-representations

(up to isomorphism)

1:1 1:1

deeper/direct connection?

Oλ BGLλ

m Springer fiber H(BλGL

m,C)

Definition (Springer fiber of type A)

x:Cm→Cm nilpotent endomorphism of Jordan typeλ

BGLλ m ={{0}(F1(F2(. . .(Fm=Cm|xFi⊆Fi−1}

Theorem (Springer, 1978)

There exists a gradedSm-action onH(BλGL

m,C)such that Htop(BGLλ

m,C)is the irreducibleSm-representation labeled byλ. This yields a correspondence

Irrf.d.C (Sm)−−→ {1:1 nilpotent endomorphisms ofCm}.

GLm(C).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 2 / 17

(5)

GLm(C)-conjugacy classes of nilpotent endomorphisms ofCm

partitions λofm

complex, finite-dimensional, irreducibleSm-representations

(up to isomorphism)

1:1 1:1

deeper/direct connection?

Oλ BGLλ

m Springer fiber H(BλGL

m,C)

Definition (Springer fiber of type A)

x:Cm→Cm nilpotent endomorphism of Jordan typeλ

BGLλ m ={{0}(F1(F2(. . .(Fm=Cm|xFi⊆Fi−1}

Theorem (Springer, 1978)

There exists a gradedSm-action onH(BλGL

m,C)such that Htop(BGLλ

m,C)is the irreducibleSm-representation labeled byλ. This yields a correspondence

Irrf.d.C (Sm)−−→ {1:1 nilpotent endomorphisms ofCm}.

GLm(C).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 2 / 17

(6)

GLm(C)-conjugacy classes of nilpotent endomorphisms ofCm

partitions λofm

complex, finite-dimensional, irreducibleSm-representations

(up to isomorphism)

1:1 1:1

deeper/direct connection?

Oλ

BGLλ

m Springer fiber H(BλGL

m,C)

Definition (Springer fiber of type A)

x:Cm→Cm nilpotent endomorphism of Jordan typeλ

BGLλ m ={{0}(F1(F2(. . .(Fm=Cm|xFi⊆Fi−1}

Theorem (Springer, 1978)

There exists a gradedSm-action onH(BλGL

m,C)such that Htop(BGLλ

m,C)is the irreducibleSm-representation labeled byλ. This yields a correspondence

Irrf.d.C (Sm)−−→ {1:1 nilpotent endomorphisms ofCm}.

GLm(C).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 2 / 17

(7)

GLm(C)-conjugacy classes of nilpotent endomorphisms ofCm

partitions λofm

complex, finite-dimensional, irreducibleSm-representations

(up to isomorphism)

1:1 1:1

deeper/direct connection?

Oλ BGLλ m Springer fiber

H(BλGL

m,C)

Definition (Springer fiber of type A)

x:Cm→Cm nilpotent endomorphism of Jordan typeλ

BGLλ m ={{0}(F1(F2(. . .(Fm=Cm|xFi⊆Fi−1}

Theorem (Springer, 1978)

There exists a gradedSm-action onH(BλGL

m,C)such that Htop(BGLλ

m,C)is the irreducibleSm-representation labeled byλ. This yields a correspondence

Irrf.d.C (Sm)−−→ {1:1 nilpotent endomorphisms ofCm}.

GLm(C).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 2 / 17

(8)

GLm(C)-conjugacy classes of nilpotent endomorphisms ofCm

partitions λofm

complex, finite-dimensional, irreducibleSm-representations

(up to isomorphism)

1:1 1:1

deeper/direct connection?

Oλ BGLλ m Springer fiber

H(BλGL

m,C)

Definition (Springer fiber of type A)

x:Cm→Cm nilpotent endomorphism of Jordan typeλ

BGLλ m ={{0}(F1(F2(. . .(Fm=Cm|xFi⊆Fi−1}

Theorem (Springer, 1978)

There exists a gradedSm-action onH(BλGL

m,C)such that Htop(BGLλ

m,C)is the irreducibleSm-representation labeled byλ. This yields a correspondence

Irrf.d.C (Sm)−−→ {1:1 nilpotent endomorphisms ofCm}.

GLm(C).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 2 / 17

(9)

GLm(C)-conjugacy classes of nilpotent endomorphisms ofCm

partitions λofm

complex, finite-dimensional, irreducibleSm-representations

(up to isomorphism)

1:1 1:1

deeper/direct connection?

Oλ BGLλ m Springer fiber H(BλGLm,C)

Definition (Springer fiber of type A)

x:Cm→Cm nilpotent endomorphism of Jordan typeλ

BGLλ m ={{0}(F1(F2(. . .(Fm=Cm|xFi⊆Fi−1}

Theorem (Springer, 1978)

There exists a gradedSm-action onH(BλGL

m,C)such that Htop(BGLλ

m,C)is the irreducibleSm-representation labeled byλ. This yields a correspondence

Irrf.d.C (Sm)−−→ {1:1 nilpotent endomorphisms ofCm}.

GLm(C).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 2 / 17

(10)

GLm(C)-conjugacy classes of nilpotent endomorphisms ofCm

partitions λofm

complex, finite-dimensional, irreducibleSm-representations

(up to isomorphism)

1:1 1:1

deeper/direct connection?

Oλ BGLλ m Springer fiber H(BλGLm,C)

Definition (Springer fiber of type A)

x:Cm→Cm nilpotent endomorphism of Jordan typeλ

BGLλ m ={{0}(F1(F2(. . .(Fm=Cm|xFi⊆Fi−1}

Theorem (Springer, 1978)

There exists a gradedSm-action onH(BλGL

m,C)such that Htop(BλGL

m,C)is the irreducibleSm-representation labeled byλ. This yields a correspondence

Irrf.d.C (Sm)−−→ {1:1 nilpotent endomorphisms ofCm}.

GLm(C).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 2 / 17

(11)

Gconnected, reductive, complex, algebraic group

, x∈g=Lie(G)nilpotent WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even multiplicity.

The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2),(3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(12)

Gconnected, reductive, complex, algebraic group, x∈g=Lie(G)nilpotent

WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even multiplicity.

The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2),(3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(13)

Gconnected, reductive, complex, algebraic group, x∈g=Lie(G)nilpotent WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even multiplicity.

The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2),(3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(14)

Gconnected, reductive, complex, algebraic group, x∈g=Lie(G)nilpotent WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even multiplicity.

The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2),(3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(15)

Gconnected, reductive, complex, algebraic group, x∈g=Lie(G)nilpotent WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even

multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2),(3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(16)

Gconnected, reductive, complex, algebraic group, x∈g=Lie(G)nilpotent WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even

multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2), (3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(17)

Gconnected, reductive, complex, algebraic group, x∈g=Lie(G)nilpotent WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even

multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2), (3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(18)

Gconnected, reductive, complex, algebraic group, x∈g=Lie(G)nilpotent WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even

multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2), (3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(19)

Gconnected, reductive, complex, algebraic group, x∈g=Lie(G)nilpotent WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even

multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2), (3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(20)

Gconnected, reductive, complex, algebraic group, x∈g=Lie(G)nilpotent WG Weyl group

Theorem (Gerstenhaber, 1961)

TheSp2m-conjugacy classes of nilpotent elements insp2m are in bijective correspondence with partitions of2min which odd parts occur with even

multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2), (3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl groupWSp2m are in bijective correspondence with bipartitions ofm.

bipartitions of m=2:

,∅

, , ∅

, ,

, ∅,

,

∅,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 3 / 17

(21)

Gconnected, reductive, complex, algebraic group,

x∈

g=Lie(G)

nilpotent

WG Weyl group

Ax=CG(x)/CG0(x) component group

Definition (Springer fiber)

BGx ={Borel subgroupsB ⊆G|x∈Lie(B)}, x∈gnilpotent

Theorem (Springer, 1978)

I There exist grading-preserving, commuting actions ofWG andAxon H(BxG,C).

I The decomposition

Htop(BGx,C) =M

λ

Hλtop(BxG,C)

into non-zeroAx-isotypic subspaces is a decomposition into irreducible WG-representations.

I This yields the Springer correspondence

Irrf.d.C (WG),→ {nilpotent elements ing}/G×Irrf.d.C (Ax).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 4 / 17

(22)

Gconnected, reductive, complex, algebraic group,x∈g=Lie(G)

nilpotent

WG Weyl group

Ax=CG(x)/CG0(x) component group

Definition (Springer fiber)

BGx ={Borel subgroupsB ⊆G|x∈Lie(B)}, x∈gnilpotent

Theorem (Springer, 1978)

I There exist grading-preserving, commuting actions ofWG andAxon H(BxG,C).

I The decomposition

Htop(BGx,C) =M

λ

Hλtop(BxG,C)

into non-zeroAx-isotypic subspaces is a decomposition into irreducible WG-representations.

I This yields the Springer correspondence

Irrf.d.C (WG),→ {nilpotent elements ing}/G×Irrf.d.C (Ax).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 4 / 17

(23)

Gconnected, reductive, complex, algebraic group,x∈g=Lie(G) nilpotent WG Weyl group

Ax=CG(x)/CG0(x) component group

Definition (Springer fiber)

BGx ={Borel subgroupsB ⊆G|x∈Lie(B)}, x∈gnilpotent

Theorem (Springer, 1978)

I There exist grading-preserving, commuting actions ofWG andAxon H(BxG,C).

I The decomposition

Htop(BGx,C) =M

λ

Hλtop(BxG,C)

into non-zeroAx-isotypic subspaces is a decomposition into irreducible WG-representations.

I This yields the Springer correspondence

Irrf.d.C (WG),→ {nilpotent elements ing}/G×Irrf.d.C (Ax).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 4 / 17

(24)

Gconnected, reductive, complex, algebraic group,x∈g=Lie(G) nilpotent WG Weyl group Ax=CG(x)/CG0(x) component group

Definition (Springer fiber)

BGx ={Borel subgroupsB ⊆G|x∈Lie(B)}, x∈gnilpotent

Theorem (Springer, 1978)

I There exist grading-preserving, commuting actions ofWG andAxon H(BxG,C).

I The decomposition

Htop(BGx,C) =M

λ

Hλtop(BxG,C)

into non-zeroAx-isotypic subspaces is a decomposition into irreducible WG-representations.

I This yields the Springer correspondence

Irrf.d.C (WG),→ {nilpotent elements ing}/G×Irrf.d.C (Ax).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 4 / 17

(25)

Gconnected, reductive, complex, algebraic group,x∈g=Lie(G) nilpotent WG Weyl group Ax=CG(x)/CG0(x) component group

Definition (Springer fiber)

BGx ={Borel subgroupsB ⊆G|x∈Lie(B)}, x∈gnilpotent

Theorem (Springer, 1978)

I There exist grading-preserving, commuting actions ofWG andAxon H(BxG,C).

I The decomposition

Htop(BGx,C) =M

λ

Hλtop(BxG,C)

into non-zeroAx-isotypic subspaces is a decomposition into irreducible WG-representations.

I This yields the Springer correspondence

Irrf.d.C (WG),→ {nilpotent elements ing}/G×Irrf.d.C (Ax).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 4 / 17

(26)

Gconnected, reductive, complex, algebraic group,x∈g=Lie(G) nilpotent WG Weyl group Ax=CG(x)/CG0(x) component group

Definition (Springer fiber)

BGx ={Borel subgroupsB ⊆G|x∈Lie(B)}, x∈gnilpotent

Theorem (Springer, 1978)

I There exist grading-preserving, commuting actions ofWG andAxon H(BxG,C).

I The decomposition

Htop(BGx,C) =M

λ

Hλtop(BxG,C)

into non-zeroAx-isotypic subspaces is a decomposition into irreducible WG-representations.

I This yields the Springer correspondence

Irrf.d.C (WG),→ {nilpotent elements ing}/G×Irrf.d.C (Ax).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 4 / 17

(27)

Gconnected, reductive, complex, algebraic group,x∈g=Lie(G) nilpotent WG Weyl group Ax=CG(x)/CG0(x) component group

Definition (Springer fiber)

BGx ={Borel subgroupsB ⊆G|x∈Lie(B)}, x∈gnilpotent

Theorem (Springer, 1978)

I There exist grading-preserving, commuting actions ofWG andAxon H(BxG,C).

I The decomposition

Htop(BGx,C) =M

λ

Hλtop(BxG,C)

into non-zeroAx-isotypic subspaces is a decomposition into irreducible WG-representations.

I This yields the Springer correspondence

Irrf.d.C (WG),→ {nilpotent elements ing}/G×Irrf.d.C (Ax).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 4 / 17

(28)

Gconnected, reductive, complex, algebraic group,x∈g=Lie(G) nilpotent WG Weyl group Ax=CG(x)/CG0(x) component group

Definition (Springer fiber)

BGx ={Borel subgroupsB ⊆G|x∈Lie(B)}, x∈gnilpotent

Theorem (Springer, 1978)

I There exist grading-preserving, commuting actions ofWG andAxon H(BxG,C).

I The decomposition

Htop(BGx,C) =M

λ

Hλtop(BxG,C)

into non-zeroAx-isotypic subspaces is a decomposition into irreducible WG-representations.

I This yields the Springer correspondence

Irrf.d.C (WG),→ {nilpotent elements ing}/G×Irrf.d.C (Ax).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 4 / 17

(29)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW: G=SO2m WG=WDm (type D)

Sm⊆ WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(30)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW: G=SO2m WG=WDm (type D)

Sm⊆ WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(31)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW:

G=SO2m WG=WDm (type D)

Sm⊆ WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(32)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW:

G=SO2m WG=WDm

(type D)

Sm⊆ WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(33)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW: G=SO2m

WG=WDm

(type D)

Sm⊆ WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(34)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW: G=SO2m WG=WDm (type D)

Sm⊆ WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(35)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW: G=SO2m WG=WDm (type D)

Sm

WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(36)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW: G=SO2m WG=WDm (type D)

Sm

WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(37)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW: G=SO2m WG=WDm (type D)

Sm⊆ WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(38)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW: G=SO2m WG=WDm (type D)

Sm⊆ WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(39)

I TheWG-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).

I The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW: G=SO2m WG=WDm (type D)

Sm⊆ WDm

subgroup generated by s1, . . . , sm−1

generators: s0, s1, . . . , sm−1

relations: (sisj)mij =e mij =





1 if i=j, 3 if i j in

2 else. 0

1

2 3 . . .m1

Theorem (Lusztig, 2004)

There exists an isomorphism ofC[WDm]-modules H(Bm,mSO

2m,C)

| {z }

Springer representation

∼=C⊗C[Sm]C[WDm]

| {z }

induced trivial module

.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 5 / 17

(40)

{standard basisbλ} φ

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

{cupdiagramsonmvertices,}=CKL(m)

bµ=P

λαλ,µbλ

Question

Where else do theαλ,µ appear? Why are they interesting?

I Infinite-dimensional representation theory of Lie algebras. Op0(so2m(C)) [M(λ) :L(µ)] =αλ,µ (Kazhdan–Lusztig, Beilinson–Bernstein, Brylinski–Kashiwara, Elias–Williamson)

I Non-semisimple representation theory of the Brauer algebra. Brm(δ)-mod (δ∈Z) [∆(λ) :L(µ)] =αλ,µ

(Martin, Cox–DeVisscher, Ehrig–Stroppel)

Question

Can we explicitly compute theαλ,µ?

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 6 / 17

(41)

{standard basisbλ} φ

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

{cupdiagramsonmvertices,}=CKL(m)

bµ=P

λαλ,µbλ

Question

Where else do theαλ,µ appear? Why are they interesting?

I Infinite-dimensional representation theory of Lie algebras. Op0(so2m(C)) [M(λ) :L(µ)] =αλ,µ (Kazhdan–Lusztig, Beilinson–Bernstein, Brylinski–Kashiwara, Elias–Williamson)

I Non-semisimple representation theory of the Brauer algebra. Brm(δ)-mod (δ∈Z) [∆(λ) :L(µ)] =αλ,µ

(Martin, Cox–DeVisscher, Ehrig–Stroppel)

Question

Can we explicitly compute theαλ,µ?

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 6 / 17

(42)

{standard basisbλ} φ

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

{cupdiagramsonmvertices,}=CKL(m) bµ=P

λαλ,µbλ

Question

Where else do theαλ,µ appear? Why are they interesting?

I Infinite-dimensional representation theory of Lie algebras. Op0(so2m(C)) [M(λ) :L(µ)] =αλ,µ (Kazhdan–Lusztig, Beilinson–Bernstein, Brylinski–Kashiwara, Elias–Williamson)

I Non-semisimple representation theory of the Brauer algebra. Brm(δ)-mod (δ∈Z) [∆(λ) :L(µ)] =αλ,µ

(Martin, Cox–DeVisscher, Ehrig–Stroppel)

Question

Can we explicitly compute theαλ,µ?

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 6 / 17

(43)

{standard basisbλ} φ

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

{cupdiagramsonmvertices,}=CKL(m) bµ=P

λαλ,µbλ

Question

Where else do theαλ,µ appear? Why are they interesting?

I Infinite-dimensional representation theory of Lie algebras. Op0(so2m(C)) [M(λ) :L(µ)] =αλ,µ (Kazhdan–Lusztig, Beilinson–Bernstein, Brylinski–Kashiwara, Elias–Williamson)

I Non-semisimple representation theory of the Brauer algebra. Brm(δ)-mod (δ∈Z) [∆(λ) :L(µ)] =αλ,µ

(Martin, Cox–DeVisscher, Ehrig–Stroppel)

Question

Can we explicitly compute theαλ,µ?

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 6 / 17

(44)

{standard basisbλ} φ

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

{cupdiagramsonmvertices,}=CKL(m) bµ=P

λαλ,µbλ

Question

Where else do theαλ,µ appear? Why are they interesting?

I Infinite-dimensional representation theory of Lie algebras.

O0p(so2m(C)) [M(λ) :L(µ)] =αλ,µ (Kazhdan–Lusztig, Beilinson–Bernstein, Brylinski–Kashiwara, Elias–Williamson)

I Non-semisimple representation theory of the Brauer algebra. Brm(δ)-mod (δ∈Z) [∆(λ) :L(µ)] =αλ,µ

(Martin, Cox–DeVisscher, Ehrig–Stroppel)

Question

Can we explicitly compute theαλ,µ?

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 6 / 17

(45)

{standard basisbλ} φ

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

{cupdiagramsonmvertices,}=CKL(m) bµ=P

λαλ,µbλ

Question

Where else do theαλ,µ appear? Why are they interesting?

I Infinite-dimensional representation theory of Lie algebras.

O0p(so2m(C)) [M(λ) :L(µ)] =αλ,µ (Kazhdan–Lusztig, Beilinson–Bernstein, Brylinski–Kashiwara, Elias–Williamson)

I Non-semisimple representation theory of the Brauer algebra.

Brm(δ)-mod (δ∈Z) [∆(λ) :L(µ)] =αλ,µ

(Martin, Cox–DeVisscher, Ehrig–Stroppel)

Question

Can we explicitly compute theαλ,µ?

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 6 / 17

(46)

{standard basisbλ} φ

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

{cupdiagramsonmvertices,}=CKL(m) bµ=P

λαλ,µbλ

Question

Where else do theαλ,µ appear? Why are they interesting?

I Infinite-dimensional representation theory of Lie algebras.

O0p(so2m(C)) [M(λ) :L(µ)] =αλ,µ (Kazhdan–Lusztig, Beilinson–Bernstein, Brylinski–Kashiwara, Elias–Williamson)

I Non-semisimple representation theory of the Brauer algebra.

Brm(δ)-mod (δ∈Z) [∆(λ) :L(µ)] =αλ,µ

(Martin, Cox–DeVisscher, Ehrig–Stroppel)

Question

Can we explicitly compute theαλ,µ?

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 6 / 17

(47)

φ

∼=

ψ

∼=

{standard basisbλ}

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

cup diagrams onmvertices,

#

+ #

even

=CKL(m)

bµ=P

λαλ,µbλ

Example: (m=4)

∨ ∨ ∨∨,∨ ∨ ∧∧,∨ ∧ ∨∧,∨ ∧ ∧∨,∧ ∨ ∨∧,∧ ∨ ∧∨,∧ ∧ ∨∨,∧ ∧ ∧∧

Theorem (Lejczyk–Stroppel, 2013)

αλ,µ=





1, if φ(bλ)

ψ(bµ) oriented, 0, else.

∧ (∨

∧)

∨ ∨ (∧ ∧)

∨ ∧

, , ,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 7 / 17

(48)

φ

∼=

ψ

∼=

{standard basisbλ}

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

cup diagrams onmvertices,

#

+ #

even

=CKL(m)

bµ=P

λαλ,µbλ

Example: (m=4)

∨ ∨ ∨∨,∨ ∨ ∧∧,∨ ∧ ∨∧,∨ ∧ ∧∨,∧ ∨ ∨∧,∧ ∨ ∧∨,∧ ∧ ∨∨,∧ ∧ ∧∧

Theorem (Lejczyk–Stroppel, 2013)

αλ,µ=





1, if φ(bλ)

ψ(bµ) oriented, 0, else.

∧ (∨

∧)

∨ ∨ (∧ ∧)

∨ ∧

, , ,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 7 / 17

(49)

φ

∼=

ψ

∼=

{standard basisbλ}

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

cup diagrams onmvertices,

#

+ #

even

=CKL(m)

bµ=P

λαλ,µbλ

Example: (m=4)

∨ ∨ ∨∨, ∨ ∨ ∧∧,∨ ∧ ∨∧,∨ ∧ ∧∨,∧ ∨ ∨∧,∧ ∨ ∧∨,∧ ∧ ∨∨,∧ ∧ ∧∧

Theorem (Lejczyk–Stroppel, 2013)

αλ,µ=





1, if φ(bλ)

ψ(bµ) oriented, 0, else.

∧ (∨

∧)

∨ ∨ (∧ ∧)

∨ ∧

, , ,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 7 / 17

(50)

φ

∼=

ψ

∼=

{standard basisbλ}

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

cup diagrams onmvertices,

#

+ #

even

=CKL(m)

bµ=P

λαλ,µbλ

Example: (m=4)

∨ ∨ ∨∨, ∨ ∨ ∧∧,∨ ∧ ∨∧,∨ ∧ ∧∨,∧ ∨ ∨∧,∧ ∨ ∧∨,∧ ∧ ∨∨,∧ ∧ ∧∧

Theorem (Lejczyk–Stroppel, 2013)

αλ,µ=





1, if φ(bλ)

ψ(bµ) oriented, 0, else.

∧ (∨

∧)

∨ ∨ (∧ ∧)

∨ ∧

, , ,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 7 / 17

(51)

φ

∼=

ψ

∼= {standard basisbλ}

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

cup diagrams onmvertices,

#

+ #

even

=CKL(m)

bµ=P

λαλ,µbλ

Example: (m=4)

∨ ∨ ∨∨, ∨ ∨ ∧∧,∨ ∧ ∨∧,∨ ∧ ∧∨,∧ ∨ ∨∧,∧ ∨ ∧∨,∧ ∧ ∨∨,∧ ∧ ∧∧

Theorem (Lejczyk–Stroppel, 2013)

αλ,µ=





1, if φ(bλ)

ψ(bµ) oriented, 0, else.

∧ (∨

∧)

∨ ∨ (∧ ∧)

∨ ∧

, , ,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 7 / 17

(52)

φ

∼=

ψ

∼= {standard basisbλ}

{Kazhdan-Lusztig basisbµ}

{∧,∨}-sequences, lengthm,#(∧)even

cup diagrams onmvertices,

#

+ #

even

=CKL(m)

bµ=P

λαλ,µbλ

Example: (m=4)

∨ ∨ ∨∨, ∨ ∨ ∧∧,∨ ∧ ∨∧,∨ ∧ ∧∨,∧ ∨ ∨∧,∧ ∨ ∧∨,∧ ∧ ∨∨,∧ ∧ ∧∧

Theorem (Lejczyk–Stroppel, 2013)

αλ,µ=





1, if φ(bλ)

ψ(bµ) oriented, 0, else.

∧ (∨

∧)

∨ ∨ (∧ ∧)

∨ ∧

, , ,

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 7 / 17

Referenzen

ÄHNLICHE DOKUMENTE

Die persönlichen, gesundheitlichen und sozialen Folgen der Osteoporose für den Betroffenen, aber auch die Belastung und Kosten für die Gesellschaft sind erheblich.

Aussenbandrisse am Knöchel lassen sich meist unkompliziert mit einer Knöchel- schiene versorgen, doch immer wieder werden Risse als Zerrung bagatellisiert und unzureichend

Suche dir für q selbst eine Farbe zum

In Chapter 2, a special attention is paid to the notion of ϕ-related tensor fields on smooth manifolds, which allows us to define a dragging of tensor fields (including vector

[r]

• Thus variables which are to be spilled to memory, can be determined ahead of the subsequent assignment of registers !. • Thus here, we may, e.g., insist on keeping iteration

Der Kreis wird in der Schule gewöhnlich definiert als die Menge aller Punkte P, welche von einem gegebenen Punkt M konstanten Abstand haben:.. MP =

Für einen allgemeinen Punkt auf dem Niveau c = 9 sind die drei Quadrate eingezeich- net, deren Flächensumme für alle Punkte auf diesem Niveau invariant ist... 13: