• Keine Ergebnisse gefunden

salinity and implications to for egg survival Egg flounder, buoyancy Platichthys of flesus , in the BalticSea—adaptation Fisheries Research

N/A
N/A
Protected

Academic year: 2022

Aktie "salinity and implications to for egg survival Egg flounder, buoyancy Platichthys of flesus , in the BalticSea—adaptation Fisheries Research"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Fisheries Research

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / f i s h r e s

Egg buoyancy of flounder, Platichthys flesus, in the Baltic Sea—adaptation to salinity and implications for egg survival

Anders Nissling

a,∗

, Sofia Nyberg

a

, Christoph Petereit

b

aArResearchStation,DepartmentofEcologyandGenetics,UppsalaUniversity,SE-62167Visby,Sweden

bGEOMARHelmholtzCentreforOceanResearchKiel,D-24105Kiel,Germany

a r t i c l e i n f o

Articlehistory:

Received31August2016

Receivedinrevisedform31January2017 Accepted27February2017

HandledbyGeorgeA.Rose

Keywords:

Eggspecificgravity Flounderecotype Brackishwater Pelagiceggs Demersaleggs Eggsurvival

a b s t r a c t

Verticaldistributionofeggsasdeterminedbytheeggbuoyancy,i.e.thedifferenceinspecificgravity betweentheeggandtheambientwater,haveprofoundimplicationsforthereproductivesuccessand hencerecruitmentinfish.Herevariabilityineggspecificgravityofflounder,Platichthysflesus,wasstud- iedalongasalinitygradientandbycomparingtworeproductivestrategies,spawningpelagicordemersal eggs.Eggcharacteristicsof209eggbatches(coveringICESsubdivisions(SD)22–29inthebrackishwater BalticSea)wasusedtorevealthesignificanceofeggdiameterandeggdryweightforeggspecificgravity (ESG),subpopulations,andeggsurvivalprobabilitiesofpelagiceggsfollowingamajorsalinewaterinflow event.Asanadaptationtosalinity,ESG(at7C)differed(p<0.001)betweenareas;threesubpopulations offlounderwithpelagiceggs:1.0152±0.0021(mean±sd)gcm3inSD22,1.0116±0.0013gcm3in SD24and25,and1.0096±0.0007gcm−3inSD26and28,contrastingtoflounderwithdemersaleggs, 1.0161±0.0008gcm3.Eggdiameterdiffered(p<0.001)betweensubpopulations;from1.08±0.06mm (SD22)to1.26±0.06mm(SD26and28)forpelagiceggsand1.02±0.04mmfordemersaleggs,whereas eggdryweightwassimilar;37.9±5.0␮g(SD22)and37.2±3.9␮g(SD28)forpelagic,and36.5±6.5␮g fordemersaleggs.Botheggdiameterandeggdryweightwereidentifiedasexplanatoryvariables,explain- ing87%ofthevariationinESG.ESGchangedduringontogeny;aslightdecreaseinitiallybutanincrease priortohatching.EggsurvivalprobabilitiesjudgedbycombiningESGandhydrographicdatasuggested highereggsurvivalinSD25(26vs100%)andSD26(32vs99%)butnotinSD28(0and3%)afterthe inflowevent,i.e.highlyfluctuatinghabitatsuitability.TheresultsconfirmthesignificanceofESGforegg survivalandshowthatvariabilityinESGasandadaptationtosalinityisdeterminedmainlybywatercon- tentmanifestedasdifferencesineggdiameter;increaseindiameterwithdecreasingsalinityforpelagic eggs,anddecreaseddiameterresultingindemersaleggs.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Toaccomplishsurvivalofearlylifestages,i.e.thereproductive successandthusrecruitmenttotheadultstock(cffitness),different spawningstrategiesanddifferenttacticshaveevolvedinteleosts (e.g.Wootton,1990).Thismaybemanifestedase.g.theproduction ofdemersalvspelagiceggs,andasselectionofspawningarea,e.g.

incoastalareasoroffshore.Inthepresentstudythesignificanceof variabilityineggspecificgravity(ESG)forthereproductivesuccess offlounder(Platichthysflesus)wasstudiedalongasalinitygradient andbycomparingtwodifferentreproductivestrategies,spawning offshorewithpelagiceggs(eggswhichfloatfreelyinthewatercol-

Correspondingauthor.

E-mailaddress:anders.nissling@ebc.uu.se(A.Nissling).

umn)andincoastalareaswithdemersaleggs(eggsdevelopingon thebottom),respectively,suggestingeggspecificgravityasbeing amajorselectionprocess.

Spawningpelagiceggsisthemostcommonstrategyofmarine fishes and is acquired by uptake of water duringthe terminal growthofoocytesintheovary,oocytehydration,justpriortoovu- lation(Fulton,1898;CraikandHarvey,1987;Cerdàetal.,2007).By incorporationoffluidwithlowerosmoticpotentialthanthesea- waterenvironment,andthuscompensatingforthedenserparts oftheegg,theyolkandchorion,theoveralleggspecificgravityis lowered(CraikandHarvey,1987).Bothdemersalandpelagiceggs undergohydration,butthedegreeofwateruptake,accompanied byasignificantincreaseinoocytevolume,differbetweenpelagic anddemersaleggs.Typically,pelagiceggshavehighwatercontent, 90–92%,comparedtodemersaleggs,60–70%,andthusloweregg specificgravitythatallowsforbuoyancy(CraikandHarvey,1987).

http://dx.doi.org/10.1016/j.fishres.2017.02.020

0165-7836/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

0/).

(2)

Dependingonspeciesspecifichabitatpreferencesforeggdevel- opment,egg specificgravityand hencetheverticaldistribution varyamongspecies,andfurthermorebetweenpopulationswithin species,asadaptationstolocalenvironmentalconditions.E.g.for theextensivelystudiedcod,Gadusmorhua,eggspecificgravityvary fromca1.022–1.026gcm3atmarineconditionsintheAtlanticto ca1.009–1.014gcm3in thebrackishwaterBalticSea(Table in Jung,2012;TableinPetereitetal.,2014).Thisisduetodifferences inwatercontent,ca92%vsca97%,andaccordinglyineggdiameter, ca1.2–1.4mmvsca1.5–1.8mm,formarineandbrackishwatercod eggs,respectively(Thorsenetal.,1996;Jung,2012;Petereitetal., 2014).Thehigheruptakeofwaterinbrackishwatercodeggsresult inastretchingofthechorion,i.e.thinnerchorion,andachange inthechorion(aconsiderablepartofthetotaleggmass)toegg volumeratioinfluencingtheESG(Kjesbuetal.,1992).Aseggbuoy- ancyisdeterminedmainlyby salinity(Sundbyand Kristiansen, 2015)marinefishesthathavemanagedtoadapttothebrackish conditionsintheBalticSea, displaydifferenteggcharacteristics (watercontentandeggdiameter)comparedtotheirmarinecoun- terparts;forcodresultinginneutraleggbuoyancyat10–20psuvs at27–33psu(e.g.VallinandNissling,2000;Jung,2012;Petereit etal.,2014).

SinceCoombs(1981)introducedthedensitygradientcolumn allowingforaccuratemeasurementsofeggspecificgravity,anum- berofstudieshavebeenconductedfocusingoni)themechanisms ofachievingegg buoyancyand parameterizationof variousegg componentsforeggspecificgravity(Kjesbuetal.,1992;Jungetal., 2014),ii)theecologicalsignificanceofverticaleggdistributionand variabilityineggspecificgravityforsurvivalprobabilitiesinrela- tiontoabioticambientconditions(e.g.Nisslingetal.,1994;Ouellet, 1997;MacKenzie and Mariani, 2012), and iii)opportunities for retentioninordispersaltosuitablehabitatsfordevelopment(e.g.

Ospina-Álvarezetal.,2012;Myksvolletal.,2013;Petereitetal., 2014).Hence,theverticaldistributionofeggsasdeterminedby eggspecificgravity,andambientsalinityandtemperaturecondi- tions,mayhaveprofoundimplicationsforthereproductivesuccess andtheyearclass-formationinteleosts.

ThebrackishwaterBalticSea,withrestrictedwaterexchangeby shallowstraightsintheSoundandtheBelt-Seas(ICESSD22and23;

Fig.1),ischaracterizedbyadecreaseinsalinityinthesurfacewater fromca9psuinthesouthwest(SD24)toca3psuinthenorth(SD 31),andapermanenthaloclineat50–70mdepthwithdensermore saline,ca10–20psu,deepwaterintheBalticproper(SD24–28).

Successfulreproductionofmarinefishesisrestrictedbyopportuni- tiesforfertilizationandeggdevelopmentatlowsalinities(Nissling etal.,2002,2006;Petereitetal.,2009)and/orbyopportunitiesto obtainneutraleggbuoyancyinthelessdensewater,i.e.notsinkto thebottomorbesubjectedtounfavourableoxygenconditionsin thedeeplayers(Nisslingetal.,1994;MacKenzieetal.,2000).Con- ditionsarestronglyaffectedbyhighlyirregularsalinewaterinflow events,influencingbothsalinityandoxygenconditionsandconse- quentlythereproductivesuccessandaccordinglybothabundance anddistributionofmarinefishes(Segerstråle,1969;Ojaveerand Kalejs,2005;MacKenzieetal.,2007),includingflounder(Ojaveer etal.,1985;Drews,1999;Ustupsetal.,2013).

Flounder,Platichthysflesus,inhabittheEasternAtlanticofWest- ernEuropefromtheWhiteSeatotheMediterraneanandtheBlack SeaincludingtheBalticSea(Nielsen,1986).IntheBalticSeaitdis- playdifferentspawningstrategies;spawningalongthecoastand onoffshorebankswithdemersaleggsinSD26–30andSD32,and off-shoreinthedeepbasinswithpelagiceggsinSD22–26andSD 28(Bagge,1981),i.e.formingtwogeneticallydistinct(Hemmer- Hansenetal.,2007;FlorinandHöglund,2008)sympatricecotypes, butsharingfeedingandwinteringareas(Nisslingetal.,2015).Fur- ther,asanadaptationtothedecreaseinsalinity;ca15–25psuin theBeltSeasandtheSound(SD22and23),ca13–20psuinthe

ArkonaBasinandBornholmBasin(SD24and25)vsca10–14psu intheGdanskDeepandGotlandBasin(SD26and28)(Fig.1),egg specificgravityoftheecotypewithpelagiceggshasbeenshownto differbetweenspawningareas(Nisslingetal.,2002;Petereitetal., 2014).

Inthepresentstudydataofeggspecificgravityfromfishsam- pledindifferentBalticSeaspawningareasin2011–2015,together withalreadypublisheddata(Solemdal,1971,1973;Nisslingetal., 2002;Petereitetal.,2014)werecompiledwiththeaimto:

i)Explorethesignificanceofeggdiameterandeggdryweight respectively,foreggspecificgravity,andhencefortheopportu- nitytoobtainneutraleggbuoyancyalongasalinitygradient,i.e.

adaptationtoprevailingwaterdensity.

ii)Revealdifferencesineggcharacteristicsbetweenfishspawn- ing in different areas to be used as a non-genetic tool in discriminationofsubpopulations(Ciannellietal.,2010;Myksvoll etal.,2013;Petereitetal.,2014).

iii)Assesstheecologicalsignificanceofeggspecificgravityand verticaleggdistributiononeggsurvivalprobabilitiesofthefloun- derecotypewithpelagiceggs.Hereweexplorehabitatsuitability foreggsurvivalatconditionsprevailingbeforeandafteramajor salinewaterinfloweventintotheBalticSeabycomparingcon- ditions in 2014 and in 2015 following themajor inflow event inDecember–January2014–2015(Mohrholzetal.,2015)causing changesinsalinityandthusinverticaleggdistribution.

iv)AssessontogenicchangesinESGuntilhatchingoftheecotype withpelagiceggsasanincreaseinESGduringdevelopment(as shownforotherspecies;seebelow)mayimplydevelopmentat lessfavourableoxygenconcentrations.

Inabroadercontextinformationaboutvariabilityineggspecific gravity(andverticaleggdistribution)offloundermaybeusedin stock-recruitmentrelationshipsbyincorporationofhydrographic conditionsandstockstructure,i.e.estimatetheeffectivespawning stockbiomass(Hinrichsenetal.,2016b),andfurther,contribute toforecasting stockdevelopmentinaccordancewithpostulated deteriorationofsalinityandoxygenconditionsinthedeepbasins asaneffectofclimatechangeaffectingtheextentofsalinewater inflowsintotheBalticSea(MacKenzieetal.,2007;Meieretal., 2012).

2. Materialsandmethods 2.1. Samplingoffish

The study includes measurements of egg characteristics of flounder,Platichthysflesus,sampledinICESSDs22–26andSD28 (Fig.1)in2011–2015.Samplingwasconductedbyeither trawl surveysintheBalticdeepbasinsbyR/VAlkor(SD22–26andSD 28)inApril,orbygillnetsurveysfromat5toat70mdepthoff easternGotland(SD28)andintheHanöBight(SD25)inmidApril- earlyMay(Fig.1).Femalesizewasmeasuredas totallengthin mmorascmlength-class,thelatterusedinfurtheranalysis.Addi- tionally,alreadypublisheddata(Solemdal,1971,1973;Nissling etal.,2002;Petereitetal.,2014)wereincluded.Intotal209egg batchesfromdifferentfemales wereused.Thesamplingproce- dureisdescribedindetailinNisslingetal.(2002)andinPetereit etal.(2014)(Rawdataavailableatthefollowinglink:https://doi.

pangaea.de/10.1594/PANGAEA.871590).

2.2. Samplingofeggs

Eggsformeasurementswereobtainedbystrippingandartifi- cialfertilization,usingeggsfromonefemaleandsemenfrom2to 3males,eitherdirectlyonboard(R/VAlkor)oraftertransporta- tiontotheArResearchStationortoamobilelaboratorywherefish

(3)

Fig.1. ICESsubdivisions(SD)intheBalticSeawithspawningareasofflounder,Platichthysflesus,withpelagiceggs:BSBeltSea(SD22),ABArkonaBasin(SD24),BB BornholmBasin(SD25),GDGdanskDeep(SD26),GBGotlandBasin(SD28).

werekeptintankswithrunningwateruntilstripping.Fertilization wasperformedat17–20psuatca6–10C.After0.5–1hasubsam- pleoffertilizedeggswereincubatedinnewwaterat6–9Cand 17–20psuuntilmeasurementsca12–24hpostfertilization.Eggs usedformeasurementsofspecificgravity,diameteranddryweight werescannedunderastereo-microscopeandonlyeggswithnor- maldevelopment(i.e.regularcellmorphology;Kjørsviketal.,1990) wereusedtoensureonlyhighqualityeggsinmeasurements.

2.3. Determinationofeggcharacteristics

Egg specific gravity (ESG) was determined using a density gradient column (Coombs,1981) using 15–30 eggsin stage IA (ThompsonandRiley,1981)ineachdetermination.Theeggswere insertedinthecolumnand,afterasettlingtimeofca45–60min,

thepositionsrecordedandcomparedwiththepositionsof4–9den- sityglassfloats(Spartel,UK;MartinInstrumentsCo,UK)ofknown specificgravity;correlationcoefficientofthedensityfloatswere

>0.99in allmeasurements.Measurementwereperformedatca 7C;ifdeviatingfromthis(temperaturecheckedatthetopofthe watercolumn)ESGwasadjustedto7Cusingaseawaterdensity calculator(seelinkbelow).TheprocedurefordeterminationofESG isdescribedindetailinNisslingetal.(2002)andinPetereitetal.

(2014).

Innineeggbatchesfromdifferentfemales,eggswereincubated inthedensitygradientcolumnthroughoutdevelopmentfromstage IA(12–24hafterfertilization)untilhatching,i.e.atneutralbuoy- ancy.ESGwasassessed1–2timesperdaytorecordchangesduring ontogeny;developmentstage,accordingtoThompsonandRiley (1981),determinedusingeggbatchesfromtherespectivefemale

(4)

incubatedatsimilarconditions(at20psuand6–8C).Incubation ofalimitednumberofeggsinadensitygradientcolumnimplies noeffectoneggdevelopment,resultingin82–100%viablelarvae;

seePetereitetal.(2014)formoredetails.

Egg diameter, assessed as the outside diameter set by the chorion,wasmeasuredbyonecrossdiagonalmeasurementatstage IAunderastereo-microscopeat50orat240xmagnificationusing anocularmicrometrescale,with20–30eggsineachdetermina- tion.Eggdryweight(stageIA)wasassessedintwoways,either 6–8eggs,rinsedindemineralizedwater2timesforca10s,were collectedinapre-weightedaluminiumvialforfreezedrying(at

−50C)andsubsequentlyweightedtothenearest0.1␮g(Sarto- riusmicrobalanceSC2),orbatchesof200eggs,rinsed2timesfor ca15sindemineralizedwater,wasincubatedat60Cfor24hand weighted(0.1mg;SartoriusBP210S).

2.4. Hydrographicdataandverticaleggdistribution

Salinity,temperatureandoxygendataweremeasuredusinga CTDprovidedwithanoxygenprobe(ADM)withcontinuousmea- surementsfromthesurfaceto3mabovethebottominthemain spawningareas fortheflounderecotypewithpelagiceggs(see Hinrichsenetal.,2016a),theBornholmBasin(SD25),theGdansk Deep(SD26)andtheGotlandBasin(SD28).Themeasurements werecarriedoutduringsurveyswithR/VAlkorinApril2014and in April2015; data from stationBB25, GD60 and GB90(cruise ReportsAl435(DOI10.3289/CRAL435]andAl454[http://oceanrep.

geomar.de/id/eprint/28939]).

BycombiningdataofwaterdensityfromCTDcastswithmean ESGofeacheggbatch,theverticaleggdistributionwasdetermined inaccordancetotheneutraleggbuoyancy.AsnodifferenceinESG wasfoundbetweeneggsfromSD24andSD25,andbetweeneggs fromSD26andSD28,respectively,theverticaleggdistributionin theBornholmBasin(SD25)wasassessedusingeggbatchesfrom SD24andSD25pooled(n=42),andtheverticaleggdistribution intheGdanskDeep(SD26)andtheGotlandBasin(SD28)withegg batchesfromSD26andSD28pooled(n=69);seebelow.

2.5. Habitatsuitability

Habitatsuitability foregg survival (Hinrichsenet al., 2016c) wasassessedasthewater column atwhich eggswouldobtain neutralbuoyancyabovecriticallevelsfordevelopment,i.e.1ml oxygenl1(Vitinsh,1980;Grauman,1981)and>2C(Hinrichsen etal.,2016b;IsaWallin,personalcommunication).Accordingly, eggsurvivalprobabilitiesandcauseofmortalitywereevaluatedin relationtotemperatureandoxygenconditionsatthedepthwhere therespectiveeggbatchachieveneutralbuoyancy(atstageIA), orasdeathfromsedimentationofnon-buoyanteggbatches;no eggsoftheecotypewithpelagiceggsareexpectedtosurvivecon- ditionsprevailingatthebottom(seeHinrichsenetal.,2016c;and referencestherein).

3. Results

3.1. Differencesineggspecificgravitybetweenareas

Eggspecific gravity (ESG)at stage IA (Thompsonand Riley, 1981), measured at 7C ca 12–24h post fertilization, var- ied between areas. The highest values occurred in SD 23, 1.02038±0.00062(mean±sd)gcm3andthelowestinSD26and SD 28, 1.00955±0.00074gcm3 and 1.00955±0.00068gcm3, respectively(Table1;Fig.2).AGLM(generallinearmodel;SPSS ver.22)withESGasdependentvariable,area(ICESSD)asfixed factorandfemalelength-classascovariateresultedina signifi- canteffectofarea,df=5,F=16.58,p<0.001(datafromSD23and

fordemersaleggsinSD25wereexcludedinanalysisduetofew measurements).Pairwisecomparisonsrevealedthreegroupsfor flounderwithpelagiceggs,SD22,SD24and25,andSD26and 28,respectivelyseparatedfromflounderwithdemersaleggsinSD 28(Table2).Aweakpositiveeffect(df=1,F=4.18, p=0.042)of length-classonESGoccurred.Thiseffectwashoweverrelatedto measurementsinSD22only.ExcludingSD22inanalysisresulted innoeffect(df=1,F=0.410,p=0.523)withp=0.245-0.645forthe respectivegroup,SD24and25,SD26and28andSD28withdemer- saleggs,i.e.noevidenteffectoffemalesizeonESG.Apartfromthat measurementsinSD22,incontrasttootherareas,yieldedaposi- tiverelationshipbetweenlength-classandESG,variabilityinESG washigh,standarddeviationof0.0021gcm3comparedto0.0007- 0.0013gcm−3fortheotherareas(Table1).TheresultsfromSD22 mayberelatedtosamplingoccasion(trawlstationand/ordate) potentiallyandeffectofmixedpopulationsinthearea(Petereit etal.,2014;discussionbelow).

3.2. Significanceofeggdiameterandeggdryweight

Regressionanalysisrevealedastrongeffectofeggdiameteron ESG,df=1,F=582.1,p<0.001,butnoeffectofeggdryweighton ESG,df=1,F=0.00,p=0.98(Fig.3aand3b)suggestingthatvari- ability inESG among subpopulations/areasis related mainlyto differencesinwatercontent,manifestedasdifferencesineggdiam- eter,butwithsimilardryweightsamongareas(Table1).Thiswas supportedbyanANOVAanalysiswitheggdiameterasdependent variableandSDasfixedfactor,resultinginasignificantdifference betweenSDs,df=4,F=63.57,p<0.001.AcorrespondingANOVA witheggdryweightasdependentvariableyieldedasignificantdif- ferencebetweenareas,df=4,F=3.19,p=0.017.However,thiswas duetoasignificantdifferencebetweenSD25(N.B.n=9)andSD26 (p=0.015;pairwisecomparisons)whereasnodifferencesoccurred betweene.g.eggsfromSD22andpelagiceggsinSD28(p=1.00) orbetweenpelagicanddemersaleggsinSD28(p=1.00).Hence, variabilityinESGamongsubpopulations/areasisrelatedtodiffer- encesineggdiameter(i.e.watercontent)withnodifferenceinegg dryweight.

Amultipleregressionmodelsuggestedinclusion ofbothegg diameter(df=1,t=25.53,p<0.001;negativerelationship)andegg dryweight(df=1,t=8.15,p<0.001;positiverelationship)explain- ing87%ofthevariationinESG(df=2,F=326.0,p<0.001)when measurementsfromallSDswerepooled,i.e.largereggswithlower dryweightresultinmorebuoyanteggs.ThiswasvalidalsoforSD 22andSD26and28,i.e.withpelagiceggs,andclosetosignificant forSD28withdemersaleggs(Table3),i.e.withintherespective sub-population/areavariabilityinESGisdeterminedbybothegg diameter(i.e.watercontent)anddryweight.

3.3. Ontogenicchangesineggspecificgravity

ESGduringdevelopmentinnineeggbatchesfromearlystage 1A to stage IV and hatching is presented in Fig. 4. In general, ESGdecreasedsomewhatduringdevelopment(Fig.4aandc),or remainedmoreorlessstable(Fig.4b)untilmid/latestageIIIfol- lowed by an increase in ESG during stage IV until hatching. A decreaseinESGduringdevelopmentresultinanupwardmove- mentoftheegg(untilstageIII)followedbysinkingduringstage IVuntilhatching.ThehighestdecreaseinESGuptostageIIIwas approximately0.0015–0.0020gcm3corresponding,roughly,toca 50%ofthevariabilityinESGofeggbatchesinstageearlyIAwithin therespectivearea(basedonthevariabilitybetweeneggbatchesin SD24and25,andSD26and28,respectively)andmaythusincrease opportunitiesforeggsurvivalasevaluatedbelow.Similarly,the highestincreaseinESGduringstageIV,ca0.0015gcm−3compared

(5)

Table1

Eggcharacteristicsofflounder,Platichthysflesus,indifferentICESsubdivisions(SD)intheBalticSea(mean±sd)togetherwithfemalesizeofanalyzedfish.InSD25andSD 28,wherebothecotypesoccur,PindicatespelagiceggsandDdemersaleggs.Numberofmeasurements(eggbatchesfromdifferentfemales)withinbrackets.

SD Eggspecificgravity(gcm−3) Eggdiameter(mm) Eggdryweight(␮g) Femalesize(cm)

SD22 1.01520±0.00206(33) 1.08±0.06(33) 37.9±5.0(32) 35.5±6.3

SD23 1.02038±0.00062(4) 30.0±4.1

SD24 1.01220±0.00122(13) 30.8±2.8

SD25P 1.01129±0.00123(29) 1.17±0.07(18) 34.5±2.5(9) 31.3±4.4

SD25D 1.01663±0.00057(3) 1.06(1) 30.0±3.8

SD26 1.00955±0.00074(17) 1.26±0.06(17) 41.1±5.9(16) 32.2±5.6

SD28P 1.00955±0.00068(52) 1.26±0.05(36) 37.2±3.9(33) 30.0±3.8

SD28D 1.01601±0.00076(58) 1.02±0.04(35) 36.5±6.5(11) 29.7±4.9

7.7 10.5 13.3 16.1 18.9 21.7 24.5 27.3 1.0060

1.0080 1.0100 1.0120 1.0140 1.0160 1.0180 1.0200 1.0220

20 25 30 35 40 45 50

Salinity of neutral buoyancy (psu)

Egg specific gravity (g/cm3)

Length-class (cm)

SD 22 SD 22 SD 23 SD 24 SD 25P SD 25D SD 26 SD 28P SD 28D

Fig.2. Therelationshipbetweeneggspecificgravity(gcm−3)andfemalesize(cmlengthclass)forflounder,Platichthysflesus,indifferentICESsubdivisions(SD).Corresponding salinityofneutralbuoyancyat7Cshownonsecondverticalaxis.

Table2

Pairwisecomparisonsofeggspecificgravityofflounder,Platichthysflesus,indifferentICESsubdivisions(SD)byGLM-analysis(evaluatedatlengthclass31.25cm).InSD25 andSD28wherebothecotypesoccurPindicatespelagiceggsandDdemersaleggs.

SD mean 95%lower 95%upper SD22 SD24 SD25P SD26 SD28P SD28D

SD22 1.0143 1.01389 1.01474 <0.001 <0.001 <0.001 <0.001 <0.001

SD24 1.0122 1.01165 1.01278 <0.001 0.100 <0.001 <0.001 <0.001

SD25P 1.0113 1.01091 1.01166 <0.001 0.100 <0.001 <0.001 <0.001

SD26 1.0096 1.00911 1.01010 <0.001 <0.001 <0.001 1.000 <0.001

SD28P 1.0096 1.00935 1.00994 <0.001 <0.001 <0.001 1.000 <0.001

SD28D 1.0160 1.01573 1.01628 <0.001 <0.001 <0.001 <0.001 <0.001

Table3

Resultsfrommultiple-regressionanalysisbetweeneggspecificgravity(dependentvariable)andeggdiameterandeggdryweight,forflounder,Platichthysflesus,indifferent ICESsubdivisions(SD);forallareaspooledandfortherespectivesub-population.P=pelagiceggs.D=demersaleggs.n=numberofeggbatches.

Eggdiameter Eggdryweight Modelsummary

t p t p n F adjustedr2 p

SDspooled −25.5 <0.001 8.15 <0.001 100 326.0 0.868 <0.001

SD22 −16.49 <0.001 12.53 <0.001 32 151.6 0.907 <0.001

SD25P −1.56 0.181 −0.218 0.836 8 1.90 0.205 0.243

SD26and28P −5.24 <0.001 3.21 <0.01 49 15.30 0.373 <0.001

SD28D −2.65 <0.05 1.81 0.108 11 3.61 0.343 0.077

totheinitialESG,involve sinkingand potentiallyincreasedegg mortality.

3.4. Eggsurvivalprobabilities

InFig.5verticalprofilesoftemperature,salinityandoxygencon- centrationinApril2014andinApril2015,areshownfortheBaltic Seadeepbasins,theBornholmBasin(SD25),theGdanskDeep(SD 26)andtheGotlandBasin(SD28).Themajorsalinewaterinflow eventinthewinter2014–2015resultedinimprovedconditions

foreggdevelopmentbelowthehalocline,i.e.inthemainspawn- ingareasforflounderwithpelagiceggs.IntheBornholmBasinand theGdanskdeepbothsalinityandoxygenconcentrationsincreased whereas in theGotlandbasin there wasan increasein salinity while oxygenconditions remainedlow.The onaveragesalinity belowthehaloclineincreasedfrom13.7±2.0(mean±sd)psuin April2014to15.5±2.6psuinApril2015intheBornholmBasin, from10.6±1.3psuto13.8±1.6psuintheGdanskDeep,andfrom 9.4±1.0psuto11.0±1.3psuintheGotlandBasin.Highersalini- ties(denserwater)resultedinasignificantchangeindepthrange

(6)

7.7 10.2 12.7 15.2 17.7 20.2 22.7 25.2 1.0060

1.0080 1.0100 1.0120 1.0140 1.0160 1.0180 1.0200

0.90 1.00 1.10 1.20 1.30 1.40 1.50

Salinity of neutral buoyancy (psu)

Egg specific gravity (g/cm3)

Egg diameter (mm)

SD 22 SD 25P SD 26 SD 28P SD 28D

a)

7.7 10.2 12.7 15.2 17.7 20.2 22.7 25.2 1.0060

1.0080 1.0100 1.0120 1.0140 1.0160 1.0180 1.0200

25.0 30.0 35.0 40.0 45.0 50.0 55.0

Salinity of neutral buoyancy (psu)

Egg specific gravity (g/cm3)

Egg dry weight (µg)

SD 22 SD 25P SD 26 SD 28P SD 28D

b)

Fig.3. Therelationshipbetweeneggspecificgravity(gcm−3)anda)eggdiameter(mm)andb)eggdryweight(␮g)forflounder,Platichthysflesus,indifferentICESsubdivisions (SD).Correspondingsalinityofneutralbuoyancyat7Cshownonsecondverticalaxis.

Table4

Averagedepth(m)anddepthrangeforstudiedflounder,Platichthysflesus,eggbatchesobtainingneutralbuoyancywithinthewatercolumnin2014and2015,andtheaverage temperature(C),salinity(psu)andoxygenconcentration(mll−1)experiencedbytheseeggbatchesinICESsubdivisions(SD)25,26and28respectively.Mean±standard deviation.nreferstothenumberofeggbatchesobtainingneutralbuoyancyinthewatercolumn,withthetotalnumberoftestedbatcheswithinbrackets.

SD25 SD26 SD28

2014 2015 t p 2014 2015 t p 2014 2015 t p

Depth 61.4±6.9 58.1±4.3 2.31 <0.05 91.8±3.3 83.2±2.9 14.58 <0.001 108.6±9.6 94.6±10.6 3.13 <0.001

Depthrange 51–72 52–69 80–98 79–91 94–118 75–110

Temperature 6.5±1.0 7.4±0.5 5.9±0.4 6.5±0.5 5.1±0.2 5.8±0.3

Salinity 14.2±1.4 15.1±1.5 11.7±0.6 12.2±0.8 10.6±0.4 11.1±0.5

Oxygen 3.3±1.4 4.0±0.9 2.20 <0.05 1.3±0.8 2.8±0.6 10.94 <0.001 0.3±0.2 0.5±0.3 2.33 <0.05

Batches(n) 31(42) 42(42) 46(69) 68(69) 7(69) 24(69)

atwhicheggsobtainedneutralbuoyancy(Fig.5),fromonaverage 61.4mto58.1mintheBornholmBasin,91.8mto83.2minthe Gdanskdeep,and108.6mto94.6mintheGotlandBasin,andthus atmorefavourableoxygenconditions(Table4).

Thechange(uplift)indepthrangeforeggdevelopmentbetween 2014and2015affectedeggsurvivalprobabilitiessignificantly.In theBornholmBasinandtheGdanskDeep opportunitiesforegg survivalincreasedfrom26%to100%(p<0.001;Fisher´ısexacttest) andfrom32%to99%(p<0.001)respectively,whereasprobabili- tiesforeggsurvivalintheGotlandBasinwaslowinbothyears,0%

and3%(p=0.496),respectively(Fig.6).Thehabitatsuitabilitywas improvedduetobothmorefavourableoxygenconditionsandto

increasedopportunitiesforremainingneutrallybuoyantwithinthe watercolumn(Fig.6;Table4).Temperaturehadnoimpactonegg survivalprobabilitiesastemperatureswerewithinpreferredpref- erencesforeggdevelopment(4–10C;Hinrichsenetal.,2016b;Isa Wallin,personalcommunication)inallbasinsinbothyears.

4. Discussion

Inprinciple,eggspecificgravityoffisheggsisdeterminedbythe fractionalcontributionsofthemaincomponents,yolk+embryo, chorion and the perivitelline space between the chorion and vitellinemembrane(CraikandHarvey,1987;Kjesbuetal.,1992;

(7)

1.0095 1.0105 1.0115 1.0125 1.0135 1.0145 1.0155 1.0165 1.0175 1.0185

0.0 10.0 20.0 30.0 40.0 50.0 60.0

KB_DK1_2015 KB_DK2_2015 KB_DK3_2015 1.0095

1.0105 1.0115 1.0125 1.0135 1.0145 1.0155 1.0165 1.0175 1.0185

0.0 10.0 20.0 30.0 40.0 50.0 60.0

KB_DK1_2011 KB_DK2_2011 KB_DK3_2011 1.0095

1.0105 1.0115 1.0125 1.0135 1.0145 1.0155 1.0165 1.0175 1.0185

0 10 20 30 40 50 60

BB_DK1_2011 BB_DK2_2011 BB_DK3_2014

IA IB II III IV

mean egg density (g cm-3) during ontogenc egg development unl first hatch

Degree-days post ferlizaon

SD 25

b)

c) a)

SD 22

SD 22

Fig.4. Meanvaluesofeggspecificgravityofflounder,Platichthysflesus,duringonto- genesisfromstageIAtostageIVandhatchingfromtwoICESsubdivisions(SD),25 (a)and22(bandc).DatainPanelBaretakenfromPetereitetal.(2014)andare fromFebruary/March.DatashowninPanelAandCarefromexperimentsinApril.

GovoniandForward,2008;SundbyandKristiansen,2015)withthe highwatercontentoftheyolkbeingakeyfactorcompensatingfor theheavycomponents,proteins,inthechorionandembryo;seee.g.

Jungetal.(2014)orSundbyandKristiansen(2015)forparameteri- zationoftherespectivecomponentfortheoverallESG.Inaddition tothehighwatercontentoftheyolk,alsooildroplets andyolk lipids,withlowerdensitythanseawater,maycontributetoegg buoyancyinsomespecies(Cerdàetal.,2007;GovoniandForward, 2008).

Forflounder,Platichthysflesus,intheBalticSea,ESG atearly stageIAvariedsignificantlybetweenareasinaccordancewiththe decreaseinsalinity,i.e. thehighest values(1.0152±0.0021and 1.0204±0.0006gcm3;mean±sd)wereobtainedinthewestern parts,SD22andSD23,andthelowest(1.0096±0.0007gcm3) intheeastern,SD26adSD28,i.e.allowingeggstoobtainneu- tralbuoyancy intherespectivespawningarea. ESG offlounder spawningdemersaleggs,sampledinSD25andSD28,isanexcep- tion withESG of 1.0161±0.0008gcm−3, a strategy adopted as spawningatlowsalinities(ca6–8psu)preventseggstoachieve buoyancy.SimilarvaluesofESG,1.0151–1.0157gcm3,forfloun- derspawningdemersaleggshavebeenobtainin SD27and SD

29/32(Solemdal,1971,1973).Hence,obtainedresultssuggestthat theecotypewithpelagiceggsmaybeseparatedintothreesub- populations(SD22,SD24and25,andSD26and28,respectively), withdifferenteggcharacteristics(ESG)inaccordancewithsalin- ityconditionsintherespectivespawningarea,separatedfromthe ecotypewithdemersaleggs.N.B.datafromSD23wereexcluded in comparison due to few measurements.In SD 22 ESG varied between1.01116and1.01887gcm−3correspondingtoasalinityof ca14.3–24.2psu,i.e.thevariabilityinESGwassubstantial.Salin- ityintheareavariesbetweenca14and25psubutaccordingto datainPetereitetal.(2014)about60%offloundereggbatcheshad ahigherESGcomparedtothewaterdensity(measuredbyCTD- casts)in3outof6samplingareas.Similarresultswereobtained byvonWesternhagenetal.(1988),38of60eggbatches(65%)did notcorrespondtotheambientsalinity.TheareasSD22andSD23 aremixingareasbetweentheBalticandtheKattegat,withpoten- tiallymorethanonepopulationutilizingtheareaasdiscussedby Petereitetal.(2014),potentiallycausingthehighvariabilityinESG.

ObtainedESGforflounderintheBalticSeadiffersignificantlyfrom ESGofflounderatmarineconditions,ca1.0246gcm3(Solemdal, 1971).Asevidentfromreciprocalexperiments,eggcharacteristics ofmarineandbrackishwatereggsremainessentiallyunchanged whenfisharetransferredfrombrackishtoamarineenvironment andviceversa;Solemdal(1971,1973)forflounderandNisslingand Westin(1997)forcod.Hence,withrespecttoeggcharacteristics fishintheBalticSeaformspecificpopulations.Asimilaradaptive patternisalsoassumedforspeciesspawninginthebrackishwater BlackSea,specificallybluefintuna,Thunnusthynnus(MacKenzie andMariani,2012).

AlthoughmultipleregressionanalysisshowedthatESGinBaltic flounder wasrelated toboth eggdiameter (i.e. water content;

Thorsen et al.,1996)and eggdry weight (massofmainly pro- teins)withintherespectivesubpopulation/area,differencesinESG betweenareas/subpopulationswere relatedonly toegg diame- ter,withlargereggsintheeasternpartsoftheBalticSeathanin thewestern,whileeggdryweightwasthesameirrespectiveof area/subpopulation,includingdemersaleggs.Thisindicatesthat watercontentacquiredintheovaryduringoocytehydrationbya breakdownofyolkproteinstoFAAasosmoticeffectorsandacor- respondinginflowofwater(Thorsenetal.,1996;FinnandFyhn, 2010)mediatedbyaselectiveinfluxofwaterbychannelmem- braneproteins,aquaporins(Fabraetal.,2005;Cerdà,2009)isthe keymechanism.Thisprocessisconsideredhighlyregulatedand potentiallyspeciesspecific(Cerdà,2009)and,asshownbyThorsen etal.(1996),differencesinthedegreeofbreakdownofyolkpro- teinandthusintheosmoticpotential,resultinahigherinflowof waterduringhydrolysisincodeggsatbrackishwaterconditions comparedtoatmarineconditions.Concomitanttothis,theresults suggestthatthesameamountofmaterialisdepositedintheegg irrespectiveofareaand spawningstrategy, andthatdifferences inESGbetweensubpopulationsaredeterminedbydifferencesin thewatercontent,potentiallyduetodifferencesinthedegreeof degradationofyolkproteinsintoFAAduringhydrolysis.

Withintherespectivearea/subpopulationhowever,bothvari- abilityineggdiameterandineggdryweightdetermineESG,and resultindifferencesinverticaleggdistributionwithimplications for eggsurvival probabilities.Thisisin agreementwithstudies onotherspecies,e.g.forcod,intra-populationvariabilityinESGis causedbydifferencesinboththeamountofmaterialdepositedinto thechorion,andtothedegreeofuptakeofwaterduringhydration priortoovulation;i.e.tothewatercontent/eggdiameter(Kjesbu etal.,1992;Jungetal.,2014).

Incubation of eggs from early stage IA to stage IV showed that ESG maychangeduring ontogenyupto hatching; aslight decreaseinESGduringdevelopmentwasnotedfor eggbatches sampled in SD 22 and SD 25 in April, with an initial ESG of

(8)

Fig.5. Depthprofilesshowingtemperature(C;dottedline),oxygen(mll−1;solidline)andsalinity(psu;dashedline)inICESsubdivisionsa)25,b)26andc)28(Fig.1)in April2014(totheleft)andApril2015(totheright),anddepthrange(greyhorizontalfield)andmeandepth(horizontalline)offlounder,Platichthysflesus,eggbatchesthat wouldobtainneutralbuoyancy(seeTable4);basedoneggspecificgravityandhydrographicdatafromCTD-castsintherespectivearea.

1.0104–1.0125gcm3, whereas ESG for egg batches from SD 22 sampled in February–March, withan initial ESG of 1.0138- 1.0166gcm3,remainedstableuntilstageIV.Theresultscontrast tothegeneralpictureofchangesinESGduringontogenyofmarine fishes(Jungetal.,2014),i.e. aslightincreasein ESGuntilmid- gastrulation (stage II), followed by a gradual decrease in ESG, and finally an increase in ESG just prior to hatching. As con- cludedbyJungetal.(2014),changesinESGduringdevelopment areassociatedwithchangesintheyolk+embryofractionwitha correspondingchangein the perivitellinespace. Asopposed to thechorionwhichispermeabletowater,theyolkmembraneis impermeabletowaterfollowingthecorticalreactionatfertiliza- tionbutwithanincreasingpermeabilityduringeggdevelopment (Mangor-Jensen,1987),i.e.densityofthepervitellinespaceisin equilibriumwiththesurroundingenvironmentwhereasdensityof theyolk+embryochangesduringontogeny.Priortothegastrula- tionthereisadecreaseinthevolumeofyolk+embryo(i.e.water

content)andacorrespondingincreaseinvolumeofthepervitelline space,whichisreversedfollowinggastrulationasosmoregulation organsstarttofunction(Riis-Vestergaard,1987).Apartfromdif- ferencesbetweenspeciesinsizeofthepervitellinespace(e.g.in sardine,Sardinapilchardus,thepervitellinespaceoccupy>80%of theeggvolume,andca74%inEuropeaneel,Anguillaanguilla,com- paredto<10%forthemajorityofpelagicfisheggs;Coombsetal., 2004;Sørensenetal.,2015), ambientsalinityconditions canbe expectedtoinvolvedifferencesin therelationbetweenvolume ofyolk+embryoandvolumeofthepervitellinespace.ForBaltic cod eggsincubatedat differentsalinities,ESG decreasedduring developmentinbatchesincubatedat10psubutincreasedwhen incubatedat17psuandinparticularat30psu(NisslingandVallin, 1996).Thus,changesinESGduringdevelopmentmayberelatedto initialESG.Beingneutrallybuoyantatlowsalinitiesmayinvolve lowerloss ofwater initiallyas thedifferencebetweenexternal and internal osmolality is low;internal osmolality correspond-

(9)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2014 2015 2014 2015 2014 2015

8 2 D S 6

2 D S 5

2 D S

Cumulave probability of survival and causes of death

Oxygen deficiency Sedimentaon Surviving

n=42 n=69 n=69

Fig.6.Assessedcumulativecausesofmortality(duetooxygendeficiencyorsedimentation)andsurvivalprobabilitiesofflounder,Platichthysflesus,eggsinICESsubdivisions (SD)25,26and28(Fig.1)inApril2014andApril2015,respectively.nrefertonumberofeggbatches.

ingtoasalinityofca11psu(SundbyandKristiansen,2015),i.e.

onlyaminordecreaseinthevolumeofyolk+embryo.Moreover, lowambientsalinitymayfacilitatewater uptakeaftergastrula- tion,i.e.anincreaseinthevolumeofyolk+embryo,influencing ESG.Furthermore,lowambientsalinityresultinlowerdensityof theperivitellinespacecomparedtoatmarineconditions(asthe chorionispermeabletoseawater,densityoftheperivitellinespace isequaltothedensityofambientwater)influencingtheoverall ESG.Despitethatthecontributionoftherespectiveeggcompo- nentwasnot studied,resultsofthepresent studysuggest that ambientsalinitymaybeofsignificanceforchangesinESGduring ontogeny;developmentatlowsalinities,ca13.5–16psu(Fig.4a andc)involvedadecreaseinESG,andineggbatcheswithaninitial ESG,correspondingto17.7–21.3psu(Fig.4b),ESGremainedmore orlessstableuntilstageIV(incontrasttowhatisknownforstudied speciesatmarineconditions;Jungetal.,2014).

MajorsalinewaterinflowsintotheBalticSearesultinimproved salinity and oxygen conditions (Matthäus and Franck, 1992;

Matthäusand Lass,1995)andthus increasedhabitatsuitability (increasedopportunitiestokeepbuoyantinthewatercolumnand decreasedriskofbeingsubjectedtolethaloxygenconditions)for fishwithpelagiceggs,as shownin earlierstudiesfor both cod (Nisslingetal.,1994;MacKenzieetal.,2000;Kösteretal.,2005) andflatfishes(Nisslingetal.,2002;Ustupsetal.,2013),aprereq- uisitefortheformationofstrongyearclasses.Ingeneral,themost favourableconditionsoccurintheBornholmBasincomparedto intheGdanskDeepandGotlandBasingiventherelativedistance fromtheshallowsillsinSD22andSD23.TheBalticSeaisheav- ilyaffectedbyeutrophicationand,asaconsequence,largepartsof thedeepareasareoxygendepletedwithregularlynegativeoxy- genvalues(Conleyetal.,2002;DiazandRosenberg,2008).This impliesthattheeffectofinfloweventsonhabitatsuitabilityfor fishreproductionnowadaysislimitedandtransitory, withsoon deterioratedconditions(seeMacKenzieetal.,2007).Thesituation isfurtheraggravatedbylessfrequentinfloweventsduringthelast decades,potentiallyaneffectofclimatechange(Meieretal.,2012).

Theinfloweventin2014improvedhabitatsuitabilityforflounder eggssignificantlyintheBornholmBasin(SD25)andtheGdansk Deep(SD26)butwasnotpotenttosignificantlyimproveconditions intheGotlandBasin(SD28).

Highly fluctuating conditions for egg survival of flounder (Hinrichsen etal., 2016b; present study) mayaffectboth stock abundanceanddistribution,althoughstockdevelopmentaddition- allyisinfluencedbye.g.retention/dispersalofearlystages(Petereit et al.,2014Hinrichsen et al., 2016a), conditionsin thenursery areas(e.g.IlesandBeverton,1998,2000),aswellasfishingmor- tality.PoorerconditionsforeggsurvivalintheGotlandBasinat present are in accordance withthe current stock development (seeHinrichsenetal.,2016b);decreasingCPUEinSD28butsta- ble CPUEin SD25 andSD 26.Evaluationof stockdevelopment ishoweverhamperedbytheoccurrenceofthetwofloundereco- typeswithdifferentspawningstrategiesandrequirementsforegg survival(Nisslingetal.,2002)andthusrecruitment.Accordingto ICES(2015)theecotypewithpelagiceggsconsistofthreediffer- entsubpopulationsoccurringinSD22–23,SD24–25andinSD26 andSD28,respectively,whereastheecotypewithdemersaleggs isconsideredasonestock,presentinSD27andinSD29–32.With respecttoeggcharacteristicsthepresentstudyconfirmsthesug- gestionoftwo populationsofflounderwithpelagiceggsin the BalticProper(oneinSD24andSD25,andanotherinSD26and SD28)separatedfromflounderintheBelt-Seas(SD22).Concern- ingtheecotypewithdemersaleggs, howeverthepresent study shows,incontrasttoassuggested(ICES,2015)thatthistypeof flounderoccursinbothSD25andSD28.Thattheecotypewith demersaleggsinhabitnot onlythenorthernparts oftheBaltic Proper;e.g.ESGofca1.0151–1.0157gcm3inSD27andSD29/32 (Solemdal,1971,1973),i.e.withESGequaltotheresultsinpresent investigation(suggestingonehomogenouspopulation),butoccur alsointhesouthernBalticisconsistentwithearlierobservations;

demersalfloundereggshavebeenfoundattheOderBankandat theAdlergrundinSD24(e.g.MielckandKünne,1932).Thestock abundanceoftheecotypewithdemersaleggsinthesouthernparts is,however,poorlyknown.Anyway,thesuggestedstockstructure (ICES,2015)shouldberevisedtodisentanglestockdevelopment of therespective flounderecotype and forevaluation of stock- recruitment relationshipsof subpopulations. Further,presented dataofeggspecificgravity,andthusinverticaleggdistribution andeggsurvival,maybeusedtoestimatevariabilityintheviable eggproductionindifferentareas/subpopulations,i.e.contributeto forecast stockdevelopmentofBalticSeaflounderatpotentially

Abbildung

Fig. 1. ICES subdivisions (SD) in the Baltic Sea with spawning areas of flounder, Platichthys flesus, with pelagic eggs: BS − Belt Sea (SD 22), AB − Arkona Basin (SD 24), BB − Bornholm Basin (SD 25), GD − Gdansk Deep (SD 26), GB − Gotland Basin (SD 28).
Fig. 2. The relationship between egg specific gravity (g cm −3 ) and female size (cm length class) for flounder, Platichthys flesus, in different ICES subdivisions (SD)
Fig. 3. The relationship between egg specific gravity (g cm −3 ) and a) egg diameter (mm) and b) egg dry weight (␮g) for flounder, Platichthys flesus, in different ICES subdivisions (SD)
Fig. 4. Mean values of egg specific gravity of flounder, Platichthys flesus, during onto- onto-genesis from stage IA to stage IV and hatching from two ICES subdivisions (SD), 25 (a) and 22 (b and c)
+3

Referenzen

ÄHNLICHE DOKUMENTE

Kein Teil dieses Buches darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form - durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren - reproduziert oder

the morpho- metric traits examined included larval standard length, yolk sac area and body area at hatching, eye-pigmentation (as a proxy for first feeding) and

Abstract The development of Dysaphis plantaginea (Pass.) (Homoptera: Aphididae) winter eggs was studied at six different constant temperatures ranging from 7.5 to 16.5 ° C in

However, there were no significant differences between the black egg-strip substrate used as the control and the green, black long, black short, black thick, yellow and red

The influence of egg white lysozyme on the size, shape, crystallography, and chemical composition of amorphous calcium carbonate (ACC) particles obtained from aqueous CaCl 2 -

Unsere Aufgabe ist es, Kinder Schritt für Schritt zu begleiten und ihnen viel Zeit und die Möglich- keit zu bieten, Erfahrungen für ihr Leben zu ma- chen und sich Fertigkeiten

- eine epidemiologische Hypothese: Frauen leben länger als Männer, sind aber durch größere oder kleinere Leiden stärker gesundheitlich beeinträchtigt als Männer.. - eine

2- Während die Lebenserwartung in den oberen Schichten zugenommen hat, ist sie in den unteren Schichten gleichgeblieben oder hat sich verringert (so haben Männer und Frauen