• Keine Ergebnisse gefunden

powder Study of the mechanochemical process to crystalline Cu ZnSnS Materials Research Bulletin

N/A
N/A
Protected

Academic year: 2022

Aktie "powder Study of the mechanochemical process to crystalline Cu ZnSnS Materials Research Bulletin"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Study of the mechanochemical process to crystalline Cu

2

ZnSnS

4

powder

Anna Ritscher

a,b

, Marc Schlosser

c

, Arno P fi tzner

c

, Martin Lerch

a,

*

aInstitutfürChemie,TechnischeUniversitätBerlin,Straßedes17.Juni135,10623Berlin,Germany

bHelmholtz-ZentrumBerlinfürMaterialienundEnergie,AbteilungKristallographie,Hahn-Meitner-Platz1,14109Berlin,Germany

cInstitutfürAnorganischeChemie,UniversitätRegensburg,Universitätsstr.31,93040Regensburg,Germany

ARTICLE INFO

Articlehistory:

Received17May2016

Receivedinrevisedform26July2016 Accepted5August2016

Availableonline6August2016

Keywords:

A.Semiconductors B.Chemicalsynthesis C.X-raydiffraction D.Crystalstructure D.Defects

ABSTRACT

Kesterite-typeCu2ZnSnS4wassynthesizedfromthecorrespondingbinarysulfidesbyamechanochemi- calrouteinaplanetaryballmill.Thereactionprogressduringthismillingstepwasfollowedwithinatime rangeof10–180minbypowderX-raydiffraction.Inaddition,thecrystallizationofthemilledmaterial wasstudiedinsitubyhigh-temperatureX-raydiffractionmethodsinthetemperaturerangeof300–

500C. Significantdisorder(cationdistribution)wasobservedat500C,stronglydecreasingduring coolingdowntoambienttemperaturewitharateof60K/h.

ã2016ElsevierLtd.Allrightsreserved.

1.Introduction

Systematic analysis of the semiconductor compound Cu2ZnSnS4 (CZTS) and its structural, chemical, and physical propertieshavebeeninthefocusofinterestinthelastfewyears [1–6].Thisquaternarychalcogenideexhibitsagreatpotentialas absorbermaterialforapplicationsinthinfilmphotovoltaics.Due to its suitable properties (optical band gap energy=1.5eV, absorption coefficient in the order of 104cm1 [7–9]) this materialis discussedasa promising low-cost alternativetoIn- containingCuInxGa(1-x)Se2(CIGS).Thecurrentrecordefficiencyof 12.6%wasreachedforCZTS-baseddevicescontainingadditional selenium[10].

Aftersomecontroversiesaboutthecorrectcrystalstructureof Cu2ZnSnS4 it was demonstrated in different studies that this quaternary sulfide adopts the kesterite structure type (space groupI4) [11,12]. Thistetragonalcrystal structure derives from thesphaleritestructuretype(knownforZnSetc.)bydoublingthe c-axisanditconsistsofalternatingcationlayersstackedalongthis axis(seeFig.1).

Thelatticeplanesatz=0andz=1/2areoccupiedbyCuandSnin anorderedmanner,i.e.CuisfoundonWyckoffposition2a(0,0,0) andSnonposition2b(0,0,1/2).RemainingCuandZnatomsare

locatedonlatticeplanesatz=1/4andz=3/4,position2c(0,1/2,1/4) and 2d (0,1/2, 3/4), respectively. Ab initio calculations [13,14]

showedthat,duetoitsverylowformationenergy,thepointdefect complex(CuZn+ZnCu)iseasilyformedandthusCu/Zndisorderhas tobeexpected.Thiswasalsoconfirmedbydiffractionstudieson CZTSpowdersamples,wherepartial[15,16]orcompletedisorder [1]ofCuandZnonthe2cand2dpositionswasreported.

HightemperatureX-raydiffractionmeasurementsofkesterite powderusingsynchrotronradiationshowthatCu2ZnSnS4under- goesastructuralphasetransitionfromthetetragonalkesterite-to the cubic sphalerite-type structure at temperatures above of 866C [2]. Thetransitionleadstoa randomdistributionof the cationsCu,Zn,andSn(spacegroupF43m).Duetotheformationof secondary phases it is challenging to prepare phase-pure CZTS powder, whichis importantfordetailed studiesconcerningthe correlations betweenstructural and electronic properties. Bulk materialofCZTShasbeenusuallyproducedbysolidstatereaction oftheelementsinevacuatedsilicaampoules[1,17].Duetothehigh sulfur vapor pressure it is necessary to apply a well-defined temperatureprogramandhomogenizationisachievedbyasecond annealingstepat750C.Allthesefactorsresultinlongreaction timesandanenhancedpossibilityfortheformationofsecondary phases.

Recently we presented an easy and fast process for the preparation of single phase CZTS powders [16]. Themain idea was the development of a synthesis route at temperatures significantly lower than 750C. This was realized by a

*Correspondingauthorat:

E-mailaddress:martin.lerch@tu-berlin.de(M.Lerch).

http://dx.doi.org/10.1016/j.materresbull.2016.08.006 0025-5408/ã2016ElsevierLtd.Allrightsreserved.

ContentslistsavailableatScienceDirect

Materials Research Bulletin

j o u r n al h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m a t r e s b u

(2)

mechanochemicalapproachandthesynthesisofaprecursorby reactionofthecorrespondingbinarysulfidesCuS,ZnS,andSnSina planetaryballmill.Mechanochemicalprocessesinplanetaryball millsfinda widespreadusein scienceand industrydue tothe feasibility of rapid, highly efficient and usually solvent-free chemical synthesis. Additionally, it is possible todevelop com- pounds that cannot be obtained via a conventional solid-state route[18].

After annealing at 500C in a H2S atmosphere, a highly crystalline product is obtained. A similar mechanochemical process was reported in Ref. [19], where Cu2ZnSnX4 (X=S, Se) bulkmaterialwaspreparedinaballmillstartingfromthemetals andthechalcogens.

Inthiscontributionwepresent amoredetailedstudyofour newtwo-stepsynthesisprocess.Thereactionprocessintheball millasfunctionoftimeaswellasthecrystallizationbehaviorofthe poorlycrystallineCZTSprecursortothecrystallinepowderwith temperatureareinvestigated.

2.Experimental

Sulfide powderswiththechemical formulaCu2ZnSnS4 were preparedbyourmechanicalprocess[16].CuS,ZnS,andSnSwere mixed in a molar ratio of 2:1:1 without any additional fluid mediumandfilledintoan80ml agatejar(including 5grinding ballswithadiameterof20mm).MillingwasperformedinaFritsch PlanetaryMonoMillPULVERISETTE6usingarotationalspeedof 400rpmandmillingtimesofupto180min.Smallamountsofthe sample were withdrawn at time intervals of 10–30min for diffractionanalyses.

Inordertogetahighly crystallineproductasreference,onehalfof theas-milledpowder (millingtime180min)was annealed in a conventional tube furnace equipped with a SiO2-tube in H2S- atmospherefor3hat500C.Afterthistreatment,thesamplewas cooleddown witharateof60K/h.X-raypowderdiffractionwasused forthestructuralcharacterizationofallsamples.Diffractiondata

werecollectedusingaPanalyticalX’PertPROdiffractometer(Bragg- Brentanogeometry,Cu-K

a

radiation).Structuralrefinementswere performedbytheRietveldmethod[20]withtheprogrampackage FullprofSuiteVersion2015[21]by applyingapseudo-Voigtfunction.

Thekesterite-typestructure(spacegroupI4)wasusedasstarting modelfortherefinement.

Thesecondhalfofthesamplewasusedfortheinvestigationof thecrystallizationbehaviorofthequaternarysulfideprecursorby insituhigh-temperatureX-raydiffractionwiththehelpofaSTOE STADI Pdiffractometer(Transmission/Debye Scherrer geometry, Mo-K

a

1 radiation). The instrument was equipped witha STOE furnaceusingaNi/CrNithermocouple.Thesamplewasencapsu- latedinanevacuatedsilicacapillaryandinitiallymeasuredatroom temperature(RT,measurementnumber001).Thenthesamplewas heated to 300C with a rate of 50K/min and subsequently measuredat300Cevery10mininordertofollowtheisothermal phaseformationandgrowthofthecrystallites(20measurements, 1min, measurement numbers N=002–021). Afterwards, the temperature was raised to 400C and the powder was again measured every10min(measurementnumbersN=022–042).A furtherheatingstepuptoa temperatureof 500C wasapplied (measurement numbers N=043–062). Againdiffraction pattern were recorded every 10min. As a reference measurement a diffractionpatternoftheemptyfurnacewithoutanysamplewas recorded in order to detect the signals from the furnace (measurementnumberN=000).

3.Resultsanddiscussion

Asdescribed in theexperimental section, thefirstsynthesis step to phase pure Cu2ZnSnS4 powder is the reaction of the correspondingbinarysulfides(CuS,ZnS,SnS)inaballmill.Inorder tofollow this reactionprocess, smallamounts of powderwere withdrawn from the grindingbowl by interrupting themilling procedure several times.Fig.2 depictstheXRDpatterns ofthe preparedCZTSpowdersmilledfor10–180min.

Uptoamillingtimeof30minthereflectionsoriginatingfrom thebinarysulfidesarethemainsignalsinthediffractionpatterns.

Duringthisearlystageofmilling,thepowdersofCuS,ZnS,andSnS aremixedtogetherand noreactiontakesplace.After40minof millingtheintensitiesofthereflectionsthatcanbeassignedtothe Fig.1.Unitcelloffullyorderedkesterite-typeCu2ZnSnS4,alloccupiedWyckoff

positionsarelabeled.

Fig.2.Diffractionpatterns(Cu-Karadiation)ofas-preparedsamplesafterthe millingprocessatdifferenttimes(t=10–180min).

(3)

binarycompounds begin todecrease, which indicatesthat the solid-statereactionisactivatedandtheproductstartstoform,and after150minitisclearlyseenthatthesignalshavedisappeared.

The sample was further treated up to a total milling time of 180min. However, the diffraction pattern did not change significantly,thus atthis stagethereaction isconsideredtobe terminated.Takingalookatthechangeofthereflectionpositionof themajorreflection a cleartrend to lower2

u

values is visible

(2

u

=28.68!28.62),which is anindicationthat thequaternary compound is formed during the reaction in the ball mill. The observed reflection positions of the final as-milled powder correspond to the strongest ones expected for the quaternary compound.However,fromtheobtainedX-raydiffractionpatterns itisnotpossibletoextractunequivocalinformationconcerningthe distributionofthecationsasthemainreflectionsofthekesterite phase (partially or fully ordered) practically have the same positions as the expected ones for a sphalerite-type structure (fully disordered) with the same chemical composition. The superlattice reflections for the kesterite-type phase are rather small(seeFig.4)buttheirtotalabsencepointstoseveredisorderin the milled material. For more unambiguous results additional investigations,forexamplebyEXAFS,wouldbenecessary.

Inaddition,asitcanbeclearlyseeninFig.2themillingprocess resultsinverybroadreflections.TheFWHMvaluesincreasewith increasingmillingtimeasshowninFig.3.Profileanalysesrevealed adominantLorentzianshapewhichcanbeattributedtocrystallite sizebroadening.Thecrystallitesizesoftheprecursorpowdersare calculatedusing theScherrer equation (Eq.(1))fromthe strong 112-reflectionat2

u

28.6[22],

D

ð2

u

Þ¼ K

l

Lcos

u

0 ð1Þ

where

D

(2

u

)is the line width at half the maximum intensity

(FWHM),KistheScherrer-formfactor,inthisstudyafactorof1 wasused,

l

isthewavelength,Lthemeansizeofthecrystallite, and

u

0thediffractionangle.

D

(2

u

)hastobecorrectedforreflex broadening comingfrom the instrument according to

D

ð2

u

Þ¼ ð

b

2M

b

2IÞ1=2(

b

MismeasuredFWHMand

b

Iisthecorrectionfactor

forinstrumentbroadening).

AsdepictedinFig.3,theparticlesizeafter10minofmillingis calculatedto37nm.Inthefirst90minthecrystallitesizedecreases rapidly,approachingavalueofabout15nm.Onfurthermillingthe crystallitesizeslightly changes reachinga sizeof 11nmafter 180min. In order to confirm the calculated value, TEM

measurementswerecarriedoutwiththissample.Theobserved crystallitesizeswerefoundtobeinarangeof8–13nmwhichisin goodagreementwiththeresultoftheScherrermethod(11nm).

Inordertoprepareahighlycrystallinereferencesample,one halfoftheprecursorpowderwasannealedinatubefurnace(H2S atmosphere)accordingtothesecondstepofourmechanochemical process[16]. Thestructuralparametersof theannealedsample wererefined(seeTables1and2).Asitwasshowninourrecent studies, it is nicely possible to control the composition of the synthesizedpowderwiththemechanochemicalmethod[16,23].

Therefore, for the structural refinement the ideal composition Cu2ZnSnS4wasused.TheX-raypowderdiagramwiththeresultsof theRietveldrefinementisdepictedinFig.4.

Itshouldbementionedthatitisnotpossibletodifferentiate betweenZnandCuusingconventionalX-raypowderdiffraction methods.Consequently,wecanonlydistinguishbetweenCu/Zn andSn.Unfortunately,theamountofpreparedmaterialwasnot sufficientforneutrondiffractionexperiments.Fortherefinements, thefollowingsideconditionswereset:thesumofCu/Znonall positionsmustbe3,thesumofSnonallpositionsmustbe1,andall fourcationpositionshavetobefullyoccupied.

Table 2 lists the final atomic and additional structural parameters.Asexpected, Snwas foundonWyckoffposition2b (0,0,1/2),whereasCu/Znislocatedon2a(0,0,0),2c(0,1/2,1/4), and2d(0, 1/2,3/4)sites.NoSnisfoundonposition2c.On2aand2d sitesverysmallamountsofSn(around1%)arefound.MissingSn onthe2bsiteisreplacedbyCu/Zn.Theseresultsareinagreement withourrecentrefinements[16].

Fig.4. X-raypowderdiffractionpatternwiththeresultsoftheRietveldrefinement usingthekesterite-typestructureasstartingmodel.

Fig.3.FWHMvaluesandcorrespondingcrystallitesizesduringreactionintheball mill.

Table1

LatticeparametersofCZTSandresidualvaluesoftheRietveldrefinement.

X-raydiffraction

Structuretype kesterite

Crystalsystem tetragonal

Spacegroup I4(No.82)

Diffractometer PanalyticalX’PertPRO

Wavelengtha1,a2 154.06pm,154.44pm

2urange 10–120

a/pm 543.347(13)

c/pm 1083.72(3)

RBragg/% 3.84

Rwp/% 2.44

Rexp/% 2.02

S 1.20

(4)

Thesecondhalfoftheas-milledprecursorwasusedtoexamine theeffectof heattreatmentonthecrystallization of mechano- chemicallysynthesizedCZTSpowderbyinsituhigh-temperature X-raydiffraction.Aspointedoutintheexperimentalsection,some seriesofisothermalmeasurementsat300,400,and500Cwere performed.The evolution of theXRD patternscollectedduring heating is depictedin Fig.5 and 6. For a firstoverview, Fig. 5 presents a 3D plot and a rainbow contour plot of all high temperatureX-raypatterns.

Inordertoavoidinformationaloverflow,Fig.6(left)presents onlyonehalf ofmeasuredpatterns(including thepatternwith signalsfromtheemptyfurnace),whereasinFig.6(right)thelastin situ measurement of each annealing temperature (300, 400, 500C)aswellasthediffractionpatternat25C isshown.Isit clearlyseenthatthereflectionsofas-milledCZTSbecamesharper withheatingtime,indicatingincreasedcrystallinity.

Asexpected,increasingtemperatureledtoadecreaseofthefull width at half maximum (FWHM) values (see Fig. 7a). The measurementof thestarting material(25C) givesa calculated crystallitesizeof12nm,whichisingoodagreementwiththeresult fromthediffractometerworkingwithCu-K

a

radiation(SeeFig.4).

Having a closer look at the results coming from different annealing temperatures significant differences are found (See Fig.7b).At300Cthecrystallizationisratherslow,thecrystallite sizesbarelyincrease.After3.5hsizesof15nmarereached(see Fig.7b).Asexpected,asignificantlyfasterincreaseisobservedfor 400C, where a final size of 37nm is calculated. In the last annealingstepat500Cthecrystallitesizeisstillincreasingand reachesavalueof50nmafter3.5h.

AsshowninFig.7b,thecrystallitesizeincreasesalmostlinearly at400Candabove.

Usingthefinaldatasetmeasuredat500C(N=062),thecrystal structure was also refined. The X-ray powder patternwith the resultsof the Rietveld refinement is depictedin Fig. 8. Lattice

parameters and residualvalues are summarized in Table 3. As alreadydescribedabove,spacegroupI4 wasusedtogetherwith additional sideconditions ascopperand zinc cannotbedistin- guishedbyconventionalX-raydiffractionmethods.Table4 lists thefinalatomicandotherstructuralparameters.

SnismainlylocatedonWyckoffposition2b,whereasCu/Znis foundontheotherthreecationsites.NosignificantamountofSn wasfoundonpositions2aand2c.Incontrast,asignificantamount of tin (8%)was foundon the 2dsite, whereas missing Sn is replacedbyCu/Znon2b.ForCZTSitisknownthatintrinsicdefects can beeasily formedwhile the kesterite–type structure (space groupI4)ismaintained,e.g.[17,24–26].Theoreticalwork[14,27]

hasshownthatthedefectcluster[Zn2Sn+Sn2+Zn]hasrelatively lowformationenergy(around0.9eV/pair).ThereforeSnCu/Znand Cu/ZnSndefectsshouldbepresentwhenincreasingthetempera- ture.KeepinmindthatZnandCucannotbedistinguishedwith conventional X-ray diffraction techniques. Consequently, the actualdefectclustersinthepresentsamplecannotbedetermined unequivocally.

The refined valuescanbecompared withthevalues forthe above-presentedsampleannealedat500Candcooleddownwith arateof60K/h.At500C,SnCu/ZnandCu/ZnSnanti-sitedefectsare clearlypresent;inthesampleslowlycooleddownto25Chardly anySndisorderisfound.Consequently,itcanbepresumedthat these defectsheal outrapidly during coolingdowntoambient temperature.Thisisalsocomparabletoourrecentneutronpowder diffractionstudyonsamplesannealedforweeks[23]:upto350C no significant disorder of Sn on the remaining three cation positions(2a,2c,2d)isoccurring.

Itcanbeexpectedthattheamountofpointdefectsisincreasing with increasing temperature, finally resulting in a statistical distributionofcopper,zinc,andtin.Asalreadymentioned,sucha high-temperature order-disorder transition was observed by Schorr and Gonzales-Aviles [2],resulting in a cubic sphalerite- typecrystalstructure.

4.Conclusion

Inthisworkourrecentlydevelopedmechanochemicalsynthe- sisprocesstophasepureCZTSpowderwasinvestigatedinmore detail. The reaction of the binary sulfides in the ball millwas followedbyX-raydiffractionmeasurements.Thecrystallitesizeof theas-milledCZTSpowderapproachesavalueof10nmafter3hof milling.Inaddition,thecrystallizationbehaviorwithtemperature wasinvestigatedbyinsituhigh-temperatureX-raydiffraction.At 500C,SnCu/ZnandCu/ZnSnanti-sitedefectsareclearlyobserved.

Their concentrationstronglydecreases when coolingdownthe Table2

RefinedstructuralparametersforCZTSfromX-raydiffraction.

Atom Wyckoff x y z Biso occ

Cu/Zn 2a 0 0 0 1.88(7) 0.995(2)

Sn 2a 0 0 0 1.88(7) 0.005(2)

Cu/Zn 2c 0 1/2 1/4 0.83(5) 1.000(2)

Sn 2c 0 1/2 1/4 0.83(5) 0.000(2)

Cu/Zn 2d 0 1/2 3/4 0.83(5) 0.989(3)

Sn 2d 0 1/2 3/4 0.83(5) 0.011(3)

Cu/Zn 2b 0 0 1/2 1.15(3) 0.016(2)

Sn 2b 0 0 1/2 1.15(3) 0.984(2)

S 8g 0.7472(12) 0.7612(12) 0.8695(3) 0.48(3) 4

Fig.5.3Dplot(left)andrainbowcontourplot(right)forin-situheattreatmentofCZTSprecursorpowderupto500C(Mo-Ka1radiation).Intherainbowcolorcontourplot intensitiesareshownascolorscalewherelowcountsareblue,whilehigherintensitiesareshownasredandyellow.Temperatureincreasesfromthebottomtothetop.(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(5)

Fig.6.EvolutionofthepowderpatternsprobedbyinsituhightemperatureX-raydiffraction(Mo-Ka1radiation).Thenumberofeachpatterncorrespondstothe measurementnumberN(seeexperimentalsection).Pink:300C,blue:400C,green:500C.Thestartingpatternat25Cisshowninblack,thepatternoftheemptyfurnace isdepictedinorange.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.7.FWHMvalues(a)andcalculatedcrystalsizes(b)fortheCZTSprecursor.

Fig.8. Hightemperature(500C)X-raypowderdiffractionpatternwiththeresultsoftheRietveldrefinement(excludedregions=signalscomingfromthefurnace).

(6)

sample.Thecoolingrateof60K/hseemstobethelimit forthe production ofsamples withlow Sn-involveddisorder, which is importantfortheperformanceofCZTSinsolarcells.Foramore detailedanalysisoforderingprocessesuptothedisorderedcubic phase, in situ high-temperature neutron powder diffraction investigationsareplanned.

Acknowledgements

Financial support from the MatSEC graduate school of the HelmholtzZentrumBerlin(HZB)incooperationwiththeDahlem

Research School is gratefully acknowledged. Special thanks to Martin Rohloff (AG Anna Fischer) for performing the TEM measurements.

References

[1]S.Schorr,H.-J.Hoebler,M.Tovar,Eur.J.Mineral.19(2007)65–73.

[2]S.Schorr,G.Gonzalez-Aviles,Phys.StatusSolidiA206(2009)1054–1058.

[3]J.Just,D.Luetzenkirchen-Hecht,R.Frahm,S.Schorr,T.Unold,Appl.Phys.Lett 99(2011)262105/1–262105/3.

[4]S.Chen,X.G.Gong,A.Walsh,S.-H.Wei,Appl.Phys.Lett.96(2010)021902/1–

021902/3.

[5]S.Chen,L.-W.Wang,A.Walsh,X.G.Gong,S.-H.Wei,Appl.Phys.Lett.101(2012) 223901/1–223901/4.

[6]A.J.Jackson,A.Walsh,J.Mater.Chem.A(2014)7829–7836.

[7]S.Chen,X.G.Gong,A.Walsh,S.-H.Wei,Appl.Phys.Lett.94(2009)041903/1–

041903/3.

[8]J.J.Scragg,P.J.Dale,L.M.Peter,G.Zoppi,I.Forbes,Phys.StatusSolidiB245 (2008)1772–1778.

[9]S.Siebentritt,S.Schorr,Prog.Photovolt.20(2012)512–519.

[10]W.Wang,M.T.Winkler,O.Gunawan,T.Gokmen,T.K.Todorov,Y.Zhu,D.B.

Mitzi,Adv.EnergyMater4(2014)1301465/1–1301465/5.

[11]S.Schorr,Sol.EnergyMater.Sol.Cells95(2011)1482–1488.

[12]L.Choubrac,M.Paris,A.Lafond,C.Guillot-Deudon,X.Rocquefelte,S.Jobic, Phys.Chem.Chem.Phys.15(2013)10722–10725.

[13]A.Nagoya,R.Asahi,R.Wahl,G.Kresse,Phys.Rev.BCondens.MatterMater.

Phys81(2010)113202/1–113202/4.

[14]S.Chen,J.-H.Yang,X.G.Gong,A.Walsh,S.-H.Wei,Phys.Rev.B:Condens.Matter Mater.Phys81(2010)245204/1–245204/10.

[15]S.Schorr,M.Tovar,BENSCExperimentalReport,(2006).

[16]A.Ritscher,J.Just,O.Dolotko,S.Schorr,M.Lerch,J.AlloysCompd.670(2016) 289–296.

[17]L.E.ValleRios,K.Neldner,G.Gurieva,S.Schorr,J.AlloysCompd.657(2016) 408–413.

[18]C.F.Burmeister,A.Kwade,Chem.Soc.Rev.42(2013)7660–7667.

[19]D.Pareek,K.R.Balasubramaniam,P.Sharma,Mater.Charact.103(2015)42–49.

[20]H.M.Rietveld,J.Appl.Crystallogr.2(1969)65–71.

[21]J.Rodriguez-Carvajal,AbstractsoftheSatelliteMeetingonPowderDiffraction oftheXV,CongressoftheIUCr,1990,pp.127.

[22]P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,Mathematisch-PhysikalischeKlasse1918(1918).

[23]A.Ritscher,M.Hoelzel,M.Lerch,J.SolidStateChem.238(2016)68–73.

[24]G.Gurieva,M.Dimitrievska,S.Zander,A.Perez-Rodriguez,V.Izquierdo-Roca, S.Schorr,Phys.StatusSolidiC(2015)1–4.

[25]A.Lafond,L.Choubrac,C.Guillot-Deudon,P.Deniard,S.Jobic,Z.Anorg.Allg.

Chem.638(2012)2571–2577.

[26]L.Choubrac,A.Lafond,C.Guillot-Deudon,Y.Moelo,S.Jobic,Inorg.Chem.51 (2012)3346–3348.

[27]S.Chen,A.Walsh,X.-G.Gong,S.-H.Wei,Adv.Mater.(Weinheim,Ger.)25(2013) 1522–1539.

Table3

LatticeparametersandresidualvaluesoftheRietveldrefinementofCZTSat500C.

X-raydiffraction

Structuretype kesterite

Crystalsystem tetragonal

Spacegroup I4(No.82)

Diffractometer STOESTADIP

Wavelength 70.931pm

2urange 10–50

T(Measurement) 500C

a/pm 546.28(3)

c/pm 1090.10(8)

RBragg/% 4.77

Rwp/% 3.84

Rexp/% 3.49

S 1.10

Table4

RefinedstructuralparametersforCZTSat500CfromhightemperatureX-ray diffractiondata.

Atom Wyckoff x y z Biso occ

Cu/Zn 2a 0 0 0 4.00(18) 0.997(11)

Sn 2a 0 0 0 4.00(18) 0.004(11)

Cu/Zn 2c 0 1/2 1/4 4.32(13) 1.000(2)

Sn 2c 0 1/2 1/4 4.32(13) 0.000(2)

Cu/Zn 2d 0 1/2 3/4 4.32(13) 0.922(16)

Sn 2d 0 1/2 3/4 4.32(13) 0.080(16)

Cu/Zn 2b 0 0 1/2 2.36(8) 0.084(11)

Sn 2b 0 0 1/2 2.36(8) 0.918(11)

S 8g 0.748(6) 0.757(5) 0.8699(10) 1.94(9) 4

Abbildung

Fig. 2. Diffraction patterns (Cu-K a radiation) of as-prepared samples after the milling process at different times (t = 10–180 min).
Fig. 3. FWHM values and corresponding crystallite sizes during reaction in the ball mill.
Fig. 5. 3D plot (left) and rainbow contour plot (right) for in-situ heat treatment of CZTS precursor powder up to 500  C (Mo-K a 1 radiation)
Fig. 6. Evolution of the powder patterns probed by in situ high temperature X-ray diffraction (Mo-K a 1 radiation)

Referenzen

ÄHNLICHE DOKUMENTE

Examples at differ- ent levels of complexity will be provided including: data reduction from powder diffraction patterns taken at ambient and non-ambient conditions, peak fitting

a Baker Laboratory, Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853-1301, USA.. b Max-Planck-Institut f¨ur Festk¨orperforschung, D-70569

While it seems reasonable to assume that CuCN would adopt a structure similar to AgCN and AuCN on the basis of the NMR data, none of the diffraction patterns reported in the

Ternäre Gamma-Messing Phasen in den Systemen Calcium-M IB(IIB) -Quecksilber New Ternary Gamma-Brass Phases in the Systems Ca-M

gung von Bahnmom entbeiträgen dritter Ordnung in den Ausdrücken für den g-Tensor führt zu einer fast völligen Übereinstimmung zwischen den spek­. troskopischen und

The extracted information is in many cases unique compared to that obtained from conventional X-ray diffraction tech- niques, because neutrons are sensitive to low atomic

Specifics of thermal neutron interaction with matter Scattering amplitude or length... Specifics of thermal neutron interaction with matter Scattering amplitude

Type IIa diamonds have been mounted, which are also suitable for in-situ high pressure infrared (IR) experiments. SR-XRPD and IR experiments can, therefore be performed under the