• Keine Ergebnisse gefunden

Riemann Surfaces

N/A
N/A
Protected

Academic year: 2022

Aktie "Riemann Surfaces"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Mathematisches Institut der Universit¨at M¨unchen

Prof. Otto Forster

April 20, 2016

Riemann Surfaces

Problem sheet #1

Problem 1

Let X be a Riemann surface whose complex structure is defined by an atlas A:={ϕj :Uj →Vj|j ∈J}.

Denote by σ :C→C the complex conjugation. Define Aσ as the set of all complex charts σ◦ϕj :Uj →σ(Vj)⊂C, j ∈J.

a) Prove that Aσ is again a complex atlas on the topological space underlyingX, and thus defines a Riemann surface which will be denoted by Xσ.

b) Show that the atlasAσis not holomorphically equivalent withA, but there exist Riemann surfacesXwhich are isomorphic toXσ(i.e. there exists a biholomorphic mapϕ :X →Xσ).

Problem 2

Let S2 be the unit sphere in R3,

S2 :={(x1, x2, x3)∈R3 :x21+x22+x23 = 1}

and let N := (0,0,1) be the north pole of S2. We identify the plane {x3 = 0} ⊂ R3 with the complex number plane C by the correspondence (x1, x2,0)7→x1+ix2.

The stereographic projection st :S2 −→C∪ {∞}=P1

is defined as follows: For x∈S2r{N} let st(x) be the intersection of the plane {x3 = 0}

with the line through N and x. For the north pole one defines st(N) := ∞.

a) Show that the stereographic projection st is given by the formula st(x) = 1

1−x3

(x1+ix2) for all x∈S2r{N}.

b) An element A of the special orthogonal group SO(3) ={A∈GL(3,R) :ATA=E, detA= 1}

definies a bijective map of the sphere S2 onto itself.

p.t.o.

(2)

Prove that the map

f := st◦A◦st1 :P1 −→P1 is biholomorphic.

Hint. Use the fact that the group SO(3) is generated by the subgroup of rotations with axis R(0,0,1) and the special transformation (x1, x2, x3)7→(x1, x3,−x2).

c) Do all biholomorphic maps P1 →P1 arise in this way?

Problem 3

Let Λ = Zω1+Zω2 and Λ = Zω1+Zω2 be two lattices in C. Show that Λ = Λ if and only if there exists a matrix

A =a c

b d

∈GL(2,Z) ={A ∈M(2×2,Z) : detA=±1}

such that ω1

ω2

=Aω1

ω2 .

Problem 4

a) Let Λ,Λ ⊂C be two lattices. Let α∈C be a complex number such thatαΛ⊂Λ. Show that the map C→C, z 7→αz, induces a holomorphic map

φα :C/Λ−→C/Λ,

which is biholomorphic if and only if αΛ = Λ.

b) Show that every torus C/Λ is isomorphic to a torus of the form X(τ) :=C/(Z+Zτ)

with τ ∈H, where H denotes the upper halfplane H:={z ∈C: Im(z)>0}.

c) Suppose (ac db)∈SL(2,Z) andτ ∈H. Let τ := aτ +b

cτ +d.

Prove that Im(τ)>0 and the tori X(τ) and X(τ) are isomorphic.

Referenzen

ÄHNLICHE DOKUMENTE

Mathematisches Institut der Universit¨ at M¨ unchen Prof.. Wilfried

Damit ist also gezeigt, daß jede linear unabh¨angige Menge zu einer Basis erg¨anzt werden kann.. Wir w¨unschen allen frohe und ge-

Um zu zeigen, daß die Gesamtheit der Elemente von G I mit endlichem Tr¨ager eine Untergruppe bilden m¨ussen wir also noch zeigen, daß sie unter Produkt und Inversen-

Man ¨ uberzeugt sich zun¨achst, dass auch f + g und f ◦ g wieder Gruppenhomomor- phismen sind. Die Assoziativit¨at der Addition und Multiplikation sieht man leicht, ebenso, daß

Mathematisches Institut der Universit¨ at M¨ unchen Prof.. Wilfried

Damit ist also gezeigt, daß jede linear unabh¨angige Menge zu einer Basis erg¨anzt werden kann.. Dies steht aber im Widerspruch zu U k

Eine Sprache L sei gegeben durch eine Konstante 1, zwei 2- stellige Funktionssymbole + und ·, und zwei 2-stellige Relationssymbole <.

Mathematisches Institut der Universit¨ at M¨ unchen Helmut Schwichtenberg.. Wintersemester 2009/2010