• Keine Ergebnisse gefunden

Man-Machine Procedure for Multiobjective Control in Water Resource Systems

N/A
N/A
Protected

Academic year: 2022

Aktie "Man-Machine Procedure for Multiobjective Control in Water Resource Systems"

Copied!
42
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

MAN-MACHINE PROCEDURE FOR MULTIOBJECTIVE CONTROL I N WATER RESOURCE SYSTEMS

I l y a V. Gouevsky I v a n P . P o p c h e v

J u n e 1975

R e s e a r c h R e p o r t s are p u b l i c a t i o n s r e p o r t i n g on t h e work o f t h e a u t h o r s . Any v i e w s o r

c o n c l u s i o n s a r e t h o s e o f t h e a u t h o r s , a n d d o n o t n e c e s s a r i l y r e f l e c t t h o s e o f IIASA.

(2)
(3)

Man-Machine P r o c e d u r e f o r M u l t i o b j e c t i v e C o n t r o l i n W a t e r R e s o u r c e S v s t e m s I l y a V. ~ o u e v s k ~ ' a n d I v a n P . Popchev 2

A b s t r a c t

The f o r m u l a t i o n o f a p r o c e d u r e f o r m u l t i o b j e c t i v e c o n t r o l i s p r e s e n t e d . The p r o c e d u r e h a s b e e n d e v e l o p e d u n d e r t h e a s s u m p t i o n t h a t t h e r e a r e two s u b s e t s o f

o b j e c t i v e s : t h e p r i m a r y o b j e c t i v e a n d t h e s e c o n d a r y o b j e c t i v e s . The p r i m a r y o b j e c t i v e i s u s e d f o r d e f i n i n g a s c a l a r - v a l u e d o p t i m i z a t i o n p r o b l e m . The s e c o n d a r y o b j e c t i v e s a r e b e i n g improved by a DM t h r o u g h c h a n g i n g a s e t o f p a r a m e t e r s i n t h e s c a l a r - v a l u e d o p t i m i z a t i o n p r o b l e m . An i l l u s t r a t i v e example p r e s e n t e d , i n c l u d e s t h e p a r t o f t h e I s c a r R i v e r , B u l g a r i a . R e s u l t s a r e

v e r y s a t i s f a c t o r y when compared w i t h t h e e x i s t i n g c o n t r o l p o l i c y .

1

.

I n t r o d u c t i o n

Water r e s o u r c e s y s t e m s c r e a t e s p e c i a l p r o b l e m s t h a t make t h e a p p l i c a t i o n o f c l a s s i c a l d e c i s i o n making t e c h n i q u e s q u i t e d i f f i c u l t a n d , u n l e s s t h e y a r e t r e a t e d w i t h c o n s i d e r a b l e

i n s i g h t , two q u i t e i m p o r t a n t c h a r a c t e r i s t i c s o f t h e s e s y s t e m s s t i l l s t r o n g l y i n f l u e n c e t h e i r management.

The f i r s t c h a r a c t e r i s t i c c r e a t e s t h e p r o b l e m o f c o n t r o l u n d e r u n c e r t a i n t y a n d r i s k i n v i r t u a l l y a l l w a t e r r e s o u r c e d e c i s i o n s . Over t h e p a s t t h i r t y y e a r s , many p a p e r s h a v e b e e n d e v o t e d t o i n v e s t i g a t i n g t h e s t o c h a s t i c n a t u r e o f t h e p r o c e s s e s i n w a t e r c o n t r o l s y s t e m s a n d many m o d e l s h a v e b e e n s u g g e s t e d

l ~ n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , S c h l o s s L a x e n b u r g , A-2361 L a x e n b u r g , A u s t r i a .

' ~ n s t i t u t e o f E n g i n e e r i n g C y b e r n e t i c s , B u l g a r i a n Academy o f S c i e n c e s , S o f i a , B u l g a r i a .

(4)

The second characteristic creates the problem of control

under multiobjectives. This problem has become quite interesting during the past ten years. The existence of a great number of noncommensurable objectives in water resource systems makes decision making more complex and requires applying the special techniques of the multiobjective optimization.

In multiobjective optimization, two basic approaches exist [131. The first approach comes out of the assumption that one criterion dominates over the remaining criteria. Being primary, this criterion can be used in classical scalar optimization

problem, where secondary objectives can be taken into account through constraints.

The second approach deals with criteria which could not be ordered (or at least to be divided into primary and secondary).

The techniques used when this approach is being applied could be divided approximately into the following groups:

1) noninferior vector's technique [ 4 ,5,24,28], etc.;

2 ) ideal vector's technique [3,7,29], etc.;

3) the utility theory approaches [7,11,171, etc.;

4) the game theory approaches [1,14,19,271, etc.;

5) techniques using man-machine procedures [2,9110118, 25,261, etc.

For the time being, these five techniques have been insufficiently implemented in water control systems. There are several examples but they are still more methodologically oriented studies concerning the development of the water

resources systems.

(5)

In this paper, an attempt is made to use an approach for multiobjective optimization when there is one primary criterion.

In order to take into consideration the stochastic nature of the processes in an implicit way, and to reduce computational difficulties arising from treating the secondary criteria as constraints, a man-machine procedure is used which is described in detail below.

2. Basic Notations

Suppose, a decision maker (DM) in a water control system has to solve the following optimization problem:

min

{ql

(XI, $ 2 (XI 1

.

f$v(x)

1

X

subject to

where x is an n-dimensional vector of decision variables;

$Ji(x)

,

i = 1,2,

...,

v are v objective functions; and G.(x), 3

j = 1,

...,

m are constraint functions.

The interrelation (3) denotes that the criterion $J1(x) dominates over all the remaining criteria, but there is no order between the criteria

J12

(x)

. . .

$, (x)

.

The described optimization problem could be solved by the techniques already mentioned or by reducing it to the following scalar optimization problem:

(6)

min Q l (XI

X

subject to

where

ti

are the maximum admissible values of the criteria

Q i ( x ) i = 2 , , v The values of

ti

should be determined by the DM on the basis of the DM'S preferences about the satisfaction level of Qi(x), past experience, etc.

In many cases, especially with high dimensional optimization problems and nonlinear functions G.(x) and

I

Qi(x), the DM would encounter a great number of conputational difficulties. Furthermore, better decision making is needed to evaluate the sensitivity of the solution.

This means that the problem has to be solved many times, and if the criteria Qi(x), i = 2.v are far from their bounds ti, and at the same time Q1(x) has comparatively large value, a compromize between these values should be found.

So as to reduce the computational difficulties, a man-machine procedure is suggested in this paper. This procedure is based on the following general assumptions:

A) The 3M could determine the values of Si, i = 2,3,

...,

v

in advance, or if values of

Si

have been suggested to the DM, he can choose those which satisfy him.

B ) The DM could state quantitative considerations which would

(7)

improve t h e v a l u e s o f a g i v e n c r i t e r i o n q i ( x ) , i =

G.

T h i s means t h a t i n t h e p r o b l e m , t h e r e i s a s e t o f p a r a m e t e r s { p e l w h i c h c o u l d b e c h a n g e d and t h e DM a t l e a s t knows t h e d i r e c t i o n t h e d e c i s i o n h a s moved when {P,} i s c h a n g e d .

C ) The DM c o u l d b e t t e r e v a l u a t e t h e d e c i s i o n i n t h e f u n c t i o n a l s p a c e t h a n i n t h e d e c i s i o n s p a c e .

D ) The DM h a s t o h a v e t h e p o s s i b i l i t y t o f i n d a t l e a s t two d i f f e r e n t d e c i s i o n s o b t a i n e d by d i f f e r e n t v a l u e s o f some o f t h e p a r a m e t e r s P i n o r d e r t o make s u r e t h e d e c i s i o n i s P a r e t o o p t i m a l .

3 . D e s c r i p t i o n o f t h e P r o c e d u r e EVAL

The d e c i s i o n made b y f o l l o w i n g t h i s p r o c e d u r e i s c a l l e d

" r a t i o n a l d e c i s i o n . " The main i d e a f o r f i n d i n g i t i s b a s e d o n t h e p o s s i b i l i t y f o r i n t e r a c t i v e d i a l o g u e b e t w e e n a DM and a c o m p u t e r .

The p r o c e d u r e c o n s i s t s o f t h e f o l l o w i n g s e v e r a l s t e p s . 1 ) A t t h e f i r s t s t a g e , o p t i m i z a t i o n p r o b l e m ( 7 ) a n d ( 8 ) i s s o l v e d :

s u b j e c t t o

(remember t h a t (x) i s t h e d o m i n a t i n g c r i t e r i o n ) a s a r e s u l t o f t h i s s t a g e , t h e v e c t o r x1 i s o b t a i n e d .

2 ) The v a l u e o f a l l c r i t e r i a $ i ( ~ ) , i = 2 , 3 ,

...,

v a r e computed u s i n g t h e v e c t o r x -1

,

o b t a i n e d i n s t e p 1 ) a b o v e .

(8)

3 ) Choose t h e v a l u e o f

S i t

i = 1 , v . I f t h e DM h a s no i d e a a b o u t t h e m a g n i t u d e o f

E i

h e c a n c o n t i n u e t h e p r o c e d u r e a s s u m i n g t h a t S i = i i ( x 1 1 .

4 ) The v a l u e s i i ( x 1 ) and

E i

f o r i = 2 , . . . , v a r e compared:

I f i i ( x I )

5 E i

f o r a l l i = 2 , . . . , v t h e DM e i t h e r c a n d e c i d e t o a c c e p t it a s a r a t i o n a l d e c i s i o n , o r go t o s t e p 5 ) f o r

i m p r o v i n g i t ; i f i i ( x 1 ) >

E i

f o r a n y i = 2 ,

...,

v g o t o s t e p 5 ) . 5 ) A n a l y z i n g t h e v a l u e s o f t h e f u n c t i o n i i ( x 1 ) , i = 2 , . . . , v t h e DH c h a n g e s some o f t h e p a r a m e t e r s o f t h e s e t { p e l i n s u c h a way t h a t h e b e l i e ~ ~ e s t h e v a l u e s c o u l d b e improved.

6 ) The DM d e t e r m i n e s t h e maximum v a l u e o f c o n c e s s i o n toward t h e v a l u e o f t h e f u n c t i o n i 1 ( x ) . L e t t h i s v a l u e b e d e n o t e d

w i t h

E l .

GO t o s t e p 1 ) .

T h i s p r o c e d u r e w i l l b e implemented below f o r y e a r s c o n t r o l o f a m u l t i p u r p o s e r e s e r v o i r .

4 . C o n t r o l o f M u l t i p u r p o s e R e s e r v o i r

L e t u s c o n s i d e r a r e s e r v o i r c r e a t e d f o r s u p p l y i n g w a t e r

f o r i n d u s t r i a l , m u n i c i p a l a n d i r r i g a t i o n n e e d s , a s w e l l a s f o r u s e i n g e n e r a t i n g h y d r o e l e c t r i c power and f o r p r o v i d i n g f a c i l i t i e s f o r f i s h i n g and r e c r e a t i o n . The whole p r o c e s s i n v o l v i n g c o n t r o l o f a r e s e r v o i r i s c o n s i d e r e d i n i n t e g e r t i m e s = 1 ,

...,

N . The s t r u c t u r e o f t h e r e s e r v o i r f o r any s t a g e (month) s i s shown i n F i g u r e 1.

C o n t r o l v a r i a b l e s , i n t h e i n v e s t i g a t e d r e s e r v o i r ' s n ~ d e , a r e t h e amount o f w a t e r yk a l l o c a t e d t o t h e kth u s e r a t t h e S

s t h s t a g e , k = I , n + l : s = a n d t h e amount o f w a t e r i n t h e r e s e r v o i r a t t h e s t h s t a g e .

Upon t h e c o n t r o l v a r i a b l e s , d e n o t e d by t h e v e c t o r

(9)

x = {ykf S z s =

m;

k = lfn+l}, the following constraints s '

are imposed:

n+ 1

-

Zs = min (MI Rs + yS Zs-1

- I

YE) I s = l f N (10) k= 1

where R is an input into the reservoir at the sth month.

S

For determining the R =

I R ~ }

additional model, taking into account that the stochastic nature of the input is needed,

ys is the evaporation coefficient at the sth stage, o < ys < 1

Gby y other kinds of losses could also be taken into consideration),

S

M is the capacity of the reservoir;

Mo is the minimum admissible amount of water in the reservoir (under the value the released water I

i

could not be used for municipal supply);

v S is the mandatory release for the kth user at the s th k

stage. This release allows for technological,

I

(10)

S

'n+l i s t h e demand f o r d r i n k i n g w a t e r .

C o n s t r a i n t ( 9 ) means t h a t t h e a m o u n t o f r e l e a s e d w a t e r a t t h e s t h s t a g e c a n n o t b e i n e x c e s s o f w a t e r a v a i l a b l e a t t h i s s t a g e . C o n s t r a i n t (10) r e f l e c t s t h e r e s t r i c t i o n c a p a c i t y o f t h e r e s e r v o i r a t e v e r y s t a g e .

C o n s t r a i n t s ( 9 )

,

( 1 0 )

,

( 1 1 ) , ( 1 2 ) a n d ( 1 3 ) f o r m t h e

s e t G ( x ) a n d t h e s e t c o m p r i s e s a l l a d m i s s i b l e s o l u t i o n s . The m a i n p r o b l e m o f t h e DM i s t o c h o o s e s u b s e t G 1 ( x ) o p t i m a l i n t h e s e n s e o f c r i t e r i a Q i ( x ) , i = 1 , V d e s c r i b e d b e l o w a n d a f t e r t h a t t o

1

*

t r y t o r e d u c e t h e s u b s e t G ( x ) i n t o a s i n g l e d e c i s i o n x

.

I t i s a s s u m e d t h a t t h e DM c a n d i v i d e a l l o f t h e c r i t e r i a i n t o two g r o u p s . The f i r s t g r o u p c o n t a i n s o n l y t h e c r i t e r i o n Q 1 ( x ) , w h i l e t h e s e c o n d g r o u p c o n s i s t s o f s i x c r i t e r i a

F o r c o n v e n i e n c e i n c o m p a r i n g t h e r e s u l t s , a l l c r i t e r i a a r e n o r m a l i z e d i n t h e i n t e r v a l ( 0 1 ) B e c a u s e o f t h i s , t h e m o s t d e s i r a b l e l e v e l o f a l l c r i t e r i a i s 1 .

The a n a l y t i c a l e x p r e s s i o n o f t h e c r i t e r i o n Q 1 ( x ) , . . . , Q 7 ( ~ ) i s a s f o l lo w s :

N n

7

7 f S c t

w h e r e f E ( y E ) d e n o t e s t h e r e l a t i o n s h i p b e t w e e n t h e a m o u n t o f w a t e r d i s t r i b u t e d t o t h e kth u s e r a t t h e s t h s t a g e a n d t h e l o s s

( i n m o n e t a r y u n i t s ) o b t a i n e d b y t h e u s e r . The l o s s d e f i n e d a s a b o v e i s f ( v S )

,

when y k S = v s

k k k I t i s assumed i n t h e p a p e r t h a t

(11)

the functions fS(yS)

,

for all k and s, are convex and piece-wise k k

nonlinear in the interval (vkI S pz).

The second group of secondary objectives are more

interesting for the DM when a single reservoir is operated and thus is described below.

$ J ~ ( x )

-

Users' Priority

This criterion is based on the following assumptions. Let us denote by

tk

the average degree of satisfying the

demand p , s =

1

of the kth user

and to each user an integer Ck& (l,n+l), is ascribed:

L R = 1 , if max

5,

=

5,

k = 1 ,n+l C = 2, if max

q

-

k = 1 ,n+l 5k

- 5,

k # ,

C = n, if max (5 5,) =

5

P

P'

P

If the order of the users concerning the average degree

0

of satisfying the demand, preferably for the DM, is Ck, k =

m,

(12)

t h e n t h e c r i t e r i o n Q 2 ( x ) c o u l d b e e x p r e s s e d i n t h e form

$ ? ( X I

-

E q u a b i l i t y o f S a t i s f y i n g t h e Users' Demand

Because o f a number o f u s e r s ' t e c h n o l o g i c a l p e c u l i a r i t i e s , n o t o n l y i s t h e amount of w a t e r a l l o c a t e d t o a g i v e n u s e r o f g r e a t i m p o r t a n c e , b u t a l s o t h a t t h i s amount s h o u l d b e

e v e n l y d i s t r i b u t e d . Q u a n t i t y e v a l u a t i o n o f t h e s e r e q u i r e m e n t s c o u l d b e made by d e f i n i n g t h e f u n c t i o n $ 3 ( x ) i n t h e f o l l o w i n g manner :

n+ 1

S s

(max gk

-

min g k )

k=l s S

Q U ( x )

-

F l e x i b i l i t y o f t h e D e c i s i o n

With t h i s c r i t e r i o n , t h e r e i s a p o s s i b i l i t y f o r r e a l l o c a t i o n ( i . e . c h a n g i n g t h e s o l u t i o n o f t h e problem ( 7 ) a n d (8) b e f o r e making t h e f i n a l d e c i s i o n ) i n t h e amount o f w a t e r among t h e u s e r s when some o f t h e p a r a m e t e r s { P ~ ] a r e c h a n g e d . T h i s i n d i c a t e s

t h a t t h e DM d o e s n o t h a v e t o r e s t r a i n t h e s e t G ( x ) v e r y much, i . e . t o p u t a h i g h b o u n d a r y o n vk and S Mo ( t h e h i g h e r v z and Mo t h e

more r e s t r a i n e d G ( x ) )

.

(13)

I f qk i s t h e number o f s t a g e s a t which t h e amount o f w a t e r yk d i s t r i b u t e d t o t h e kth u s e r i s e q u a l t o t h e lower S

boundary v k , t h e n q 4 ( x ) c a n be o b t a i n e d by t h e e x p r e s s i o n : S

$ c

-

S t a b i l i t y o f t h e D e c i s i o n

I t i s assumed t h a t f o r s o l v i n g t h e problem ( 7 ) a n d (8), t h e mean v a l u e o f t h e i n p u t R = {Rs) o b t a i n e d on t h e b a s i s o f h i s t o r i c a l d a t a i s u s e d . By means o f q 5 ( x ) t h e p o s s i b i l i t y f o r

i m p l e m e n t a t i o n o f t h i s d e c i s i o n i s e v a l u a t e d when v e c t o r R i s a

W W

s t o c h a s t i c v a r i a b l e w i t h a number o f v a l u e s RW = ( R 1 , .

. .

,RS,.

. . ,$I ,

w = 1 ,

...,

0 . 0 may s i m p l y e i t h e r d e n o t e t h e number o f h i s t o r i c a l d a t a a v a i l a b l e , o r i t c a n b e d e t e r m i n e d u s i n g a p p r o p r i a t e d a t a p r o c e s s i n g .

To e a c h v e c t o r RW a n a d m i s s i b l e s e t GW(x) d e t e r m i n e d by ( 9 )

,

(1 0 )

,

( 1 1 )

,

(1 2 )

,

a n d ( 1 3 ) c o r r e s p o n d s . I t i s assumed t h a t t h e d e c i s i o n x i s a d m i s s i b l e f o r t h e i n p u t RW i f x E GW(x)

.

I f

t h e v a r i a b l e hW i s i n t r o d u c e d ,

t h e n t h e c r i t e r i o n q 5 ( x ) c o u l d b e d e t e r m i n e d a s f o l l o w s :

(14)

$ ( x )

-

End S t a t e of t h e R e s e r v o i r

I n o r d e r t o meet f u t u r e demands i t i s of s u b s t a n t i a l i n t e r e s t t o a l l o w f o r t h e end r e s e r v o i r ' s s t a t e . So t o

e v a l u a t e t h i s c r i t e r i o n t h e f o l l o w i n g f u n c t i o n i s i n t r o d u c e d :

where

Z N i s t h e r e s e r v o i r ' s s t a t e a t t h e Nth s t a g e .

$,(XI -

E c o l o g i c a l E f f e c t of t h e D e c i s i o n

For a r e g i o n where t h e r e s e r v o i r i s t h e main w a t e r s o u r c e , t h e f o l l o w i n g f a c t o r s i n f l u e n c e b a s i c a l l y t h e e c o l o g i c a l

e q u i l i b r i u m (from t h e p o i n t of view of w a t e r r e s o u r c e s o n l y ) : a ) r e s e r v o i r l e v e l , o r , which i s t h e e q u i v a l e n t , t h e

amount o f w a t e r Z s , s =

-

1 , N .

b) t h e amount of w a s t e w a t e r 9; d i s c h a r g e d by t h e kth u s e r i n t h e r i v e r below t h e r e s e r v o i r a t t h e sth s t a g e , and t h e l e v e l A; of i t s p o l l u t i o n

( k € I W I where Iw i s a s e t o f i n d e x e s of u s e r s d i s c h a r g i n g w a s t e w a t e r ; 9' i s t h e c o e f f i c i e n t

k between o and 1)

.

c ) t h e i r r i g a t i o n regime of c r o p s a r e a - - i n s u f f i c i e n c y o f w a t e r c o u l d d i s t u r b t h e e c o l o g i c a l e q u i l i b r i u m of

(15)

t h e r e g i o n . T h i s r e g i m e d e p e n d s on t h e v a l u e o f

g; I a d e g r e e o f s a t i s f y i n g u s e r s ' demand f o r i r r i g a t i o n ( k c I i r , w h e r e I i r i s a s e t o f i n d e x e s o f t h e c r o p s ) . T a k i n g i n t o a c c o u n t t h e a b o v e f a c t o r s , t h e DM c o u l d

e s t i m a t e t h e e c o l o g i c a l e f f e c t o f a n y a d m i s s i b l e d e c i s i o n x t h r o u g h t h e f u n c t i o n $ ( x ) f o r m u l a t e d , f o r i n s t a n c e , i n t h e

Y f o l l o w i n g manner:

w h e r e

0 O s O s

Z s , Xn and yn a r e r e s p e c t i v e l y t h e n e c e s s a r y v a l u e s , from t h e e c o l o g i c a l e q u i l i b r i u m p o i n t

S S

-

o f v i e w , o f Z s , X n , a n d y k , s = 1 , N , k r I i r ; A i s t h e l e v e l o f p o l l u t i o n , o

-

< hS k - < 1 ,

d e t e r m i n e d f o l l o w i n g [8] ( t h e m o s t p o l l u t e d w a t e r h a s a l e v e l h: = 0 ) ;

b l , b 2 , b 3 a r e c o e f f i c i e n t s i n d i c a t i n g t h e i n t e n s i t y o f t h e a b o v e t h r e e t e r m s on t h e e c o l o g i c a l

3

e q u i l i b r i u m ;

C

br = 1 ; br > O f o r a l l r . r = l

(16)

The s t a t e d s e v e n c r i t e r i a do n o t c o v e r t h e g r e a t v a r i e t y o f p o s s i b l e c r i t e r i a . I f n e c e s s a r y , t h e DM c o u l d e i t h e r

complement t h i s s e t o f c r i t e r i a o r d e f i n e a n o t h e r o n e , t a k i n g i n t o a c c o u n t t h e s p e c i f i c c o n d i t i o n s o f t h e i n v e s t i g a t e d s y s t e m .

The o p t i m i z a t i o n problem t h e DM e n c o u n t e r s when h e i s

s e e k i n g t h e b e s t d e c i s i o n can b e f o r m a l i z e d as a m u l t i o b j e c t i v e n o n l i n e a r problem, i . e .

max ( X I

,

$2 ( X I

, Y~

( X I

Y~

( X I 1

Y~

( X I 1

Y6

( X I 1 $7 ( X I ) ( 2 2 )

X E G ( X )

where G ( x ) i s d e t e r m i n e d by ( 9 )

,

( 1 0 )

,

( 1 1 )

,

( 1 2 ) and ( 1 3 )

.

Although i t i s p o s s i b l e t o u s e c o n v e n t i o n a l t e c h n i q u e s f o r s o l v i n g t h e problem mentioned i n the b e g i n n i n g , t h e

c o m p l e x i t y o f c r i t e r i a , t h e i r s u b s t a n t i a l n o n l i n e a r c h a r a c t e r and t h e need o f many r u n s o f t h e problem s o as t o o b t a i n a P a r e t o s u r f a c e , make t h e u s a g e o f t h e s e t e c h n i q u e s v e r y

d i f f i c u l t . F o r t h e s e r e a s o n s a n a t t e m p t i s made below t o s o l v e t h e problem ( 2 2 ) by t h e d e s c r i b e d man-machine p r o c e d u r e .

5. I l l u s t r a t i v e Example

The d e s c r i b e d p r o c e d u r e f o r making t h e r a t i o n a l d e c i s i o n by i n t e r a c t i v e man-machine d i a l o g u e h a s been a p p l i e d f o r c o n t r o l o f a m u l t i p u r p o s e r e s e r v o i r f o r a t i m e p e r i o d o f o n e y e a r d i v i d e d i n t o t w e l v e months. The amount o f w a t e r r e l e a s e d from t h e r e s e r v o i r i s d i s t r i b u t e d t o t h e f o l l o w i n g u s e r s : i n d u s t r i a l w a t e r s u p p l y ( u s e r s No. 1 and No. 2 ) ; i r r i g a t i o n of d i f f e r e n t c r o p s ( u s e r No. 3--wheat, No. 4 - - b a r l e y , No. 5--corn, No. 6--

(17)

c o r n f o r f o d d e r , No. 7 - - v e g e t a b l e s , No. 8 - - l u c e r n e , No. 9-- meadows and p a s t u r e s ) ; a n a d d i t i o n a l amount o f w a t e r g i v e n f o r power g e n e r a t i o n ( u s e r No. 10) ( e x c e p t t h a t o n e d i s t r i - b u t e d t o t h e u s e r s No. 1

-

No. 9 and used a l r e a d y f o r power g e n e r a t i o n ) ; and d r i n k i n g w a t e r s u p p l y ( u s e r No. 1 1 ) .

The d a t a needed f o r c a r r y i n g o u t t h e i t e m s 1 a n d 2 o f t h e p r o c e d u r e EVAL a r e a s f o l l o w s :

1 ) i n p u t i n t h e r e s e r v o i r R = {Rs

1,

s = 1 , 1 2

( T a b l e 1 ) ; t h e c h o i c e o f t h e v e c t o r R h a s been done assuming t h e c o m p a r a t i v e l y b i g s h o r t a g e w i l l t a k e p l a c e d u r i n g t h e o p t i m i z a t i o n p e r i o d ; 2 ) v e c t o r s RW = { R ~ I , s = 1 , 1 2 ; w = 1 , 1 0 , r e p r e s e n t

t h e h i s t o r i c a l d a t a a v a i l a b l e f o r t h e i n p u t R of t h e r e s e r v o i r ( T a b l e 1 ) ;

3) l o w e r vk and upper S

us

bounds f o r a l l s = 1 , I 2 k

and k = ( T a b l e 3) ;

e v a p o r a t i o n and o t h e r l o s s e s Y = { Y

1

a r e i n t h e

S

r e s e r v o i r ( T a b l e 1 ) ;

0 0

4 ) t h e c o n s t a n t s M , M o t Z s f A k f

e k f

b l

,

b 2 , b 3 , c k , k = 1 , I 1 a r e shown i n T a b l e 2 ;

S -s

5 ) t h e l o s s f u n c t i o n s f ( y )

,

a l l k and s a r e p i e c e -

k k

w i s e n o n l i n e a r a n d concave.

(18)

w h e r e

The c o e f f i c i e n t s o f t h e s e f u n c t i o n s a r e shown i n T a b l e 3.

The s e t o f p a r a m e t e r s {PE} u s e d by t h e DM i n t h e p r o c e d u r e EVAL a r e : l o w e r vS a n d u p p e r p k S b o u n d a r i e s a n d s o m e t i m e s t h e

k

S -S

c o e f f i c i e n t s o f t h e l o s s f u n c t i o n s f k ( y k ) a n d t h e i n p u t R .

A l s o a l l o f t h e r e s t v a r i a b l e s a n d c o e f f i c i e n t s c a n b e i n c l u d e d i n {PE} i f t h e y a r e c o n s i d e r e d a s i n a c c u r a t e l y d e f i n e d .

U s i n g t h e method d e s c r i b e d i n [ 1 8 ] , t h e f o l l o w i n g r e s u l t s h a v e b e e n o b t a i n e d :

a ) t h e optimum amount o f w a t e r , a c c o r d i n g t o t h e f i r s t i t e m o f EVAL, w h i c h s h o u l d b e d i s t r i b u t e d among t h e u s e r s d u r i n g t h e o p t i m i z a t i o n p e r i o d . I n F i g u r e s 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 11 a n d 12 t h e g r a p h i c a l r e s u l t s a r e shown ( u s i n g r i g h t h a t c h ) . The a n a l y t i c a l s o l u t i o n i s shown i n T a b l e 4 .

b ) t h e s t a t e o f t h e r e s e r v o i r d u r i n g t h e o p t i m i z a t i o n p e r i o d ( F i g u r e 1 3 ) . The s t a t e o f t h e r e s e r v o i r when t h e v e c t o r R W , w = 1 , 1 0 i s c h a n g e d i s a l s o shown i n t h i s f i g u r e . T h i s s t a t e i s computed u n d e r t h e

a s s u m p t i o n s t h a t t h e a l l o c a t i o n which h a v e b e e n a l r e a d y a c c e p t e d c o u l d n o t b e c h a n g e d , i . e . t h e

q u e s t i o n i s a n s w e r e d , w h a t w i l l happen i f RW c h a n g e s b u t v e c t o r x, a n d r e s p e c t i v e l y i t s components yS

k t d o e s n o t .

(19)

1 1

C ) t h e v a l u e s o f t h e c r i t e r i a

+

( X

, . . . ,+

( X ) ( t h e

b i g g e r v a l u e o f

+

( x 1 ) t h e more a c c e p t a b l e v e c t o r x l ) ( T a b l e 6 )

.

Having a l l t h i s i n f o r m a t i o n , a s w e l l a s some o f t h e i n t e r m e d i a t e c o m p u t a t i o n a l r e s u l t s , t h e DM g o e s t o i t e m t h r e e o f t h e

p r o c e d u r e EVAL, namely e v a l u a t i o n o f t h e r e s u l t s w h i c h h a v e a l r e a d y b e e n o b t a i n e d .

What d o t h e r e s u l t s o b t a i n i n g a t t h e f i r s t s t a g e of t h e p r o c e d u r e EVAL f o r t h i s p a r t i c u l a r s y s t e m show?

1 ) Users N1 a n d N2 ( i n d u s t r i a l w a t e r s u p p l y ) o b t a i n i n t h e months I , 11, I11 a n d X t h e w h o l e demanded w a t e r . D u r i n g t h e r e m a i n i n g months t h e maximum demand d e v i a t i o n i s . 9 8 % .

2 ) User N11 ( d r i n k i n g w a t e r s u p p l y ) i s f u l l y s a t i s f i e d a l l t h e t i m e .

3 ) U s e r N3 g e t s 1 8 . 8 6 % a s i t s demand o c c u r s o n l y i n O c t o b e r . User N9 d o e s n o t g e t w a t e r a t a l l . T h e r e a r e a t l e a s t two r e a s o n s f o r t h i s : a ) t h e s e c r o p s a r e n o t i m p o r t a n t f o r t h e s y s t e m c o n s i d e r e d ; b ) i f a ) i s n o t t r u e , t h e n t h e

o b j e c t i v e f u n c t i o n s o f t h e s e c r o p s w e r e n o t d e t e r m i n e d p r e c i s e l y . 4 ) Some o f t h e u s e r s , i . e . N 4 a n d N5, d o n o t h a v e a

u n i f o r m s a t i s f a c t i o n o f t h e i r demands.

5 ) The e n d s t a t e o f t h e r e s e r v o i r e q u a l s t h e minimum a d m i s s i b l e amount o f w a t e r i n i t .

6 ) F i g u r e 13 i n d i c a t e s t h e i n f l u e n c e o f t h e s t o c h a s t i c i n p u t r e p r e s e n t e d b y t h e v e c t o r R ~ , w = 1 , l o . I f w = 3 , 4 , 6 , 7 , 8 a n d 9 , t h e n a f t e r A u g u s t t h e r e s e r v o i r w i l l b e empty. I f

(20)

= 1 , 2 , 5 a n d 1 0 , t h e n t h e r e w i l l b e enough w a t e r e v e n f o r c o m p l e t e s a t i s f a c t i o n o f t h e u s e r s ' demands i n t h e r e s e r v o i r .

7) I t c a n be s e e n t h a t t h e r e i s a d i f f e r e n c e b e t w e e n a p r e d e t e r m i n e d o r d e r o f t h e u s e r s a n d t h i s o n e a l r e a d y o b t a i n e d c o n c e r n i n g t h e u s e r s Nos. 3 , 4 , 5 , 6 , 7 a n d 9 . Such a d i f f e r e n c e may b e c a u s e d by t h e f o l l o w i n g :

a ) t h e p r e d e t e r m i n e d o r d e r r e f l e c t i n g t h e s u b j u n c t i v e o p i n i o n o f t h e DM i s wrong;

b ) t h e o b j e c t i v e f u n c t i o n o f t h e u s e r s a r e n o t d e t e r m i n e d e x a c t l y .

8 ) User No. 10 ( h y d r o power g e n e r a t i o n ) o b t a i n s 6 3

20.5475

.

10 m a d d i t i o n a l w a t e r . T h i s a d d i t i o n a l amount o f w a t e r c a n n o t b e u s e d by t h e o t h e r u s e r s d u r i n g t h e " n o n i r r i -

g a t e d " months a n d i n t h e c o n d i t i o n o f s h o r t a g e c o u l d b e " a p e c u l i a r l u x u r y " t o p r o d u c e e n e r g y by w a t e r .

T a k i n g i n t o c o n s i d e r a t i o n t h e r e s u l t s o b t a i n e d a t t h e f i r s t s t a g e o f p r o c e d u r e EVAL, t h e DM h a s d e c i d e d f i r s t o f a l l t o r e d u c e t h e u p p e r bound p10 o f u s e r No. 1 0 . S The new s o l u t i o n i s shown i n T a b l e 5 and i n F i g u r e s 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 12 a n d 14 u s i n g l e f t h a t c h . A t t h a t , t h e

s e c o n d s o l u t i o n i s b e t t e r w i t h r e s p e c t t o t h e c r i t e r i o n b ( x ) , i . e . e q u a b i l i t y i n s a t i s f y i n g u s e r s ' demands h a s b e e n improved.

U s i n g o t h e r p a r a m e t e r s o f t h e s e t {P ), t h e DM c o u l d

R

i m p r o v e t h e s o l u t i o n o f t h e p r o b l e m . T h i s p r o c e s s c o u l d g o on u n t i l t h e DM f i n d s t h e s a t i s f y i n g compromise among t h e v a l u e s o f t h e c r i t e r i a (x)

, . . . ,

$7 ( x )

.

(21)

6 . Computational Time

For carrying out the procedure EVAL a computer program was developed. The program consists of three subroutines: pre- parative subroutine, subroutine for optimization and subroutine

S S

for introducing the functions fk(yk). The latter permits the introduction of piece-wise, concave, nonlinear functions of any type.

A single reservoir's optimization model comprising 1 2 0

variables was executed in about 0 . 2 5 minutes on CDC 6 6 0 0 . This included all computations needed for carrying out the first and the second items in the procedure EVAL.

7. Conclusions

The procedure EVAL presented here can be used when multi- objectives are divided into two subsets: a primary objective and the secondary objectives. In many practical applications in water resource systems, economic efficiency usually can be asserted as being primary and the secondary objectives imply additional goals have to be achieved.

Using this procedure, instead of conventional techniques for multiobjective programming, a closer contact between a system investigator (SI) and the DM can be established.

Furthermore, such an interactive approach enables both SI and DM to define parameters more precisely in the optimization

model. Another advantage of this approach is that the complexity of an optimization problem does not depend on the mathematical structure of the secondary objectives at all.

(22)

The p r o c e d u r e c a n a l s o b e i m p l e m e n t e d i n a m u l t i r e s e r v o i r w a t e r r e s o u r c e s y s t e m a n d i n m o r e g e n e r a l gaming s i t u a t i o n s b e t w e e n d i f f e r e n t D M ' S who a g r e e t h a t o n e o f t h e c r i t e r i a i s p r i m a r y . A f t e r c h a n g i n g p a r a m e t e r s o f t h e o p t i m i z a t i o n model

i n a d i r e c t i o n t h e y t h i n k i s a p p r o p r i a t e a n d a f t e r e v a l u a t i o n o f r e s u l t s , a compromise b e t w e e n them c o u l d b e a c h i e v e d .

(23)

Table 1. Rs

-

input in the reservoir 1 R I...I R1

-

input in the reservoir (available historical data) s - evaporation coefficient 0 Zs

-

desirable state of the reservoir

(24)

0

7

m

03

I.

In

3

m

CV

7

.q

0 0 03

7 0

0 0

w 7 0

7

0 0

0 w

0

k ar

0 c,

w

0

S

c, ar

II)

0 w

S

a

0 ar

m k A rb

0 U

In cn

-4

0 w a

0

7

a G a

0 0 CV

w 7 m k

In ar

0 0 II c,

0

N

S

X X

..

a

0 0 ar

In 7 rl rl I. w -4

a rl rl a 0 rl

o o rb rd 7 G a

o o a ~1

k k II 0 -4 !Y

c, k

0 0 m 0 cn a,

w w

n

cv !Y U)

0 0

..

d d G 3

CV 03 CV CV II ar

CV 7 X 7 X 7 0

$

ar

o o 4 a m a A

c0

II II c, c,

0 w ar

II N IO

. .

0 .Q w

0 rl 0

0 In II II A

7

m m cnX cnX

,.

ar -4 0 X

7 4 a c, G

0 0 II II CV m a, Id rb

CV I. d k k

3

0 I I I

II II II II

cn X

m'X

X Y X 7 X 7 cnx r n ~ X

4 o u 4 a

n

G 4 a o u

(25)

o m m

3 r

r- 0

w m o

o m m

I

o m m

I 3

C

r- 0

w m 0

o m m

o m m

I

f

7 r- 0

w m 0

o m m

I

3

7

r- 0

w m o

o m m

I

0 m m I f

r

I- 0

w m 0

o m m

I 3

-

m m

P. w

OD ln

m N

I m

ln m r- co w l n

m N

o m m I I

w w w w w w

0 1 0 0 0 0 0

-

X

- - -

X X X X X

W N m N m N V1 N I n N m N t n c W m a W I > & l

(26)

I I I I I I I I I

-

m o m - m

m , 0 ; ; 2 r mN

? O O O O m r

" o d d d d o0 N t

2

I I

L n o N m N

- t m w w

w o l - t o r

O O r O O O W r

. O .

0 0 0 0 0 0 o m

I I

I I I I I I I I I

I I I I I I I I I

X X X X X X X

m m m m m o m o m o corn m o m o m o

P I m w m c 3 u > ! 4 7

I l l 1 I I I I I

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

7 7 r - - - r

X X X X X X X

rna m * m t rna m a r n t c o t a t m a P I m w m ? 3 u > & x

(27)

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

X X X X X X X

mm m m mm m m mm mm m m m m m m

& a L o c a a u ; ) & l

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

I I I l l I I I I

I I I I I I I I I

(28)

I I I I I I I I I

3 m o o o 0 0

o m 3 0 0 0 0

o m - ~ N N V) 0

l - n r 3 w m o o r - o

c o o o o o o 7 7

0 I I

U

. -

7 X

-

X

-

X x X

-

X 7 X

m p m l - m l - m l - m l - m l - m l - cnl- m l -

p . r ~ s r n t ) w > k z

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I I

I I I I I I I I I

w w w w w w w

1 0 0 1 0 0 0 0 0

7 7 7 - 7 - 7

X X X X X X X

m a 3 m a 3 m a 3 m a 3 m w m w m a 3 m a 3 m w

P l r J w r n a w 2 k 3

(29)

I I I I

I I I I

m m w w

a = t m u l

* O W N

0 0 0 0

0 0 0 0

I I

0 - N 0

f I n . - 0

w - w

-

-

o m w

O O O I I I O I

I

I I I I

I I I I

I I I I

(30)

Table 4.

(31)

N

7

7 7

-

0

cn

03

b

m 7 03 0 m

* I I I I I I I

w N 0 7

r

0

r 7 b N

* 1 1 1 1 1 1 1

W N 0 7

7

W N m

0 3 0

w 0 3 0 w 0

N O 0 3 1 I l l l W l n

w N 0 0 7

7

m 03 7 0 0 3 0

3 7 3 0 - 0

m 0 3 0 c n m m o 0

0 0 m I b 0 3 m I V ) N

w C\1 0 3 0 m 0 7

7

m .I m o o c n

cn cn 0 0 0 m 7

3 b N o m m o o o

N O 1 l W 3 N K - l 0 Ln

W N N W - N 0 7

7

QI CT\ 3 0 0 0

CT\ Q\ 3 0 0 0 7

3 I- w 0 m 0 0 0 0

N O 1 I c n m N m 0 m

w N o m - m o 7

7

03 m m o cn

o o m 0 m 7

m 03 m o m 0 0 0

0 0 3 1 I

.

I O W O W

a F 7 7 C*l 0 0

7

w m m rn cn

m

-

N 7 m

m 03 0 b m m 0

0 QI 3 1 I b W I V ) O

W 7 0 7 N 0 7

7

0 3 N

w C\1 N

L n C X ) O N 0

CT\ 03 b I I I I l a w

m

-

0 0 0

-

cn * I 1 1 1 1 1 1 b 0 0

w 7 0 7

7

0

m b 03 cn

I I I 1 1 1 1

m 7 0 cn

-

cn * 1 1 1 1 1 1 1 cn 0 0

w 7 0 7

7

O F

- N m a U l W b Q c n r -

(32)
(33)

w a t e r s u p p l y o f d i f f e r e n t

Zs-l 4 I

z

- - - - C c s

A

F i g u r e 1.

y:

c r o p s

1 0 - h y d r o power s t a t i o n 11

-

d r i n k i n g w a t e r s u p p l y

y ;

E l

I

-

r e s e r v o i r 1 and 2

-

i n d u s t r i a l 3 . 4 ,

...,

9

-

i r r i g a t i o n

(34)

k

demand

o p t i m a l d i s t r i b u t i o n ( I r u n )

o p t i m a l d i s t r i b u t i c n (IT r u n )

+ s ( m o n t h s )

s t

F i g u r e 2 . Demand a n d d i s t r i b u t e d a m o u n t o f w a t e r t o t h e 1 u s e r

F i g u r e 3 . Ijcmand a n d d i s t r u b u t e d a m o u n t o f w a t e r t o t h e 2nd u s e r

r LI F i g u r e 4 . Demand a n d d i s t r u b u t e d amount o f w a t e r t o t h e 3 u s e r

(35)

t t1

F i r 5 . I)i.rnand a n d d i s t r i b u t e d a m o u n t o f w a t e r t o tilt, 4 c l s e r

demand

o p t ioicll d i s t ~ - i b l ~ ~ i o n ( I r u n )

O ~i n u L 1 (1 i sLr i I I U L i 0 1 1 ( I I t-1112)

figure. h . Demnncl a l ~ t l d i s t r i b u t e d a m o u n t o f w a t e r t o t h e 5 t h r1st.r

s ( m o n t h s )

-. . t I1

1 1, . Drmnnd a n d d i s t r i b u t e d a m o u n t o f w a t e r t o t h c h u s e r

Referenzen

ÄHNLICHE DOKUMENTE

Prime Minister Mariano Rajoy offered political support for the embattled Greek Prime Minister, Antonis Samaras, by visiting Athens before the 25 January snap general election

That is why I very much share Anatole’s opening comment that the next stage of the euro crisis – and we predicted this in the book – was going to be to move from a financial

Niklas Höhne, Michel den Elzen, Joeri Rogelj, Bert Metz, Taryn Fransen, Takeshi Kuramochi, Anne Olhoff, Joseph Alcamo, Harald Winkler, Sha Fu, Michiel Schaeffer, Roberto

This new carry bit could then be used as input for the full adder for the (i + 1)-st bits. Then transform the formula into

[r]

1 Now with the International Development Center of Japan, Tokyo, Japan. Starr and Whipple [1980] discuss the differences in risk preferences exhibited by society and by

Karlsruher Institut f¨ ur Technologie Institut f¨ ur Theoretische Festk¨ orperphysik Ubungen zur Modernen Theoretischen Physik I (SS 14) ¨.. - English

you already alulated the surfae area of