• Keine Ergebnisse gefunden

H(x, t)ψ(x, t) with the coordinate and time dependent Hamiltonian H(x, t) =−2m~2 ∂x2+V(x, t) and V(x, t) =V∗(x, t)

N/A
N/A
Protected

Academic year: 2021

Aktie "H(x, t)ψ(x, t) with the coordinate and time dependent Hamiltonian H(x, t) =−2m~2 ∂x2+V(x, t) and V(x, t) =V∗(x, t)"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Karlsruher Institut f¨ur Technologie Institut f¨ur Theoretische Festk¨orperphysik Ubungen zur Modernen Theoretischen Physik I (SS 14)¨

- English Sheet -

Prof. Dr. Gerd Sch¨on Sheet 2

Andreas Heimes, Dr. Andreas Poenicke Besprechung 07.05.2014

1. Norm and Continuity (2 points)

Given the Schr¨odinger-equation i~∂tψ(x, t) = H(x, t)ψ(x, t) with the coordinate and time dependent Hamiltonian H(x, t) =−2m~2x2+V(x, t) and V(x, t) =V(x, t).

(a) (1 point) An arbitrary state ψ(x, t0) is normalized at timet0, i.e.R

−∞dx|ψ(x, t0)|2= 1.Show thatR

−∞dx|ψ(x, t)|2 is time-independent.

(b) (1 point) Show that the probability density ρ(x, t) =|ψ(x, t)|2 is locally conserved, this means that the continuity equation

tρ(x, t) +∂xJ(x, t) = 0

holds. Here the probability-current is defined asJ(x, t) = m1Re

ψ(x, t)~ixψ(x, t) . 2. Wave-packet and uncertainty relation (3 points)

A particle can be described by a wave-packet ψ(x, t) = 1

√2π Z

−∞

dk g(k)ei(kx−ωkt),

with momentum-distribution g(k) =√

aexp(−a2k2/4)/(2π)1/4, where ωk=~k2/2m.

(a) (1 point) First focus on the time instant t= 0. Show that ψ(x,0) is a Gaussian as well. What is the width of this function and how does it dependent ona?

(b) (1 point) The spread in coordinate and momentum is defined by ∆x=p

hx2i − hxi2 and ∆p=p

hp2i − hpi2, where hAi(t) =

Z

−∞

dx ψ(x, t)A ψ(x, t)

is the expectation value of the operator A. Show that for t = 0 the uncertainty relation ∆x∆p=~/2 holds.

(c) (1 point) Now calculateψ(x, t) for arbitrarytand discuss the evolution of|ψ(x, t)|2 with time. What do you now obtain for ∆x∆p?

(2)

3. Delta-potentials (5 points + 1 bonus-point)

In the following we solve the one-dimensional Schr¨odinger-equation for a particle with massm and energyE in the potentialV(x):

− ~2

2m∂x2+V(x)

ψ(x) =Eψ(x)

(a) (3 points) First we discuss the single Delta-potential V(x) =−v0δ(x) mit v0>0.

(i) Derive, as you have already done in exercise 3(a) at the first sheet, the connec- ting conditions for ψand ∂xψ atx= 0.

(ii) Given that E <0, show that there exists a bound-state and that its energy is given byE =−mv02/2~2.

(iii) An incoming particle from the left with energy E >0 is partly reflected and partly transmitted. Calculate the transmission coefficient and show that the transmitted wave picks up a phase. Discuss also the limit E→ ∞.

(b) (2 points) Now we consider the double Delta-potential V(x) = −v0[δ(x+a/2) + δ(x−a/2)] with v0 >0. Solve the one-dimensional Schr¨odinger-equation and show that

e−κa

1− ~2κ mv0

, (1)

where E = −~2m2κ2 is the energy of the particle and κ ∈ R. Solve graphically the transcendent equation (1).

(c) Resonant tunneling(1 bonus-point):

Now E > 0 andV(x) =v0[δ(x+a/2) +δ(x−a/2)] with v0 >0. What condition fork=√

2mE/~ has to be fulfilled so that the reflection coefficient vanishes?

Referenzen

ÄHNLICHE DOKUMENTE

Gemeinsame Verteilungsfunktionen mehrdimensionaler Zufallsvariablen sind allerdings f¨ ur den praktischen Einsatz im Vergleich zur eindimensionalen Variante relativ unbedeutend

[r]

Figure 4: Peak in coincident sea ice retreat and Arc)c SAT warming (indicated by purple ‘x’ in le` panel). Color-filled circles depict year-to-year changes of

Die Kunst beim Sai- teninstrumentenspiel ist es jedoch, außer dem Grundton auch die niedrigen Obert¨one (sch¨atzungsweise bis n 6 20) mit recht hoher (nach oben hin

Ausschließlich drei handbeschriebene DIN A4 - Bl¨ atter (insgesamt sechs

Eine spezielle L¨ osung k¨ onnen wir nun mit Variation der

[r]

Eine Welle bewege sich entlang einer geraden Linie. Bestimmen Sie alle m¨ oglichen Wellenl¨ angenwerte λ und