• Keine Ergebnisse gefunden

Continuous Navigation of an Inland Vessel with a Synthetic GNSS Antenna

N/A
N/A
Protected

Academic year: 2022

Aktie "Continuous Navigation of an Inland Vessel with a Synthetic GNSS Antenna"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Institut für Erdmessung

Continuous Navigation of an Inland Vessel with a Synthetic GNSS Antenna

-DGON • Posnav-ITS • Berlin- Session Technik III: Fusionierung

(2)

Institut für Erdmessung

Motivation • Inland Vessel Transport

Inland Waterway Transport (IWT)

I reliable, almost safe, eco-friendly and profoundly effective I reducing traffic stress on rail and motorways

I future: combined transport (rail, waterway, motorway, regional & local)

Present transport vessel navigation

I precise navigation by Multi-GNSS real-time kinematic RTK (GPS+GLONASS) I requires mobile data infrastructures / interfaces (RTCM, NTRIP, less GSM) I navigation precisionrequired/available:2-5 cm/≈dm

Challenges for the GNSS signal

I navigation in city canals with poor satellite sky distribution I diffraction, interruption, complete loss-of-lock by bridge passages

I reliable height determination for guidance and driver assistance (RTK based)

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 2

(3)

Motivation • Inland Vessel Transport

Inland Waterway Transport (IWT)

I reliable, almost safe, eco-friendly and profoundly effective

I reducing traffic stress on rail and motorways (IWT: 240 mill. tons per year) I future: combined transport (rail, waterway, motorway, regional & local)

Present transport vessel navigation

I precise navigation by Multi-GNSS real-time kinematic RTK (GPS+GLONASS) I requires mobile data infrastructures / interfaces (RTCM, NTRIP, less GSM) I navigation precisionrequired/available:2-5 cm/≈dm

Challenges for the GNSS signal

I navigation in city canals with poor satellite sky distribution I diffraction, interruption, complete loss-of-lock by bridge passages

I reliable height determination for guidance and driver assistance (RTK based)

(4)

Institut für Erdmessung

Motivation • Inland Vessel Transport

Inland Waterway Transport (IWT)

I reliable, almost safe, eco-friendly and profoundly effective

I reducing traffic stress on rail and motorways (IWT: 240 mill. tons per year) I future: combined transport (rail, waterway, motorway, regional & local)

Present transport vessel navigation

I precise navigation by Multi-GNSS real-time kinematic RTK (GPS+GLONASS) I requires mobile data infrastructures / interfaces (RTCM, NTRIP, less GSM) I navigation precisionrequired/available:2-5 cm/≈dm

Challenges for the GNSS signal

I navigation in city canals with poor satellite sky distribution I diffraction, interruption, complete loss-of-lock by bridge passages I reliable height determination for guidance and driver assistance (RTK based)

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 2

(5)

Uelzen (GER): Skipper died cabin and steel cable collides

(6)

Surwold/Emsland (GER): Vessel collides with bridge skipper died thick fog possibly the cause

© 2017 NWZonline.de

(7)

Synthetic GNSS antenna for Inland Waterway Transport

Scientific key questions for Inland Vessel Navigation

I driver assistant systems and safety relevant applications require high accuracy (GPS/GNSS carrier phase observables)

I carrier phase & code observables affected by discontinuities, interruptions or complete loss-of-lock due to e.g. bridge passages or similar

I benefits for code based navigation by combining several receiver antennas

Synthetic GNSS antenna - observation domain

I enlarged field of viewcombining observations of several antennas

I applicablearbitrary rigid navigation platforms (satellite, aircraft, ferry, vessel, ...) I lever arm definition required (accurate and precise)

(8)

Institut für Erdmessung

Synthetic GNSS antenna for Inland Waterway Transport

Scientific key questions for Inland Vessel Navigation

I driver assistant systems and safety relevant applications require high accuracy (GPS/GNSS carrier phase observables)

I carrier phase & code observables affected bydiscontinuities,interruptions or complete loss-of-lockdue to e.g. bridge passages or similar

I benefits for code based navigation by combining several receiver antennas

Synthetic GNSS antenna - observation domain

I enlarged field of viewcombining observations of several antennas

I applicablearbitrary rigid navigation platforms (satellite, aircraft, ferry, vessel, ...) I lever arm definition required (accurate and precise)

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 5

(9)

Synthetic GNSS antenna and the Virtual Receiver (VR)

Virtual Receiver - processing mode

I inputobservables from synthetic antenna

I positionsolution for robust and strengthened satellite geometry I anglestransport rate (specific approach for inland vessels)

I synchronisationcoordinate observations of individual antenna locations

(10)

Institut für Erdmessung

Synthetic GNSS antenna and the Virtual Receiver (VR)

Virtual Receiver - processing mode

I inputobservables from synthetic antenna

I positionsolution for robust and strengthened satellite geometry I anglestransport rate (specific approach for inland vessels)

I synchronisationcoordinate observations of individual antenna locations

Specifications to our approach

I cost effectiveomit Inertial Navigation System (INS)

I lever armmultiple and optimal distributed GPS/GNSS antennas I headingconsidering the transport rate (moving baseline) I synchroniseindividual receiver / antenna units

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 6

(11)

Dedicated studies - the navigation platformMS Jenny

© 2016, LUH-IfE

The Navigation platformMS Jenny

I dimensions: 100 m length, 9.5 m width, 3.16 m depth

I two antennas / receiver units alongside the vessel, at bow (FRNT) and stern (BACK) I datasets recorded insummer 2016 (DOY179)and2018 (under investigation)

I static: mooring point Hannover, duration 1 hour

I kinematic: trip westward from Hannover, duration 2.5 hours

(12)

Institut für Erdmessung

Dedicated studies - the navigation platformMS Jenny

© 2016, LUH-IfE

The Navigation platformMS Jenny

I dimensions: 100 m length, 9.5 m width, 3.16 m depth

I two antennas / receiver units alongside the vessel, at bow (FRNT) and stern (BACK) I datasets recorded insummer 2016 (DOY179)and2018 (under investigation)

I static: mooring point Hannover, duration 1 hour

I kinematic: trip westward from Hannover, duration 2.5 hours

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 7

(13)

Dedicated studies - trajectory for investigations

Mittelland Canal

Mittelland Canal SteinhuderMeer

Inst. f. Erdmess./KE DEM: SRTM data (earthexplorer.usgs.gov), Horizontal Datum: WGS84, Map Projection: Mercator / geograpic

9˚00'E 9˚10'E 9˚20'E 9˚30'E 9˚40'E 9˚50'E 10˚00'E

52˚20'N 52˚30'N

1 5 10 15 25 20 30 Sachsenhagen

Wunstorf

Bad Nenndorf Hannover

Lehrte

Wenningsen (Deister)

Hannover Overview

Legend Cities and Villages

Bridge over Canal 0 200 400 600 800

Altitude (m)

© 2018, LUH-IfE

Experimental set-up

I sessions in 2016 (staticandkinematic) investigated

I reference trajectory (double difference, phase based, NRCan and GrafNav) I lever arm between FRNT and BACK by tachymetre and RTK (57.346 m±2 cm)

(14)

Institut für Erdmessung

Satellite visibility - static session

16:30 16:45 17:00 17:15 17:30

GPS Time [hours]

0 5 10 15 20 25

# satellites

mean/min/max (SA): 8 / 7 / 10 mean/min/max (VR): 17.3 / 15 / 19

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 9

(15)

Satellite visibility - kinematic session

17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30

GPS Time [hours]

0 5 10 15 20 25

# satellites

mean/min/max (SA): 9.3 / 1 / 11 mean/min/max (VR): 17.1 / 6 / 21

Bridge No.: 1 2 3 4 5 6 7 8 9/10 11 12/13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(16)

Institut für Erdmessung

Code observables: position accuracy

16:30 16:45 17:00 17:15 17:30 GPS Time [hours]

0 1 2 3 4

HDOP

HDOP SA HDOP VR

16:30 16:45 17:00 17:15 17:30 GPS Time [hours]

0 1 2 3 4

VDOP

VDOP SA VDOP VR

Improvements for DOP Values

I synthetic GNSS antenna and VR advantageous to strengthens the satellite geometry I provide significant reduction of expectable DOP-values

I significant improvements for the VDOP and some for HDOP

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 10

(17)

Code observables: position availability and continuity

16:30 16:45 17:00 17:15 17:30 GPS Time [hours]

-4 -3 -2 -1 0 1 2 3 4

N [m]

SA VR

16:30 16:45 17:00 17:15 17:30 GPS Time [hours]

-4 -3 -2 -1 0 1 2 3 4

E [m]

SA VR

16:30 16:45 17:00 17:15 17:30 GPS Time [hours]

-4 -3 -2 -1 0 1 2 3 4

U [m]

SA VR

Results

I static session

I availability: 100% (VR) and 99.9% (SA)

I HPE/VPE (VR):0.70/0.46 m HPE/VPE (SA):1.02/0.54 m I kinematic session

I availability:94.5% (VR)and76.7 (SA)

I HPE/VPE (VR):0.68/0.48 m HPE/VPE (SA):0.97/0.71 m

(18)

Institut für Erdmessung

Code observables: position availability and continuity

16:30 16:45 17:00 17:15 17:30

GPS Time [hours]

0 1 2 3 4

HPE [m]

SA VR

16:30 16:45 17:00 17:15 17:30

GPS Time [hours]

0 1 2 3 4

VPE [m]

SA VR

Results

I static session

I availability: 100% (VR) and 99.9% (SA)

I HPE/VPE (VR):0.70/0.46 m HPE/VPE (SA):1.02/0.54 m I kinematic session

I availability:94.5% (VR)and76.7 (SA)

I HPE/VPE (VR):0.68/0.48 m HPE/VPE (SA):0.97/0.71 m

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 11

(19)

Impact of bridge passages on carrier phases (session 179-2)

19:00 19:15 19:30 19:45 20:00 GPS Time [hours]

-30 -20 -10 0 10 20 30

DD [m]

G01 G03 G08 G10 G11 G14 G15 G16 G17 G18 G21 G22 G27 G28 G32 24

23 22

Bridge 25 26 27 28

(a)cycle slips in double differences

19:00 19:15 19:30 19:45 20:00 GPS Time [hours]

-30 -20 -10 0 10 20 30

DD [m]

G01 G03 G08 G10 G11 G14 G15 G16 G17 G18 G21 G22 G27 G28 23 24 25 26 27 28 G32 Bridge 22

(b)repaired double differences

19:00 19:15 19:30 19:45 20:00

GPS Time [hours]

20 25 30 35 40 45 50 55

C/N0 (GS1C) [dB-Hz] 15

30 45 60 75 90

Elevation [deg]

Bridge 22 23 24 25 26 27 28

19:00 19:15 19:30 19:45 20:00

GPS Time [hours]

20 25 30 35 40 45 50 55

C/N0 (GS1C) [dB-Hz] 15

30 45 60 75 90

Elevation [deg]

24 25 26 27

Bridge 22 23

(20)

Impact of bridge passages on carrier phases (session 179-2) GPS G27

19:10 19:15 19:20 19:25

GPS Time [hours]

-30 -20 -10 0 10

DD [m]

G01 G03 G08 G10 G11 G14 G15 G16 G17 G18 G21 G22 G27 G28 G32

Bridge 22 23

(a)cycle slips in double differences

19:10 19:15 19:20 19:25

GPS TIme [hours]

-30 -20 -10 0 10

DD [m]

G01 G03 G08 G10 G11 G14 G15 G16 G17 G18 G21 G22 G27 G28 G32

Bridge 22 23

(b)repaired double differences

19:10 19:15 19:20 19:25

GPS Time [hours]

20 25 30 35 40 45 50 55

C/N0 (GS1C) [dB-Hz] 15

30 45 60 75 90

Elevation [deg]

C/N0 BACK C/N0 FRNT Elevation G27

Bridge 22 23

(c)GPS satellite G27

(21)

Impact of bridge passages on carrier phases (session 179-2) GPS G11

19:30 19:35 19:40 19:45

GPS Time [hours]

-30 -20 -10 0 10

DD [m]

G01 G03 G08 G10 G11 G14 G15 G16 G17 G18 G21 G22 G27 G28 G32

Bridge 2425 26

(a)cycle slips in double differences

19:30 19:35 19:40 19:45

GPS TIme [hours]

-30 -20 -10 0 10

DD [m]

G01 G03 G08 G10 G11 G14 G15 G16 G17 G18 G21 G22 G27 G28 G32

Bridge 2425 26

(b)repaired double differences

19:30 19:35 19:40 19:45

GPS Time [hours]

20 25 30 35 40 45 50 55

C/N0 (GS1C) [dB-Hz] 15

30 45 60 75 90

Elevation [deg]

Bridge 24 25 26

(22)

Institut für Erdmessung

Summary and outlook

Summary

I concept ofsynthetic GNSS receiver antennaandVirtual Receiverapproach I improved satellite visibility / navigation geometry by up to50%

I improved code-position accuracy (13-16%) / availability (94% (VR)v.s.77% (SA))

Outlook and further work

I promising approach to avoid faults of the carrier phase ambiguity resolution due to enhanced observation continuity (ambiguity bridging)

I receiver clock modellingwith chip scaled atomic clocks (CSACs) looks promising to derive reliable positions (esp. height component)

I identify bridge (e.g. building structure) by characteristics of GNSS signal distortion

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 13

(23)

Dr.-Ing. Tobias Kersten Institut für Erdmessung Schneiderberg 50 D-30167 Hannover, Germany

phone + 49 - 511 - 762 5711 web http://www.ife.uni- hannover.de mail kersten@ife.uni-hannover.de

Leibniz Universität Hannover Institut für Erdmessung

Acknowledgement

Investigations of this project are driven by student project inPositioning and Navigation. The authors like to thank Lucy Icking, Sara Brakemeier, Arman Kharmi, Fabian Ruwisch and Vahid Aghajani.

We grateful appreciate the support by the the captain familyScheubnerfor their grateful support and familiar hosting during the GNSS campaigns.

created with LATEX beamer

(24)

Institut für Erdmessung

References

Eurostat (2018).Modal split of freight transport in Europe.

Heßelbarth, A., Zeibold, R., Sandler, M., Alberding, J., Uhlemann, M., Hoppe, M., Bröschel, M., and Burmisova, L.

(2017).Towards a Reliable Bridge Collision Warning System for Inland Vessel Navigation Based on RTK Height Determination.InProceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017), pages 1866–1885.

Hilla, S. and Cline, M. (2004).Evaluating pseudorange multipath effects at stations in the National CORS Network.

GPS Solutions, 7(4):253–267.

Kersten, T., Ren, L., and Schön, S. (2018).Continuous Navigation of an Inland Vessel with a Synthetic GNSS Antenna.InDGON-Symposium Positionierung und Navigation für Intelligente Verkehrssysteme. DGON.

Kube, F., Bischof, C., Alpers, P., Wallat, C., and Schön, S. (2018).A virtual receiver concept and its application to curved aircraft-landing procedures and advanced LEO positioning.GPS Solutions, 22(2):41.

Kube, F., Schön, S., and Feuerle, T. (2011).Virtual receiver to enhance GNSS-based curved landing approaches.

Proceedings of ION GNSS 2011, Portland, Oregon, USA, pages 536–545.

Schön, S. and Alpers, P. (2018).A Virtual receiver for Pseudolites: Enhancing the positioning and Heading Determination of a Ferry.InProc ION GNSS+ Miami Florida, 24.-26.9.2018.

Tobias Kersten, Le Ren & Steffen Schön| DGON • Posnav-ITS • Berlin | November 16th, 2018 Slide 15

Referenzen

ÄHNLICHE DOKUMENTE

trauen des Volks zu den Gerichten schwächen. Der Nichter soll zwar nicht schwach sein und nur von Rücksichten der Humanität sich leiten lassen, sondern mit Ernst und Strenge die

wenn diese hochgestellten Gelehrten sich freundlich genug herablassen wollten, um ein Blatt, dessen ganze Einrichtung es aus den Reihen eigentlich gelehrter Zeitschriften nothwen-

Von weiten Fernen her strömten hunderte von Gästen, deren Zahl, bei günstigerer Jahreszeit und besseren Wegen gewiß noch bedeutend größer gewesen wäre; strömten ins-

— Hier nun hat er den Wirkungskreis gefunden, den wir als den Hauptberuf feines Lebrns ansehen können. — Seines Lehrfaches vollkommen mächtig, war er ein gewissen- hafter, gerechter

keit treten, nicht als beschämendes Vorbild entgegen gehalten werden. Die literarischen Verhälüiisse des Auelandes gestatten es dort leicht, daß die Herausgabe einer Zeitschrift

— so möchte man wohl weder sprechen können, noch spre, chen. Es gelten ja die einzelnen Töne nicht als bestimmte Gestalten, die sich dann etwa in 'einem Tonstücke von selbst schon

stehen siud^ bei solcher Exemtwt» ferner ?"" Unterschied ^ machen ist, ob solche Söhne zur Zeit der Losung bereits die einzige Stütze ihrer Eltern sind, oder diese

mäßig man ihn früher gepriesen, um so verächtlicher von den neu- esten Bearbeitern uusrer Litteraturgeschichte behandelt worden ist, den wir gleichwohl aufs wärmste der Lectüre