• Keine Ergebnisse gefunden

Norepinephrine infusion with and without alpha-adrenergic blockade by phentolamine increases salivary alpha amylase in healthy men

N/A
N/A
Protected

Academic year: 2022

Aktie "Norepinephrine infusion with and without alpha-adrenergic blockade by phentolamine increases salivary alpha amylase in healthy men"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Norepinephrine infusion with and without alpha-adrenergic blockade by phentolamine increases salivary alpha amylase in healthy men

Ulrike Kuebler

a

, Roland von Känel

b,c

, Nadja Heimgartner

a,d

, Claudia Zuccarella-Hackl

e

, Guido Stirnimann

c

, Ulrike Ehlert

a

, Petra H. Wirtz

e,∗

aDepartmentofClinicalPsychologyandPsychotherapy,UniversityofZurich,Zurich,Switzerland

bDepartmentofNeurology,Inselspital,BernUniversityHospital,andUniversityofBern,Bern,Switzerland

cDepartmentofClinicalResearch,UniversityofBern,Bern,Switzerland

dDepartmentofClinicalPsychologyandPsychotherapy,UniversityofBasel,Basel,Switzerland

eBiologicalandHealthPsychology,UniversityofBern,Bern,Switzerland

KEYWORDS Alphaamylase;

Saliva;

Norepinephrine infusion;

Alpha-adrenergic blocker;

Phentolamine;

Human;

Stress;

Cortisol

Abstract

Background: Mentalstress reliablyinducesincreasesinsalivary alphaamylase(sAA), asug- gestedsurrogatemarkerforsympatheticnervoussystem(SNS)reactivity.Whilestress-induced sAAincreasescorrelatewithnorepinephrine(NE)secretion,apotentialmediatingroleofnora- drenergicmechanismsremainsunclear.Inthisstudy,weinvestigatedforthefirsttimeinhumans whetheraNE-stress-reactivitymimickingNE-infusionwithandwithoutalpha-adrenergicblock- adebyphentolaminewouldinducechangesinsAA.

Methods:Inasingle-blindplacebo-controlledwithin-subjectsdesign,21healthymen(29—66 years)tookpartinthreedifferentexperimentaltrialsvaryingintermsofsubstanceinfusionwith a1-minfirstinfusionfollowedbya15-minsecondinfusion:saline-infusion(trial-1),NE-infusion (5␮g/min)withoutalpha-adrenergicblockade(trial-2),andwithphentolamine-inducednon- selectiveblockadeofalpha1-andalpha2-adrenergicreceptors(trial-3).Salivasampleswere collectedimmediatelybefore,during,andseveraltimesaftersubstanceinfusioninadditionto bloodpressureandheartratereadings.

Correspondingauthor.Tel.:+41316315790;fax:+41316314155.

E-mailaddress:petra.wirtz@psy.unibe.ch(P.H.Wirtz).

http://dx.doi.org/10.1016/j.psyneuen.2014.07.023

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-271728

(2)

291 Results:ExperimentaltrialssignificantlydifferedinsAAreactivitytosubstance-infusion(p=.001) with higher sAA reactivity following NE-infusion with (trial-3; p=.001) and without alpha- adrenergic-blockade (trial-2;p=.004) as compared toplacebo-infusion (trial-1); sAAinfusion reactivitydidnotdifferbetweentrial-2andtrial-3(p=.29).Effectivephentolamineapplication wasverifiedbybloodpressureandheartrateinfusionreactivity.Salivarycortisolwasnotaffected byNE,eitherwithorwithoutalpha-adrenergic-blockade.

Conclusions: WefoundthatNE-infusionstimulatessAAsecretion,regardlessofco-administered non-selectivealpha-adrenergicblockadebyphentolamine,suggestingthatthemechanismunder- lyingstress-inducedsAAincreasesmayinvolveNE.

1. Introduction

Salivaryalpha-amylase(sAA)isadigestiveenzymesecreted fromsalivaryglandsinoral cavitythathasbeen proposed as a sensitive surrogate marker for activity of the sym- pathetic nervous system (SNS) during stress (Nater and Rohleder, 2009).Accumulating evidencesuggestselevated sAAsecretionbysalivaryglandsunderbothphysiologicaland psychologicalstresswhentheSNSisactivated(Boschetal., 1996;Chattertonetal.,1997;Boschetal.,2003;Rohleder etal.,2004;Nateretal.,2006;vanStegerenetal.,2006;

Thomaetal.,2012).Indeed,severalstudies foundassoci- ationsbetweensAAandplasmanorepinephrine(NE)levels withasimilarstressreactivitykinetics(Chattertonetal., 1996;Rohlederetal.,2004;Thomaetal.,2012),although not unequivocally (Nater et al., 2006; Wetherell et al., 2006).Notably,SNSactivationincludesNEreleasefromSNS nerveterminalsandsecretionof epinephrine(EPI)andNE fromtheadrenalmedulla.Similarly,sAAlevelsalsorelated tonon-endocrineperipheralSNSmarkersunderstress(Bosch etal.,2003; Nateretal.,2006). However,while an asso- ciationbetweenstress-inducedSNSactivation,particularly stress-inducedNEsecretion,andsAAreleaseseemsplausi- ble,themechanismsunderlyingthisassociationarenotfully understood(Boschetal.,2011).

Todate,theeffectofNE-infusiononsAAreleasehasbeen investigatedinoneanimalstudy(SkovOlsenetal.,1988).

InthatpioneerstudyNEbutalsoEPIwereinfusedin8rats overaperiodof3hinsupraphysiologicaldosage.Salivawas collectedoverseveralhoursandsAAlevelswereassessed.

Comparedtocontrolratsreceivingsaline-infusiononly,NE- butalsoEPI-infusionelicitedsignificantlyhighersAAlevels (SkovOlsenetal.,1988).Withrespecttoobservedassocia- tionsbetweenstress-inducedNEandsAArelease,resultsof thatanimalstudymaybeinterpretedinthatstress-induced NE increasesmediate (at least in part) sAA release (Skov Olsen et al., 1988). While in humans, a direct effect of NE-or EPI-infusiononsAA has not yet been investigated, studiesusingthenon-selectivebeta-adrenergicagonistiso- prenaline similarlyobserved a risein sAA levelsfollowing isoprenalineinfusion(KatzandMandel,1968;Speirsetal., 1974).Notably,todatenoanimalorhumanstudyhasbeen conductedwithan infusionprocedure resemblingin dura- tiontheNE-releaseevokedbyacutelaboratorystress(Nater etal.,2006).

Regarding receptor mechanisms underlying a poten- tial NE-induced sAA increase following stress a mediating role of beta-adrenergic receptors seems evident: In a

pharmacologicalpilotstudyKatzandMandel(1968)admin- isteredisoprenalineincombination withthe non-selective beta-adrenergic antagonist H56/28 in 5 men. Propranolol treatment inhibited isoprenaline-induced sAA increases.

Thisearlyfindingwasconfirmedinaseriesofpharmacolog- icalexperimentsin humans(Speirsetal.,1974;Nederfors andDahlof,1992,1996;Nederforsetal.,1994).Similarly,in astressstudy,priorpropranololadministrationreducedpsy- chosocialstress-inducedsAAincreases(vanStegerenetal., 2006). To date, the role of alpha-adrenergic receptors in mediationof stress-induced sAA increases is stillunclear.

Inthepreviously mentionedpioneerinfusion study inrats blockadeofalpha1-andalpha2-adrenergicreceptorsbyphe- noxybenzaminereducedEPI-infusion-inducedsAAincreases (Skov Olsen etal.,1988).Notably,in thatstudy blockade of alpha-adrenergic receptors was associated with lower inhibitionofEPI-infusioninduced sAAreleaseascompared tonon-selective beta-adrenergic blockade by propranolol (Skov Olsen etal., 1988). In contrast,twohuman studies suggest stimulatory effects of alpha adrenergic blockade onsAA: in 5menhighersAA increaseshadbeen observed following isoprenaline-infusion after alpha1- and alpha2- adrenergic receptor blockade by phentolamine (Katz and Mandel,1968).Similarly,ourgrouprecentlydemonstratedin 13menthatabolus-infusionofthealpha2-adrenergicrecep- torantagonistyohimbinesignificantlyincreasedsAAaswell asNEandEPIlevels(Ehlertetal.,2006).However,itremains unclearwhetherthisresultsfromacentralnervousand/or aperipheraleffectofyohimbineandbecauseofordespite alpha2-adrenergic (auto)receptor blockade (Goldberg and Robertson,1983). Insum, giventhe reportedassociations betweenstress-induced sAA and NEincreases (Chatterton etal.,1996;Rohlederetal.,2004;Thomaetal.,2012),and giventheroleofalpha-adrenergicmechanismsinsAAsecre- tioninrats(SkovOlsenetal.,1988)andhumans(Katzand Mandel,1968;Ehlertetal.,2006)whiletakingintoaccount thatNEeffectsareprimarilymediatedbyalpha-adrenergic receptors(Lees,1981),alpha-adrenergicreceptorsmayalso beinvolvedinmediationofstress-inducedsAAincreasesin humans.

Here, we investigated for the first time in a placebo- controlledwithin-subjectsdesign whether in healthymen NE-infusion induces sAA increases as commonly observed in reaction to acute psychosocial stress (Rohleder et al., 2006;Wirtzetal.,2009;Thomaetal.,2012),andwhether these potential increases relate to alpha-adrenergic receptor mechanisms. We infused a NE-stress-reactivity mimicking dosage of NE with and without non-selective

(3)

alpha-adrenergicblockadebyphentolamineandrepeatedly measured sAA levels before and several times after infu- sionprocedures. Successfulphentolamine application was verified by investigating its known diastolic blood pres- sure (DBP)-decreasing (Richards et al., 1978), heart rate (HR)-increasing(ChatterjeeandParmley,1977),andatten- uatingeffectsonNE-inducedbloodpressure(BP)increases (Carbonelletal.,1988).BasedonSkovOlsenetal.(1988), we hypothesized NE-infusion toimmediately increase sAA levels without but not with alpha-adrenergic blockade.

Notably,wealsoinvestigatedin thesame experimentthe influence of NE-infusion with and without non-selective alpha-adrenergicblockadebyphentolamineonsalivarycor- tisollevels(fordetailsonrationale,methods, results,and discussionseeSupplementarymaterial).

2. Methods

2.1. Participants

Thestudyis partofalargerprojectassessingeffectsofa NE-stress-reactivitymimickingNE-infusionwithandwithout alpha-adrenergicblockade.The studysample forthispart of the study comprised 21 medication-free, non-smoking healthyCaucasianmenbetween29and66yearsofagewho completed alltrials with complete salivary measures and age-balanced trial-sequence. Participants were recruited with the aid of the Swiss Red Cross of the Canton of Bernand the Clinical Investigation Unit of the University Hospital of Bern/Inselspital. Specific exclusion criteria as verifiedin a clinical interviewwere: psychiatricdiseases, anyregularor acutemedication intake,regularstrenuous exercise,alcohol,smokingandillicitdrugabuse,anyheart disease,varicosis andthromboticdiseases,elevated blood sugaranddiabetes,elevatedcholesterol,liverandrenaldis- eases,chronicobstructivepulmonarydisease,allergiesand atopicdiathesis,rheumaticdiseases, HIV,cancer,andcur- rentinfectious diseases.Notably,none ofourparticipants reportedanyproblemswithoralhealth.Allparticipantspro- videdwritteninformedconsentbeforeanystudyprocedure andwerecompensatedwith120CHFperday(total3days 360CHF)fortheirparticipation.

TheEthicsCommitteeoftheCantonofBern,Switzerland, andtheSwissAgencyforTherapeuticProducts(Swissmedic) formallyapprovedtheresearchprotocol.

2.2. Designandprocedure

ThestudywasperformedattheClinicalInvestigationUnitof theUniversityHospitalofBern/Inselspital.Inasingle-blind placebo-controlled within subject design, all participants tookpartin threedifferentexperimental trialsvarying in terms of substance administration combination of a first infusionfollowedbyasecondinfusion:trial-1(placebo-plus- placebo,i.e.,bothinfusionsarephysiologicalsaline),trial-2 (placebo-plus-NE,i.e.thefirstinfusionisplacebofollowed byNEasthesecondinfusion),andtrial-3(blocker-plus-NE, i.e.,thefirstinfusionisthenon-selectivealpha-adrenergic blockerphentolamine followed by NEas thesecond infu- sion). Trial-1 was intended to control for the infusion procedureper se.Trial-2 wasthemain experimental trial

intended to test for effects of NE-infusion. Trial-3 was intended totestwhetherpotentialNE-infusioneffectsare modulated by alpha1- andalpha2-adrenergic receptors or notandthustotestforunderlyingreceptormechanismsof NE-infusion.The trial-sequencewasfullycounterbalanced byusingaLatinSquaredesignapplyingthesequences(1,2,3;

i.e., infusion day 1 was trial-1, infusion day 2 wastrial- 2, infusion day 3 was trial-3), (2,3,1; i.e.,infusion day 1 wastrial-2, infusion day 2wastrial-3, infusion day 3was trial-1), and (3,1,2; i.e., infusion day 1 wastrial-3, infu- sionday2wastrial-1,andinfusionday3wastrial-2).Trials tookplaceonseparatedayswithinter-trialintervalsofat least one week (to allow for a sufficient wash-outperiod of the alpha-adrenergic blocker phentolamine) up totwo weeks.Participants wereblindtotheparticulartrial, and ethicalconsiderations(e.g.potentialsideeffectsof study substances) precluded adouble-blind design. Allinfusions wereperformedbyaboard-certifiedinternist.

Participants abstained from physical exercise,alcohol, andcaffeinatedbeveragesfromtheeveningbeforethetest day,andmaintainedaregularsleep-wakerhythmthethree nightsbeforestartofthestudysession,withsleepstarting between2230hand2400handendingbetween0700hand 0900h.Participantsreportedtothelaboratoryat1145hto receiveastandardizedmeal.

Theexperimentcommencedat1300h.Participantswere tested in supine position while lying on a bed. Each trial started with a10 min introduction phase comprising an explanation of the testing procedure with subsequent catheterinsertionintothe brachialveinof thedominant- arm for substance-infusion. For blood sampling a second catheter was inserted into the brachial vein of the non- dominant-arm. The introduction phasewas followed by a 45minacclimationphase.Then,theinfusionphasestarted.

Atthebeginningoftheinfusionphase,placebo(orblocker) wasinfusedfor 1min(first infusion),followed bya 5min waiting interval. Next, NE (or placebo) was infused over a 15 min period(second infusion). Afterwards, a 150min post-infusionphasebegan.

Stimulated saliva samples (by chewing on cotton roles for 1min) for sAA determination were collected immedi- atelybeforebeginningoftheinfusionphase(baseline),after thefirstinfusion andbeforebeginningof thesecondinfu- sion(betweeninfusions),aswellas1,10,and20minafter theendofthesecondinfusion.Thissamplingprotocolwas chosenbasedonpreviousstressstudiesshowingthatpeak levelsofsAA occurimmediatelyafterstressandreturnto baseline within the following 10min (Nater et al., 2005;

Het etal., 2009; Thoma etal., 2012). Blood samplesfor NE andEPI assessment were takenat baseline, and1min after the second infusion. In one participant NE and EPI levels of trial-1 were missing due to technical problems.

RestingBPwasmeasured60minand5minbeforebeginning ofinfusion procedures.BPandHRassessmentforverifica- tionof effective phentolamineapplicationwasperformed bymeansofOmronsphygmomanometry(Omron773,Omron HeathcareEuropeB.V.Hoofdorp,Netherlands)immediately beforebeginningoftheinfusionphase(baseline),afterthe first infusion and beforebeginning of the second infusion (betweeninfusions),aswellastwiceduring(i.e.,6minand 12minafterbeginningofinfusion2)and10,and20minafter thesecond infusion.In oneparticipant,HRfor trial-3was

(4)

293 missingduetotechnicalproblems.Self-reportedstateanx-

ietywasmeasuredatbaselineand7minafterbeginningof thesecondinfusiontoassessapotentialanxietyreactionto substanceinfusion.Stateanxietylevelsweremissinginone participantfortrial-2,andinanotherparticipantfortrial-3.

2.3. Substanceinjection

NE(norepinephrine,Sintetica,SA, Mendrisio,Switzerland) wasdiluted in physiological saline and adjusted toinfuse 5␮g NE at a constant speed of 1ml/min over a 15 min period (rendering a total of 75␮g NE) with an infusion pump. The NE-infusiondosage waschosen becauseof the following:First,priorfindingsshowedthatNEplasmalevels in excess of 1800pg/ml arerequired toproduce measur- ablehemodynamicand/ormetaboliceffectsasexpectedto occurin reactiontoacutestress(Silverberg etal., 1978).

Second, in a pilot study (data not shown) we tested this dosage (5␮g/min, in 5 healthy young men) as compared to a lower dosage (2.5␮g/min, in 4 healthy young men) andfoundthehigherNEdosagetoproducebloodpressure increasesthatbetter mimicstress-inducedblood pressure increases (Wirtz et al., 2006). The non-selective alpha- adrenergicblockerphentolamine(Regitin®,NovartisPharma AG,Basel, Switzerland)wasdilutedinphysiological saline andadjustedtoinfuse2.5mgin5mlwithin1minaccording to a pharmacologist’s instruction based on the manufac- turer’srecommendation.Inthe firstplacebo-infusion, i.e.

theplacebofortheblocker,5mlofphysiologicalsalinewere injectedwithin1min. Inthesecond placebo-infusion, i.e.

theplacebo for NE,physiological salinewasinjected at a constantspeed of 1ml/minover a 15 min periodwithan infusion pump. The 15 min infusion interval was chosen basedonthedurationofstressinduction bymeansof the well-established andpotentTrierSocial Stress Test(TSST) (Kirschbaumetal.,1993)tomakeourNE-infusioninterms ofdurationresemblingtheNEreleaseinducedbyacutepsy- chosocialstresswiththeTSST.

2.4. Biochemicalmeasures

Saliva samples for sAA assessment were collected in salivettes (Sarstedt, Sevelen, Switzerland) and stored at

−20C until analysisin the Biochemical Laboratory,Insti- tute ofPsychology,University of Zurich.Centrifugationof thawedsalivasampleswasat3000rpmfor10min,yielding low-viscosity saliva. sAA was measured by using a com- merciallyavailableenzymaticcolorimetricassayaccording toIFCCwithalower detectionlimitof 3U/l(Roche diag- nosticsGmbH,Mannheim,Germany).Inter-andintra-assay coefficientsofvariance(CVs)were<10%.

ForNEandEPI assessment,venous bloodwasdrawnin EDTA-coatedmonovettes(Sarstedt,Numbrecht,Germany), andimmediatelycentrifugedfor10minat2000×gand4C.

Obtainedplasmawasstoredat−80Cuntilanalysis.Plasma NE and EPI levels were determined in the Laboratory for Stress Monitoring, Göttingen,Germany by means of high- pressureliquidchromatography(HPLC)andelectrochemical detectionafterliquid-liquidextraction(Smedesetal.,1982;

Ehrenreichetal.,1997)withadetectionlimitof12pg/ml andinter-andintra-assayCVs<5%.PlasmaEPIlevelsbelow

detection limit were replaced by detection limit divided by2.

2.5. Stateanxiety

State anxiety was measured by self-report using the 20- itemstateversionoftheState-TraitAnxietyInventory(STAI) (Lauxetal.,1981).Thestate versionassessesthelevelof anxiousfeelingsatthemoment.Itemshavea4-pointrating formatreflectinglevel of feelings(ranging from1[not at all]to4[verymuchso]). Higherscoresmeanhigherlevels ofstateanxiety.

2.6. Statisticalanalyses

DatawereanalyzedusingSPSS(version20.0)statisticalsoft- warepackage(SPSSInc.,ChicagoIL,USA)andpresentedas mean±SEM.Alltestsweretwo-tailedwiththesignificance levelsetatp≤.05andthelevelofborderlinesignificance set at p≤.10. Normal distribution of data was verified using the Kolmogorov—Smirnov test prior to statistical analyses.

A-priori sample size calculation using G*Power 3.1 revealedthattheoptimalnumberofobservationswasN=60 todetecttrial differences insAA levelsof medium effect size(f=.25)ingenerallinearmodelswithrepeatedmeas- ureswith5repetitions(sAA)thatintercorrelate>.07witha powerof.90.

We calculated body mass index(BMI) as theweight in kilogramsdividedbyheightinmeterssquared.Meanarte- rialbloodpressure(MAP)wascalculatedfromrestingblood pressurereadings ofinfusion days2 and3by theformula (2/3meanDBP+1/3meansystolicBP,SBP).

Infusion-induced NE and EPI changes were calculated as the difference in plasma levels between 1min post- infusion (second infusion) and baseline. Infusion-induced SBP,DBP, and HR changeswere calculated by subtracting baselinelevelsfromlevelsobtained1minafterinfusion2.

Infusion-inducedchangesinstate anxiety werecalculated bysubtractingbaselinescoresfromscoresobtained 7min afterbeginningofthesecondinfusion.

Totestfordifferencesbetweentrials(i.e.trial-1vs.2, trial-1vs.3,andtrial-2vs.3)inbaselinesAAmeasures,NE, EPI,andstateanxietybaselinelevels,andinfusion-induced NE,EPI,andstateanxietychanges,wecalculateddepend- entt-tests.

Toverifyeffectivephentolamineapplication byinvesti- gatingitsknowneffectsonBPandHR,wecalculatedgeneral linearmodelswithtworepeatedfactors,trial(2NE-trials, i.e.trial-2 andtrial-3) andtime(6DBP/SBP/HRmeasure- ments).Asposthoctests,wecalculateddependentt-tests totest for differences between trial-2 and trial-3 in SBP change,DBPchange,andHRchange,aswellasbetweenDBP andHRlevelsbeforeandafterinfusion1(phentolamineor placebo).

To test the effects of the different infusion trials on sAA over time,we first calculatedfor each trial absolute sAA changes from baseline by subtracting the respec- tivebaseline level fromall repeatedsAA levels.We then calculated general linear models with two repeated fac- tors,trial (3 trials)andtime (5sAA change measurement

(5)
(6)
(7)

significantincreasesin sAAover time(trial-2:main effect of time: F(3.0/51.4)=4.76, p=.005, f=.53; trial-3: main effect of time: F(3.6/61.7)=7.46, p<.001, f=.66) while saline-infusionrelatedtosignificantsAAdecreases(trial-1:

F(3.8/64.7)=6.44,p<.001,f=.62).Resultsremainedsignif- icantwithoutcontrollingforage,BMI,andMAPexceptthat sAA decreases after saline-infusion became of borderline significance(trial-1:p=.095).

3.5. sAAreactivitytoinfusion1(salineor phentolamine)inthetrialconditions

While sAA levels decreased significantly following saline- infusion in trial-1 (F(1.0/17.0)=9.22, p=.007, f=.74), no significantsAAchangeswereobservedfollowingbothsaline- infusion in trial-2 and phentolamine-infusion in trial-3 (p’s>.24).

4. Discussion

This is the first placebo-controlled study that systemati- callyinvestigateswithinasufficientsamplesizeofhealthy men underlying mechanisms of sAA increases as usually observedin reaction toacutepsychosocial stress by infu- sion of a NE-stress-reactivity mimicking NE dosage with and without alpha-adrenergic blockade by phentolamine.

Notably,ourNE-infusiondosage inducescomparableblood pressureincreasesaspsychosocial stress does andmimics the durationof NErelease during acute laboratory stress induction(bymeansoftheTSST).Ashypothesized,wefound pronouncedincreasesinsAAlevelsimmediatelyaftercom- pletionofNE-infusionascomparedtoplacebo.Incontrastto ourhypothesis,non-selectivealpha1-andalpha2-adrenergic receptorblockadebyphentolaminedidnotalterNE-induced sAAincreasesasevidencedbythelackofaninhibitoryeffect of phentolamineonNE-induced sAA changes. We alsodid notobservesignificant changesinsAAlevelsfromimmedi- atelybeforetoimmediatelyafterphentolamine-infusion.In relationtothehighbutnormalsAAbaselinevariation(e.g.

Nateret al., 2007) our observed NE-infusion-induced sAA increasesmayappearmodestbutwereoflargeeffectsize andindependentofBMI,MAP,andage.

Our finding of increased sAA levels in response to a NE-stress-reactivitymimickingNEdosageisconsistentwith results from Skov Olsen et al., (1988) who also observed increasedsAA levelsafterinfusion of asupraphysiological NEdosage in rats. Furthermore, absolute NE-induced sAA increases(sAA change fromimmediately before toimme- diatelyafter infusion2)observed inthisstudy correspond wellwiththosesAAincreases(sAAchangefromimmediately beforetoimmediatelystress)observedinresponsetoacute psychosocialstress undercomparablesalivasamplingtime andsalivacollectingconditions(Nateretal.,2006;Rohleder etal.,2006;Strahler etal.,2010). Ourdatathus suggest thatthemechanismunderlyingstress-inducedsAAincreases islikelytoinvolveNE.Giventhatstressinducesimmediate NEincreases(e.g.Nateretal.,2006)weinterpretourdata in that stress-induced NE-increases are capable of induc- ingsAA increases.Such reasoning is in line with previous humanstressstudiesreportingassociationsbetweenstress- induced plasma NE and sAA increases (Chattertonet al.,

1996;Rohlederetal.,2004;Thomaetal.,2012).However, itshouldbekeptinmindthatourperipheralinfusionpro- cedure clearly differs from psychosocial stress induction.

Consequently, wecan onlyspeculatewhether ourfindings apply to NE-stress-reactivity in reaction to the complex physiologicalprocessofpsychosocialstressinduction.

Regarding mechanisms underlying NE-infusion induced sAAincreases,ourstudyisthefirsttoinvestigatewhether alpha-adrenergic receptors may mediate NE-induced sAA increases.We found noeffectofthe non-selectivealpha- adrenergic antagonist phentolamine on NE-induced sAA increases.Furthermore,phentolamine-inducedblockadeof alpha-adrenergic receptors prior to NE-infusion did not changesAAsecretion.TheHR-increasingeffect,aswellas the antihypertensiveeffects ofphentolamine andthus its successfulapplicationsuggest,atfirstglance,thatalpha1- andalpha2-adrenergicreceptorsarenotinvolvedinmedi- ating sAA secretion following NE-infusion or endogenous NEincreases, respectively.This, however, does notcorre- spondwiththethreehithertopublishedanimal(SkovOlsen et al., 1988) and human (Katz and Mandel, 1968; Ehlert etal.,2006)studiessuggestinganalpha-adrenergicrecep- tor involvement in sAA secretion. Several methodological reasonsmaycontributetoournon-significantphentolamine findings and thus to the apparent inconsistency with the literature: While we infused phentolamine (non-selective alpha-adrenergic antagonist) combined with NE (alpha- and beta-adrenergic agonist), Katz and Mandel infused phentolaminecombinedwithisoprenaline(beta-adrenergic agonist),SkovOlsenetal.infusedphenoxybenzamine(non- selective alpha-adrenergic antagonist) combined withEPI (alpha- and beta-adrenergic agonist), and Ehlert et al.

infusedyohimbine(alpha2-selectiveadrenergicantagonist) withoutadditionalinfusion.Giventhatthesepharmacolog- ical agents not only differ in their target receptor type, but also vary in their binding affinity to their respective targetreceptor,andgiventhatdifferentconcentrationsof theseagents wereused,inconsistent findings arenotsur- prising. Moreover, it should be taken into account, that results fromanimal studies arenot necessarilyapplicable tohumans(KatzandMandel,1968).Besides methodologi- cal differences, interpretational issues may also account forournon-significantphentolaminefindingsandtheincon- sistency of our findings with previous data. On the one hand,potentialopposingperipheraland/orcentraleffects of phentolamine-induced blockade of alpha-1 vs. alpha- 2 adrenergic receptors on NE-induced sAA release cannot be excluded (e.g. Ehlert etal., 2006). Notably, potential directcentral effectsarenot verylikelygiventhatphen- tolamine is considered unable to cross the blood brain barrier(Nordlingetal.,1981).On theother hand,despite promisinganimaldata(Bowser-Rileyetal.,1978;Sayardoust and Ekstrom, 2006), it has not yet been investigated in humans whether phentolamine easily diffuses from intra- venousfluidintotheinterstitialglandulartissuetoactivate theparenchymasecretorycells.Giventhisuncertainty,our non-significanteffectofalpha-adrenergicblockadeonNE- infusion inducedsAA releaseneedstobeinterpretedwith caution.Notwithstandingthis,itseemslikelytoassume,in linewithpreviousresearch(KatzandMandel,1968;Speirs etal.,1974;SkovOlsenetal.,1988;NederforsandDahlof, 1992, 1996; Nederfors et al., 1994; van Stegeren et al.,

(8)

297 2006),thatbeta-adrenergicreceptorsmediateNE-infusion

inducedsAAincreases.

The major strengths of our study were the choice for a NE-infusion design that mimics NE-stress-reactivity effects in terms of duration and dosage, an appropri- ate sample size, and the chosen saliva sampling-time pointprotocol forsAAdetermination,whichallowedusto alsoinvestigatetheeffectsofphentolamine(non-selective alpha-adrenergicantagonist)onsAA secretionwithout NE- induced sAA stimulation. A further strength of our study was the state-of-the-art use of salivette saliva collection deviceswiththestandardizedinstructiontochewthesyn- theticswabfor 1minasthissamplingmethodnearlyrules outpotentialconfoundingeffectsbystandardizingsalivary flow rate (Rohleder et al., 2006). Furthermore, potential confoundingfactorswerecontrolledinourstatisticalanal- ysesbyapriorientering age,BMI,andMAPascovariates.

Moreover,we assessed self-reported state anxiety aswell asthestress-sensitiveSNSmeasuresEPIandHRinaddition to NE.The lack of an increase in state anxiety,EPI, and HRfollowing NE-infusion allowed usto conclude that the sAAincreasesobservedinourstudyresultfromNE-infusion ratherthan frompotential NE-infusion-induced arousal or stressresponses.Afinalstrengthreferstothefactthatwe canexcludeEPIasaconfoundingfactor inNE-inducedsAA changes as demonstrated by the lack of increases in EPI plasmalevelsimmediatelyafterNE-infusion.

Our study also has limitations. First, our findings are restricted to healthy men.Further studies are needed to replicateourfindingsinwomenorother populations.Sec- ond, it is unclear why higher baseline sAA levels were foundintrial-3comparedtotrial-2andtrial-1.However,to accountforbaselinedifferencesbetweentrials,westatisti- callyanalyzedsAAchangesinsteadofsAArawdata.Third, weinfusedthesameNE-dosageinallparticipants,whichcan increaseinter-individualvariabilityofdependent variables andthustheriskofnon-significantfindings.However,since wecontrolledforBMIasakindofposthocmethodtocorrect for weightdifferencesandsincewe usedawithin-subject design,wefeelthattheriskofnon-significantfindingsdue toourinfusionprocedureisacceptable.Fourth,theclinical relevanceofourobservedsAAincreasesremainstobeinves- tigatedinfuturestudies.Fifth,ournon-significanteffectsof alpha-adrenergicblockadeonsAAreleaseneedtobeinter- pretedwithcaution.Futurestudiesareneededtoclarifythe roleofalpha1-andalpha2-adrenergicreceptormechanisms inNE-infusion-inducedand/orstress-inducedsAAincreases inmoredetail.

Insum,ourfindingsindicatethatsAAlevelsaredirectly stimulatedby aNE-stress-reactivitymimicking NE-infusion withandwithout non-selectivealpha-adrenergic blockade byphentolaminesuggestingthatthemechanismunderlying stress-inducedsAAincreasesmayinvolveNE.

Role of funding source

This study was financially supported by the Swiss National Science Foundation Grants 320030 122406 and PP00P1128565/1 (both toPHW).Thefunding sourceshad noimpactonstudydesign, datacollection, dataanalysis,

manuscriptwriting,orthedecisiontosubmitthemanuscript forpublication.

Conflicts of interest statement

None.

Acknowledgements

WethankRenataBünter,RegulaDänzer,RegulaJaeggi,and UrsinaSagerfromtheClinicalInvestigationUnitoftheBern UniversityHospital,Inselspital,fortheirhelpintheconduc- tionofthestudy.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,intheonlineversion,athttp://dx.doi.org/10.1016/

j.psyneuen.2014.07.023.

References

Bosch, J.A., Brand, H.S., Ligtenberg, T.J., Bermond, B., Hoogstraten, J., Nieuw Amerongen,A.V., 1996. Psychological stress asadeterminantofproteinlevelsand salivary-induced aggregationofStreptococcusgordonii inhumanwholesaliva.

Psychosom.Med.58,374—382.

Bosch,J.A.,deGeus,E.J.,Veerman,E.C.,Hoogstraten,J.,Nieuw Amerongen,A.V.,2003.Innatesecretoryimmunityinresponse tolaboratorystressorsthatevokedistinct patternsofcardiac autonomicactivity.Psychosom.Med.65,245—258.

Bosch,J.A., Veerman, E.C.,de Geus, E.J., Proctor, G.B., 2011.

Alpha-amylase as a reliable and convenient measure of sympatheticactivity:don’tstartsalivatingjustyet!Psychoneu- roendocrinology36,449—453.

Bowser-Riley,F.,House,C.R.,Smith,R.K.,1978.Competitiveantag- onism byphentolamine ofresponses to biogenic amines and thetransmitterat aneuroglandularjunction.J.Physiol.279, 473—489.

Carbonell,L.F., Carretero,O.A., Madeddu,P.,Scicli,A.G., 1988.

Effectsofakininantagonistonmeanbloodpressure.Hyperten- sion11,I84—I88.

Chatterjee, K., Parmley, W.W., 1977. Vasodilator treatment for acuteandchronicheartfailure.Br.Hear.J.39,706—720.

Chatterton Jr., R.T., Vogelsong, K.M., Lu, Y.C., Ellman, A.B., Hudgens, G.A.,1996. Salivaryalpha-amylaseasa measureof endogenousadrenergicactivity.Clin.Physiol.16,433—448.

ChattertonJr.,R.T.,Vogelsong,K.M.,Lu,Y.C.,Hudgens,G.A.,1997.

Hormonalresponsestopsychologicalstressinmenpreparingfor skydiving.J.Clin.Endocrinol.Metab.82,2503—2509.

Ehlert,U.,Erni,K.,Hebisch,G.,Nater, U.,2006.Salivaryalpha- amylaselevelsafteryohimbinechallengeinhealthymen.J.Clin.

Endocrinol.Metab.91,5130—5133.

Ehrenreich, H., Schuck, J., Stender, N., Pilz, J., Gefeller, O., Schilling,L.,Poser,W.,Kaw,S.,1997.Endocrineandhemody- namiceffectsofstressversussystemicCRFinalcoholicsduring earlyandmediumtermabstinence.Alcohol.Clin.Exp.Res.21, 1285—1293.

Goldberg,M.R.,Robertson,D.,1983.Yohimbine:apharmacological probeforstudyofthealpha2-adrenoreceptor.Pharmacol.Rev.

35,143—180.

Het, S., Rohleder, N., Schoofs, D., Kirschbaum, C., Wolf, O.T., 2009.Neuroendocrineandpsychometricevaluationofaplacebo

(9)

versionofthe‘TrierSocialStressTest’.Psychoneuroendocrinol- ogy34,1075—1086.

Katz,R.L., Mandel,I.D., 1968.Action and interactionofisopro- terenolandalphaandbetaadrenergicblockersonparotidand submaxillarysecretionsinman.Exp.Biol.Med.128,1140—1145.

Kirschbaum,C.,Pirke,K.M.,Hellhammer,D.H., 1993. The‘Trier Social Stress Test’—–a tool for investigating psychobiological stressresponsesinalaboratorysetting.Neuropsychobiology28, 76—81.

Laux, L., Glanzmann, P., Schaffner, C.D., 1981. Das State-Trait Angstinventar(TestmappemitHandanweisung,FragebogenSTAI- GFormX1undFragebogenSTAI-GFormX2).Beltz,Weinheim.

Lees,G.M.,1981.Ahitch-hiker’sguidetothegalaxyofadrenocep- tors.Br.Med.J.283,173—178.

Nater,U.M.,LaMarca,R.,Florin,L.,Moses,A.,Langhans,W.,Koller, M.M.,Ehlert,U.,2006.Stress-inducedchangesinhumansalivary alpha-amylase activity—–associations with adrenergic activity.

Psychoneuroendocrinology31,49—58.

Nater,U.M.,Rohleder,N.,2009.Salivaryalpha-amylaseasanon- invasivebiomarkerforthesympatheticnervoussystem:current stateofresearch.Psychoneuroendocrinology34,486—496.

Nater,U.M.,Rohleder,N.,Gaab,J.,Berger,S.,Jud,A.,Kirschbaum, C.,Ehlert,U.,2005. Humansalivaryalpha-amylasereactivity in a psychosocial stress paradigm. Int. J. Psychophysiol. 55, 333—342.

Nater, U.M., Rohleder, N., Schlotz, W., Ehlert, U., Kirschbaum, C.,2007.Determinantsofthediurnalcourseofsalivaryalpha- amylase.Psychoneuroendocrinology32,392—401.

Nederfors,T.,Dahlof,C.,1992.Effectsofthebeta-adrenoceptor antagonistsatenololandpropranololonhumanwholesalivaflow rateandcomposition.Arch.OralBiol.37,579—584.

Nederfors,T.,Dahlof,C.,1996. Effectsonsalivaryflow rateand composition of withdrawal of and re-exposure to the beta 1-selectiveantagonistmetoprololinahypertensivepatientpop- ulation.Eur.J.OralSci.104,262—268.

Nederfors,T.,Ericsson,T.,Twetman,S.,Dahlof,C.,1994.Effectsof thebeta-adrenoceptorantagonistsatenololandpropranololon humanparotidandsubmandibular-sublingualsalivarysecretion.

J.Dent.Res.73,5—10.

Nordling,J.,Meyhoff,H.H.,Hald,T.,1981.Sympatholyticeffect onstriatedurethralsphincter.Aperipheralorcentralnervous systemeffect?Scand.J.Urol.Nephrol.15,173—180.

Richards,D.A.,Woodings, E.P.,Prichard,B.N.,1978. Circulatory andalpha-adrenoceptorblockingeffectsofphentolamine.Br.J.

Clin.Pharmacol.5,507—513.

Rohleder,N.,Nater,U.M.,Wolf,J.M.,Ehlert,U.,Kirschbaum,C., 2004.Psychosocialstress-inducedactivationofsalivaryalpha- amylase:an indicatorofsympathetic activity?Ann. NY Acad.

Sci.1032,258—263.

Rohleder,N., Wolf,J.M.,Maldonado,E.F.,Kirschbaum,C.,2006.

The psychosocial stress-induced increase in salivary alpha- amylaseisindependentofsalivaflowrate.Psychophysiology43, 645—652.

Sayardoust,S.,Ekstrom,J.,2006. Parasympatheticnerve-evoked proteinsynthesis,mitoticactivityandsalivarysecretioninthe ratparotidglandandthedependenceonNO-generation.Arch.

OralBiol.51,189—197.

Silverberg, A.B., Shah, S.D., Haymond, M.W., Cryer,P.E., 1978.

Norepinephrine:hormoneandneurotransmitterinman.Am.J.

Physiol.234,E252—E256.

SkovOlsen,P.,Kirkegaard,P.,Rasmussen,T.,Magid,E.,Poulsen, S.S.,Nexo,E.,1988.Adrenergiceffectsonsecretionofamylase fromtheratsalivaryglands.Digestion41,34—38.

Smedes,F.,Kraak,J.C.,Poppe,H.,1982.Simpleandfastsolvent extraction system for selective and quantitative isolation of adrenaline,noradrenalineanddopaminefromplasmaandurine.

J.Chromatogr.231,25—39.

Speirs, R.L., Herring,J., Cooper, W.D.,Hardy, C.C., Hind, C.R., 1974.Theinfluenceofsympatheticactivityandisoprenalineon thesecretionofamylasefromthehumanparotidgland.Arch.

OralBiol.19,747—752.

Strahler,J.,Mueller,A.,Rosenloecher,F.,Kirschbaum,C.,Rohleder, N.,2010.Salivaryalpha-amylasestressreactivityacrossdiffer- entagegroups.Psychophysiology47,587—595.

Thoma, M.V., Kirschbaum, C., Wolf, J.M., Rohleder, N., 2012.

Acute stress responses in salivary alpha-amylase predict increases of plasma norepinephrine. Biol. Psychol. 91, 342—348.

van Stegeren,A., Rohleder,N., Everaerd,W., Wolf, O.T., 2006.

Salivaryalphaamylaseasmarkerforadrenergicactivityduring stress:effectof betablockade.Psychoneuroendocrinology31, 137—141.

Wetherell, M.A., Crown, A.L., Lightman, S.L., Miles, J.N., Kaye, J., Vedhara, K., 2006. The four-dimensional stress test:psychological,sympathetic—adrenal—medullary,parasym- pathetic and hypothalamic—pituitary—adrenal responses fol- lowing inhalation of 35% CO2. Psychoneuroendocrinology 31, 736—747.

Wirtz,P.H.,Redwine,L.S.,Ehlert,U.,vonKanel,R.,2009.Inde- pendentassociationbetweenlowerlevelofsocialsupportand highercoagulationactivitybeforeandafteracutepsychosocial stress.Psychosom.Med.71,30—37.

Wirtz,P.H.,vonKanel,R.,Mohiyeddini,C.,Emini,L.,Ruedisueli, K.,Groessbauer,S.,Ehlert,U.,2006.Low social supportand pooremotionalregulationareassociatedwithincreasedstress hormonereactivitytomentalstressinsystemichypertension.J.

Clin.Endocrinol.Metab.91,3857—3865.

Referenzen

ÄHNLICHE DOKUMENTE

selt vaetavalt summadeks ü ja 7, siis nende ridade Cauchy korrutis (10) koondub absoluutselt sammaks 1 = UV. Mõlema antud rea kerral on D* = 0 &lt;1 ja D 'Alembert'i tunnuse

Development of soil carbon (C) stocks in the mineral soil up to 90 cm depth and the forest floor for the four model regions (only reference scenario) simulated with Roth-C (left)

In combination with endotoxemia, a preceding ghrelin treatment caused a significantly higher 1 h level of serum ghrelin in obese compared to normal weight rats, suggesting that

According to the 2014 National Survey on Drug Use and Health (NSDUH), about 9.5 million adults aged 18 or older misused opioids in the past year (data not shown).. Even though

However, in order to garner the benefits of an SAA with the European Union, Kosovo must focus first on achieving the short-term benchmarks that lead to the start of SAA

In conclusion, our study shows that the dark microbial CO 2 fixation rate in temperate forest soils increases in periods of high CO 2 concentrations, that dark microbial CO

In summary, a brief bout of sprint exercise caused a modest increase in T concentration, but this change did not covary, or predict, state desire for short-term and long-term

2 Percentages of all cellular subsets analyzed.. The number