• Keine Ergebnisse gefunden

x x 5. Schließende Statistik: TypischeFragestellung anhand von Beispielen StatistikStatistik

N/A
N/A
Protected

Academic year: 2021

Aktie "x x 5. Schließende Statistik: TypischeFragestellung anhand von Beispielen StatistikStatistik"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Statistik Statistik

Kapitel 5:

Schließende Statistik

5. Schließende Statistik: Typische Fragestellung anhand von Beispielen

Beispiel 1

» Aus 50 Messwerten ergeben sich für die Reißfestigkeit einer Garnsorte der arithmetische Mittelwert = 21,45 N und die emp. Standardabweichung s = 0,47 N.

» Jede andere Stichprobe vom gleichen Umfang würde sicher etwas andere Werte liefern.

» und s sind also nur Näherungen für Erwartungswert µ und x

x

» und s sind also nur Näherungen für Erwartungswert µ und Standardabweichung σ der entsprechenden Grundgesamtheit.

» Wie gut sind diese Näherungen? Bzw. wie erhält man Aussagen über die Güte dieser Näherungen?

» Beispiel 1 führt auf das Problem der Parameterschätzung (Punktschätzung) und der Konfidenzintervalle

(Vertrauensintervalle)

x

(2)

5. Schließende Statistik: Typische Fragestellung anhand von Beispielen

Beispiel 2

»

Zur Überprüfung der Symmetrie eines Würfels wird der Würfel 6.000 Mal geworfen.

»

Das Ergebnis dieser Würfeltests wird in einer Häufigkeitstabelle zusammengefasst:

x

i

1 2 3 4 5 6

n(x

i

) 1076 1008 992 1059 923 942

Statistik, Prof. Dr. Karin Melzer 3

Hochschule Esslingen

»

Man sieht: hohe Augenzahlen 5 und 6 treten seltener auf als niedrige Augenzahlen 1 und 2.

»

Mittelwert: = 3,4285.

»

Wie ist diese Asymmetrie und die Abweichung des Mittelwerts vom Erwartungswert µ = 3,5 zu erklären?

»

Handelt es sich um eine zufällige Abweichung bei einem idealen Würfel oder besteht auf Grund der beobachteten Häufigkeiten Anlass zu einem Zweifel an der Symmetrie des Würfels?

»

Beispiel 2 ist typisch für das Testen von Hypothesen

x

5. Schließende Statistik: Typische Fragestellung

» Diese beiden Beispiele verdeutlichen das Grundproblem der beurteilenden Statistik

Welche Schlüsse kann man von einer Stichprobe auf die zugehörige Grundgesamtheit ziehen, und wie zuverlässig sind derartige Schlüsse?

Statistische Schätzverfahren:

» Aufgabenstellung: Schätzung unbekannter Parameter oder der unbekannten Verteilung einer Grundgesamtheit aus den Werten einer Stichprobe.

» Wir betrachten nur Parameterschätzungen. Dabei unterscheidet man zwischen

» Wir betrachten nur Parameterschätzungen. Dabei unterscheidet man zwischen

» Punktschätzungen: Hierbei wird für den zu schätzenden Parameter ein

einzelner Wert bestimmt und

» Intervallschätzungen: Dabei wird ein Intervall bestimmt, das den wahren, unbekannten Wert des Parameters mit einer vorgegebenen Wahrscheinlichkeit überdeckt (Konfidenzintervall/Vertrauensbereich) Hypothesentests:

» Man stellt eine Vermutung (Hypothese) über gewisse Größen der

Grundgesamtheit auf. Diese Hypothese wird anhand der Ergebnisse aus einer Stichprobe überprüft. Dabei wird die Hypothese verworfen oder abgelehnt, wenn das Stichprobenergebnis in signifikantem Gegensatz zu ihr steht (sich nicht mit der Hypothese verträgt).

(3)

5. Schließende Statistik

»

In der schließenden oder beurteilenden Statistik wird aus einer endlichen oder unendlichen Grundgesamtheit eine Stichprobe vom Umfang n entnommen. An dieser Stichprobe werden bestimmte Merkmale beobachtet.

»

Die Informationen, die man über die Merkmale in der

Grundgesamtheit haben möchte, werden über die Ausprägungen in der Stichprobe geschätzt.

Grundgesamtheit

(z.B. Gesamtbevölkerung Deutschlands)

Statistik, Prof. Dr. Karin Melzer 5

Hochschule Esslingen

»

Dabei gibt es verschiedene Vorgehensweisen:

(z.B. Gesamtbevölkerung Deutschlands)

Stichprobe

(z.B. 1000 zufällig ausgewählte Personen)

Ziehen einer Stichprobe Rückschluss auf Grundgesamtheit

5.1 Punktschätzungen

»

Berechnung eines Zahlenwertes aus der Stichprobe zur Schätzung des Erwartungswertes µ , der Standardabweichung σ oder einer Wahrscheinlichkeit p.

Unbekannter Parameter Benutzter Punktschätzer bei einer Stichprobe vom Umfang n

Wahrscheinlichkeit p n

pˆ= k (relative Häufigkeit, d.h. bei einer Stichprobe vom Umfang n trat das gesuchte Ereignis k -mal auf)

»

Nach dem Gesetz der großen Zahlen liegt bei einem großen

Stichprobenumfang der aus der Stichprobe geschätzte Wert in der Nähe des echten (unbekannten) Parameters der Grundgesamtheit.

Erwartungswert µ µˆ =x (arithmetische Mittel der Stichprobe) Standardabweichung σ σˆ =s (empirische Standardabweichung der

Stichprobe)

Varianz σ2 σˆ2 =s2(empirische Varianz der Stichprobe)

(4)

5.1 Punktschätzungen

»

Für die Überprüfung der Abweichung zwischen geschätztem Wert und tatsächlichem Wert der Grundgesamtheit gibt es zwei Möglichkeiten.

»

Typische Fragen sind:

1. Kann man bestimmte Werte von µ, σ oder p ausschließen?

Z. B. kann man ausschließen, dass p ≤ 0,5 gilt?

2. Kann man einen Bereich angeben, in dem µ, σ oder p liegen können, etwa in der Form „p liegt im Intervall [0,63 ; 0,67]“?

Statistik, Prof. Dr. Karin Melzer 7

Hochschule Esslingen

»

Es gibt keine Antworten, die mit 100%-iger Sicherheit richtig sind.

»

Aber die Statistik gibt uns Verfahren, die mit großer Wkt. richtige Antworten liefern:

1. Die Durchführung eines Hypothesentests, um bestimmte Werte für µ, σ oder p mit einer bestimmten Wkt. (z. B. 95 %) auszuschließen.

2. Die Bildung von Vertrauensbereichen/Konfidenzintervallen d. h. ein Intervall, in dem µ, σ oder p mit einer bestimmten Wkt. z. B. 95 % liegt.

5.2 Hypothesentests

» Verfahren zur Gewinnung von Information über eine Grundgesamtheit aus einer Stichprobe. Dazu müssen folgende Schritte durchgeführt werden:

» Formulierung der Nullhypothese H0 und Alternativhypothese H1

» H0beinhaltet den zu widerlegenden Wert (bzw. die zu widerlegenden Werte)

» H1beinhaltet den zu bestätigenden Wert (bzw. die zu bestätigenden Werte)

» Wahl des Signifikanzniveaus α z.B. α = 5%, α = 1%, α = 0,1%

» αist eine kleine Irrtumswahrscheinlichkeit dafür, dass die Nullhypothese nicht zutrifft und trotzdem angenommen wird (Fehler 1. Art s. Fehlerarten) .

» Berechnung des Zufallsstreubereiches (ZSB) u. d. Ann. dass H0zutrifft

» Berechnung des Zufallsstreubereiches (ZSB) u. d. Ann. dass H0zutrifft

» Wenn H0zutrifft, dann liegt der zu testende Wert mit großer Wahrscheinlichkeit (also mit Wahrscheinlichkeit 1-α) im entsprechenden ZSB.

» Berechnung der Testgröße

» Testentscheidung

» Testgröße ∈ZSB H0kann nicht verworfen werden/wird beibehalten,

» Testgröße ∉ZSB H0wird zugunsten von H1verworfen/abgelehnt.

Man sagt auch: H1ist signifikant (bei Signifikanzniveau α).

» Antwortsatz

» d. h. „Übersetzen“ der Entscheidung aus 5. in das konkrete Anwendungsproblem

(5)

5.2 Hypothesentests: Bemerkungen

Fehlerarten:

»

Bei einem Hypothesentest spricht man von einem

» Fehler 1. Art (oder α -Fehler), wenn H0 irrtümlich abgelehnt wird, obwohl H0 wahr ist.

» Fehler 2. Art (oder β -Fehler), wenn H0irrtümlich beibehalten wird, obwohl H0 falsch ist.

»

Die Wahrscheinlichkeit für einen Fehler 1. Art wird zu Beginn des

Statistik, Prof. Dr. Karin Melzer 9

Hochschule Esslingen

»

Die Wahrscheinlichkeit für einen Fehler 1. Art wird zu Beginn des Hypothesentests durch Vorgabe von α nach oben beschränkt. Dieser Fehler ist also unter Kontrolle.

»

Die Wahrscheinlichkeit β für einen Fehler 2. Art ist in der Regel nicht vorgegeben/bekannt.

5.2 Hypothesentests: Bemerkungen

» Fehlerarten: Übersicht

H0wird verworfen H0wird nicht verworfen

H1trifft zu Richtige Entscheidung

Fehler 2. Art (β-Fehler) Wahrscheinlichkeit: β H1trifft zu Richtige Entscheidung Wahrscheinlichkeit: β

(i.d.R. unbekannt)

H0trifft zu

Fehler 1. Art (α-Fehler) Wahrscheinlichkeit:

höchstens α (klein)

Richtige Entscheidung

(6)

5.2.1 Gauß-Test

» Test (zum Signifikanzniveau α) einer Nullhypothese über den unbekannten

Erwartungswert µ, z. B. (erster Eintrag in der Tabelle) die Hypothese, dass µ gleich einer vorgegebenen festen Zahl µ0(etwa einem Sollwert oder dem bisherigen Wert) ist.

» Gegeben: Stichprobe x1, x2, …, xn. Die Messwerte sind Realisierungen von n

unabhängigen N(µ,σ2)- verteilten Zufallsvariablen mit unbekanntem Erwartungswert µ, aber bekannter Varianz σ2.

H

0

H

1

Zufallsstreubereich für , falls H zutrifft

H

0

verwerfen falls

X

Statistik, Prof. Dr. Karin Melzer 11

Hochschule Esslingen

H

0

H

1

falls H

0

zutrifft

0

falls µ = µ

0

µ ≠ µ

0

µ ≥ µ

0

µ < µ

0

µ ≤ µ

0

µ > µ

0



 

 − ⋅ +

z n

z σn µ σ

µ α α

2

2 0 1

0 1 ;



 

01 ⋅ ;∞ n

z

σ

µ

α



 

−∞ + z σn µ0 1α

;

∉ ZSB x

∉ ZSB x

∉ ZSB x

5.2.2 t-Test

» Test (zum Signifikanzniveau α) für den unbekannten Erwartungswert µ

» Gegeben: Stichprobe x1, x2, …, xn. Die Messwerte sind Realisierungen von n unabhängigen N(µ,σ2)- verteilten Zufallsvariablen mit unbekanntem

Erwartungswert m, und unbekannter Varianz σ2 Schätze σ durch s aus der Stichprobe. Deshalb müssen die Quantile der t-Verteilung (mit n-1

Freiheitsgraden) statt der Normalverteilung benutzt werden.

H

0

H

1

Zufallsstreubereich für , falls H

0

zutrifft

H

0

verwerfen falls

X

falls H

0

zutrifft falls µ = µ

0

µ ≠ µ

0

µ ≥ µ

0

µ < µ

0

µ ≤ µ

0

µ > µ

0



 

 − ⋅ +

n t s

n

tn s n

2

2 0 1;1

1

;

0 1 αα

µ



 

01;1 ⋅ ;∞ n tn α s

µ



 

−∞ + n tn α s µ0 1;1

;

∉ ZSB x

∉ ZSB x

∉ ZSB

x

(7)

5.2.2 t-Test: die t-Verteilung

t-Verteilung (auch: Student-t-Verteilung) mit n

Freiheitsgraden

» Stichprobe vom Umfang n ⇒ hat eine t-Verteilung mit n-1 Freiheitsgraden

» Dichtefunktion der t-Verteilung: symmetrische Glockenkurve zum Erwartungswert 0 (wie Standardnormalverteilung)

» aber: Dichte der t-Verteilung ist flacher als Dichte der Std.normalvert. (d. h.

geringere Höhe und größere Streuung)

» für n ∞ konvergiert die Dichte der t-Verteilung gegen die Dichte der

s n T = X−µ⋅

Statistik, Prof. Dr. Karin Melzer 13

Hochschule Esslingen

t-Verteilung gegen die Dichte der Std.normalverteilung

» Für große n (ab n ≥ 30) kann die t-Verteilung in guter Näherung durch die Std.normalverteilung approximiert werden.

» Quantile der t-Verteilung ⇒ Tabelle (bzw. xls mit der Funktion TINV)

5.2.3 Zweistichproben t-Test

» Hier liegen zwei Stichproben vor:

» Die m Messwerte x1, x2, …, xm sind Realisierungen von N(µ12)- verteilten Zufallsvariablen;

» die n Messwerte y1, y2, …, ynsind Realisierungen von N(µ22)- verteilten Zufallsvariablen.

» Alle Zufallsvariablen sind voneinander unabhängig mit der gleichen unbekannten Varianz σ2.

» Getestet werden (zum Signifikanzniveau α) Nullhypothesen über den Unterschied µ µ der beiden unbekannten Erwartungswerte, z. B. (erster Unterschied µ1– µ2 der beiden unbekannten Erwartungswerte, z. B. (erster Eintrag in der Tabelle) die Nullhypothese, dass kein Unterschied besteht.

» Aus den beiden empirischen Varianzen s12der ersten Stichprobe und s22der zweiten Stichprobe muss zunächst die folgende Hilfsgröße berechnet werden:

( 1 )

12

+ ( 1 )

22

( + + 2 )

= m n m n

n s m

n s

m

s

d

(8)

5.2.3 Zweistichproben t-Test

» Test (zum Signifikanzniveau α) über die Differenz zweier Erwartungswerte µ12

zweier Grundgesamtheiten bei unbekannteraber gleicher Standardabweichung σ.

» Zum Test werden zwei Stichproben vom Umfang m und nmit den arithmetischen Mitteln und und mit den empirischen Standardabweichungen s1 und s2 gezogen

H0 H1 Zufallsstreubereich für ,

falls H0 zutrifft H0 verwerfen falls

µ -µ =0 µ -µ ≠0

xy ∉ ZSB

x

y

[ t s ; t s ]

Y X

Statistik, Prof. Dr. Karin Melzer 15

Hochschule Esslingen

wobei

µ12=0 µ12≠0

µ12≥0 µ12<0

µ12≤0 µ12>0

∉ ZSB

y x

∉ ZSB

y x

∉ ZSB

y x

[ t

m+n2;1α

s

d

; )

( ; t

m+n2;1α

s

d

]

(

1

)

12

(

1

)

22 ⋅ ⋅

(

+ −2

)

⋅ +

− +

= m n m n

n s m

n s m sd

[ t

m+n2;1α2

s

d

; t

m+n2;1α2

s

d

]

5.2.4 Test über eine unbekannte Wahrscheinlichkeit p

» Test (zum Signifikanzniveau α) für ein Ereignis, das mit unbekannter

Wahrscheinlichkeit p auftritt. Getestet wird z. B. die Nullhypothese, p sei gleich einem vorgegebenen Wert p0(erster Eintrag in der Tabelle).

» Bei einer Stichprobe vom Umfang n sei das gesuchte Ereignis k-mal eingetreten.

H0 H1 Zufallsstreubereich für k/n, falls H0 zutrifft

H0 verwerfen falls

∉ ZSB

p = p0 p ≠ p0

p ≥ p0 p < p0

p ≤ p0 p > p0

+

+

n n p z p

n p n

p z p

p o o(1 ) 0,5

5; , ) 0 1

( 0

0 1 0

0 1

2

2 α

α

0(1 0)0,5;1

1

0 n n

p z p

p α





 + ⋅ − +

n n p z p

p (1 o) 0,5

;

0 0 1α 0

∉ ZSB

n k

∉ ZSB

n k

∉ ZSB

n k

(9)

5.3 Vertrauensbereiche/

Konfidenzintervalle

» Unter einem Vertrauensbereich oder einem Konfidenzintervall versteht man ein Intervall, das mit einer vorgegebenen Wahrscheinlichkeit 1 – α (z. B.

90%, 95%, 99%) den wahren Wert für µ, σ2oder p überdeckt.

» Die Voraussetzungen sind die gleichen, wie bei den Hypothesentests.

5.3.1 Vertrauensbereich für den Erwartungswert µeiner Normalverteilung bei bekannter Varianz σ2zum Konfidenzniveau 1-α

Statistik, Prof. Dr. Karin Melzer 17

Hochschule Esslingen

Art des Vertrauensbereichs Vertrauensbereich für µµµµ

zweiseitig

einseitig nach unten begrenzt

einseitig nach oben begrenzt



 

 − ⋅ + z n n x z

x σ σ

α α

2

2 1

1 ;



 

 − 1 ⋅ ;∞ z n

x σ

α



 

−∞ + z n

x σ

α

; 1

5.3 Vertrauensbereiche/

Konfidenzintervalle

5.3.2 Vertrauensbereich für den Erwartungswert µeiner Normalverteilung bei unbekannter Varianz zum Konfidenzniveau 1 – α

Art des Vertrauensbereichs Vertrauensbereich für µµµµ

zweiseitig 

 

 − ⋅ +

n t s

n x t s

x n n

2

2 1;1

1

;

1 α ; α

zweiseitig

einseitig nach unten begrenzt

einseitig nach oben begrenzt



 n1;12 n n1;12 n



 

 − 1;1 ⋅ ;∞ n t s

x n α



 

−∞ + n t s

x n 1;1α

;

(10)

5.3 Vertrauensbereiche/

Konfidenzintervalle

5.3.3 Vertrauensbereich für die Differenz µ1- µ2 der Erwartungswerte zweier Normalverteilungen bei gleicher aber unbekannter Varianz σ2zum

Konfidenzniveau 1 – α

» Es werden zwei Stichproben vom Umfang m und nmit den arithmetischen

Mitteln , und mit den empirischen Standardabweichungen s1 und s2gezogen

Art des Vertrauensbereichs Vertrauensbereich für µµµµ1 - µµµµ2

x

y

Statistik, Prof. Dr. Karin Melzer 19

Hochschule Esslingen

» wobei

zweiseitig

einseitig nach unten begrenzt

einseitig nach oben begrenzt

[ x y t

m+n2;1α2

s

d

; x y + t

m+n2;1α2

s

d

]

[ x y t

n+m2;1α

s

d

; ) ( ; x y + t

n+m2;1α

s

d

]

(

1

)

12

(

1

)

22 ⋅ ⋅

(

+ −2

)

⋅ +

− +

= m n m n

n s m

n s m

sd

5.3 Vertrauensbereiche/

Konfidenzintervalle

5.3.4 Vertrauensbereich für eine Wahrscheinlichkeit p zum Konfidenzniveau 1 –α

» Tritt bei einer Stichprobe vom Umfang n das gesuchte Ereignis k-mal auf, verwendet man als Punktschätzer für die unbekannte Wahrscheinlichkeit die relative Häufigkeit

» Der Vertrauensbereich zum Konfidenzniveau 1-α berechnet sich dann als n

pˆ= k

Art des Vertrauensbereichs Vertrauensbereich für p

zweiseitig

einseitig nach unten begrenzt

einseitig nach oben begrenzt

( ) ( )



 

 − ⋅ ⋅ − − + ⋅ ⋅ − +

n n

p z p

n p n

p z p

p ˆ 1 ˆ 0,5

ˆ 5; , ˆ 0 ˆ 1 ˆ

2

2 1

1 α α

( )





 − ⋅ ˆ⋅ 1− ˆ −0,5;1

ˆ 1

n n

p z p

p α

( )





− +

⋅ ⋅

+ p p

z

p ˆ 1 ˆ 0,5

ˆ

;

0 α

Referenzen

ÄHNLICHE DOKUMENTE

¨ uber die Ablehnung oder Annahme von Hypothesen ¨uber die Verteilung von Y getroffen werden... in Variante B m¨oglicherweise zweimal desselben Kindes — ab), ob man nach

Schließende Statistik (WS 2020/21) Folie 36.. 1 angenommen haben), f¨ur die ML-Sch¨atzung ist aber eigentlich die Wahrscheinlichkeit einer einzelnen Stichprobenrealisation

Die Sch¨ atzfunktionen f¨ ur die W¨ ahleranteile in den beiden Stichproben seien (wie ¨ ublich) gegeben als die in der jeweiligen Stichprobe beobachteten Anteilswerte und mit p b

¨ uber die Ablehnung oder Annahme von Hypothesen ¨uber die Verteilung von Y getroffen werden... in Variante B m¨oglicherweise zweimal desselben Kindes — ab), ob man nach

Typische Situation in schließender Statistik: nicht alle Kinder k¨onnen befragt werden, sondern nur eine kleinere Anzahl n &lt; N = 4, beispielsweise n = 2. Erwartungswert von

lenseits der Reichweite wird aber die Schätzung der Varianz der Differenzen un¬ abhängig von der Distanz oder - in anderen Worten aus¬ gedrückt - können Datenpunkte, die von einem

Bevor einer der beiden t-Tests für unabhängige Stichproben durchgeführt wird, muss die Voraussetzung der Varianzhomogenität überprüft werden. Varianzhomogenität ist gegeben, wenn

[r]