• Keine Ergebnisse gefunden

Flexprint Design Studies for the Mu3e Experiment

N/A
N/A
Protected

Academic year: 2022

Aktie "Flexprint Design Studies for the Mu3e Experiment"

Copied!
29
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Flexprint Design Studies for the Mu3e Experiment

Jens Kr¨ oger

on behalf of the Mu3e collaboration

DPG Fr¨ uhjahrstagung M¨ unster 2017 March 28, 2017

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 1 / 18

(2)

The Mu3e Experiment - Detector Concept

µ + are stopped decay at rest

→ low momentum electrons p e ≤ 53 MeV /c 1 T magnetic field

Target Inner pixel layers

Outer pixel layers Recurl pixel layers

Scintillator tiles μ Beam

36 cm

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 2 / 18

(3)

The Mu3e Experiment - Detector Concept

low momentum electrons p e ≤ 53 MeV /c

multiple Coulomb scattering dominates momentum

resolution

Θ rms ∝ r x

X 0

tracking in scattering dominated regime

→ consequence: minimize material budget

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 3 / 18

(4)

Flexprints for the Mu3e Detector

Challenge: minimize material budget Solution: thinned pixel chips and flexprints

dielectric layers:

polyimide film (Kapton)

electric layers: copper or aluminium

thinned wafer

flexprint prototype

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 4 / 18

(5)

Flexprints for the Mu3e Detector

desired material budget:

x/X 0 ≤ 0.1% per layer x/X

0

pixel chip (50 µm) ∼ 0.05 %

flexprint ∼ 0.05 %

support + glue (35 µ m) ∼ 0.01 %

per layer ∼ 0.11 %

Experiment x/X

0

per layer ATLAS IBL [1] 1.9 % CMS (upgrade) [2] ∼1.1 % ALICE (upgrade) [3] 0.3 %

STAR [4] 0.4 %

BELLE II IBL [5] 0.2 %

Mu3e ∼0.1 %

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 5 / 18

(6)

Flexprints for the Mu3e Detector

desired material budget:

x/X 0 ≤ 0.1% per layer x/X

0

pixel chip (50 µm) ∼ 0.05 %

flexprint ∼ 0.05 %

support + glue (35 µ m) ∼ 0.01 %

per layer ∼ 0.11 %

Experiment x/X

0

per layer ATLAS IBL [1] 1.9 % CMS (upgrade) [2] ∼1.1 % ALICE (upgrade) [3] 0.3 %

STAR [4] 0.4 %

BELLE II IBL [5] 0.2 %

Mu3e ∼0.1 %

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 5 / 18

(7)

Flexprints for the Mu3e Experiment

Aluminium vs. Copper

conductivity radiation length Cu 59.6 × 10 6 S m −1 1.436 cm

Al 36.9 × 10 6 S m −1 8.897 cm

from wikipedia [6]

from wikipedia [7]

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 6 / 18

(8)

Flexprints for the Mu3e Experiment

Aluminium vs. Copper

conductivity radiation length Cu 1.5× higher

Al 6× longer

⇒ Aluminium saves us a factor of 4 in material!

from wikipedia [6]

from wikipedia [7]

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 6 / 18

(9)

The Mu3e Experiment - Flexprint Requirements

fast data transmission (1.25 Gb/s LVDS)

power supply and slow control power ≤ 400 mW/cm

2

high voltage O(−100 V) clock, reset, configuration signals

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 7 / 18

(10)

Flexprint Prototypes - First Steps

In-house production with laser platform

First flexprint: 10×1.8 cm

2

25 µm Kapton + 25 µm Al + glue

trace width ≥ 120 µ m, trace separation ≥ 120 µ m different lengths up to 1 m

Problem:

structures not small enough! Eye diagram at 800 Mb/s, length: 10 cm

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 8 / 18

(11)

Flexprint Prototypes - First Steps

In-house production with laser platform

First flexprint: 10×1.8 cm

2

25 µm Kapton + 25 µm Al + glue

trace width ≥ 120 µ m, trace separation ≥ 120 µ m different lengths up to 1 m

Problem:

structures not small enough!

Eye diagram at 800 Mb/s, length: 10 cm

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 8 / 18

(12)

Flexprint Prototypes - First Steps

In-house production with laser platform

First flexprint: 10×1.8 cm

2

25 µm Kapton + 25 µm Al + glue

trace width ≥ 120 µ m, trace separation ≥ 120 µ m different lengths up to 1 m Problem:

structures not small enough! Eye diagram at 800 Mb/s, length: 10 cm

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 8 / 18

(13)

First LTU Flexprint Prototype

manufactured by LTU

smallest structure sizes: 63 µ m → sufficiently small 3 dummy chips glued on flexprint

only mechanical test

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 9 / 18

(14)

Flexprint Study for Outer Layers

Feasibility study

(Bachelor Thesis by Lars Noehte, 2016 [8])

9 pixel chips over 18 cm min. number of signal traces power distribution critical

size: 1.8 × 19.0 cm

2

⇒ Next step: Design test structure with all critical characteristics

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 10 / 18

(15)

Flexprint Prototypes - Test Structure

Design containing all crucial characteristics for final design

top layer

bottom layer

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 11 / 18

(16)

Flexprint Prototypes - Test Structure

Time Domain Reflectometry (TDR)

measure impedance via reflection of input pulse

essential for fast data transmission: Z 0 = 50 Ω, Z diff = 100 Ω

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 12 / 18

(17)

Flexprint Prototypes - Test Structure

Time Domain Reflectometry (TDR)

measure impedance via reflection of input pulse

essential for fast data transmission: Z 0 = 50 Ω, Z diff = 100 Ω

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 12 / 18

(18)

Flexprint Prototype - Test Structure

Time Domain Reflectometry (TDR)

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 13 / 18

(19)

Flexprint Prototypes - Test Structure

Data Transmission Studies

eye diagram analysis

Eye diagram at 1.25 Gb/s

bit error rate test

→ transmit pseudo random bit stream

BER = # error bits

# transmitted bits

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 14 / 18

(20)

Flexprint Prototypes - Test Structure

Bit Error Rate Test

data rate [Gb/s] line BER

upper limit at 95% CL

1.25 Gb/s all ≤5.5 × 10 −13

2.5 Gb/s all ≤5.9 × 10 −13

3.2 Gb/s all short ≤4.1 × 10 −13

18 cm fail

4.0 Gb/s all fail

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 15 / 18

(21)

Flexprint Prototype - Test Structure

Power Planes

manufacturer:

Al thickness ∼ 14 µ m R = R 0 + ρ Al 1 t w l

thickness from resistance measurement:

t = 12.3 ± 0.3 µm no significant deviations between flexprints

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 16 / 18

(22)

Flexprint Prototypes - Summary and Next Steps

Summary

Mu3e: search for cLFV ultra-low material detector flexprints for readout and power supply of pixel tracker very promissing

bit error rate tests and power tests

Next Steps

improve trace parameters operate one pixel chip on a flexprint

operate multiple pixel chips on a flexprint

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 17 / 18

(23)

References

[1] ATL-INDET-PROC-2015-001

[2] CERN-LHCC-2012-016, CMS-TDR-11 [3] arXiv:1211.4494v1

[4] talk by G. Contin at PIXEL 2016 [5] talk by C. Koffmane at PIXEL 2016

[6] https://upload.wikimedia.org/wikipedia/commons/f/f0/

NatCopper.jpg

[7] https://upload.wikimedia.org/wikipedia/commons/5/5d/

Aluminium-4.jpg

[8] L. Noehte, Flexprint design and characterization for the Mu3e experiment, Bachelor thesis, Heidelberg University, 2016,

https://www.psi.ch/mu3e/ThesesEN/BachelorNoehte.pdf

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 18 / 18

(24)

Backup

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 1 / 6

(25)

The Mu3e Experiment - Motivation

search for lepton-flavour violating decay µ + → e + e e + sensitivity: 1 in 10 16 decays

νSM branching ratio ≤ 10 −54

signal would be clear sign for BSM physics

SM process SUSY process tree-level LFV process

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 2 / 6

(26)

The Mu3e Experiment - Signal and Backgrounds

signal combinatorial background

internal conversion background

→ Detector Requirements:

very high vertex resolution

excellent momentum reconstruction

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 3 / 6

(27)

The Mu3e Experiment - Signal and Background Topologies

signal commom vertex coincident (in time)

Σ~ p = 0 ΣE = m µ

combinatorial background

no commom vertex

not coincident (in time)

Σ~ p = 0 ΣE = m µ

internal conversion background

commom vertex coincident (in time)

Σ~ p 6= 0 ΣE 6= m µ

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 4 / 6

(28)

History of LVF Experiments

Updated from W.J. Marciano et al., Ann.Rev.Nucl.Part.Sci. 58, 315 (2008)

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 5 / 6

(29)

E miss Resolution Requirement for Mu3e

R.M. Djilkibaev and R.V. Konoplich, Rphzs.Rev., D79 073004, 2009

Jens Kr¨oger (Uni Heidelberg) Flexprint Designs for Mu3e March 28, 2017 6 / 6

Referenzen

ÄHNLICHE DOKUMENTE

– detector readout and filter farm (Mainz) – mechanics and cooling (PSI, PI-HD) – experimental infrastructure (PSI) – slow

To measure the momentum and vertex position of low momentum electrons (10 - 53 MeV/c) originating from this rare decay with high preci- sion, a tracking detector built from

Physics Institute, University of Heidelberg Charged Lepton Flavour Violation Workshop,.. Lecce,

High Voltage Monolithic Active Pixel Sensors.. • The

Zimmermann: Cooling with Gaseous Helium for the Mu3e Experiment (Bach- elor thesis, 2012). available from

❏ Converters compensate for voltage drops and extra power losses after conversion. Ribbons of 3 layers of 250 μm thin scintillating fibres in the

• Minimizes scattering angle in middle hit • Linear approximation around circle solution small Multiple Scattering angles.. Efficiency and resolution Short tracks

The improvements are made possible by a novel experimental design based on high voltage monolithic active pixel sensors for high spatial resolution and fast readout