• Keine Ergebnisse gefunden

Nachweismethoden der DM

N/A
N/A
Protected

Academic year: 2022

Aktie "Nachweismethoden der DM"

Copied!
42
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 1

Gravitationslinsen Rotationskurven

Direkter Nachweis der DM

( Elastische Streuung an Kernen) Indirekter Nachweis der DM

( Annihilation der DM in Materie-Antimaterie)

Nachweismethoden der DM

(2)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 2

95% of the energy of the Universe is non-baryonic

23% in the form of Cold Dark Matter

Dark Matter enhanced in Galaxies and Clusters of Galaxies but DM widely distributed in halo->

DM must consist of weakly interacting and massive particles -> WIMP‟s

Annihilation with <σv>=2.10-26 cm3/s, if thermal relic

From CMB + SN1a + surveys

DM halo profile of galaxy cluster from weak lensing

If it is not dark It does not matter

What is known about Dark Matter?

(3)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 3

Thermische Geschichte der WIMPS

Thermal equilibrium abundance Actual abundance

T=M/22

Comoving number density

x=m/T

Jungmann,Kamionkowski, Griest, PR 1995

WMAP -> h2=0.1130.009 ->

<v>=2.10-26 cm3/s

DM nimmt wieder zu in Galaxien:

1 WIMP/Kaffeetasse 105 <ρ>.

DMA (ρ2) fängt wieder an.

T>>M: f+f->M+M; M+M->f+f T<M: M+M->f+f

T=M/22: M decoupled, stable density (wenn Annihilationsrate Expansions- rate, i.e. =<v>n(xfr) H(xfr) !)

Annihilation in leichtere Teilchen, wie

Quarks und Leptonen -> 0‟s -> Gammas!

Einzige Annahme: WIMP = thermisches Relikt, d.h. im thermischen Bad des frühen Universums erzeugt.

(4)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 4

How do particles annihilate?

~ ~

e+

e-

q q

LEP collider:

e+e- annihilation

~ ~

~ ~





e e e

photon annihilation

In CM: Eq=Ee

monoenergetic quarks

from monoenergetic leptons Quarks fragment into jets, mostly light mesons:π+,π-,π0 π0 decays 100% in 2 photons

So as many photons as charged particles from annihilation

On average: 37 photons pro annihilation into quarks at LEP

Spectral shape VERY WELL MEASURED

(5)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 5

DM Annihilation in Supersymmetrie

Dominant

 +   A  b bbar quark pair B-Fragmentation bekannt!

Daher Spektren der Positronen, Gammas und Antiprotonen bekannt!

f

f

f f

f f

Z Z W

W

0

~ f

A Z

Galaxie = Super B-Fabrik mit Rate 1040 x B-Fabrik

≈37 gammas

(6)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 6

Indirect Dark Matter Searches

Annihilation products from dark matter annihilation:

Gamma rays

(EGRET, FERMI)

Positrons

(PAMELA)

Antiprotons

(PAMELA)

e+ + e-

(ATIC, FERMI, HESS, PAMELA)

Neutrinos

(Icecube, no results yet)

e-, p drown in cosmic rays?

(7)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 7

Pamela, arXiv:1001.3522v1

PAMELA Positron excess

(8)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 8

Origin?

Depends on whom you ask!

My assumption:

|Data>= ap->0 |Background> + aDMA |DMA>

+ asec |SNR> + alocal |SNR(x)> + apulsar |Pulsar>

Unitarity must be fulfilled. However, each component has enough uncertainty

to saturate observations

For details: WdB, AIP Conf.Proc.1200:165-175,2010.

arXiv:0910.2601 [astro-ph.CO]

(9)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 9

AMS: large magn. spectrometer with redundant particle ID

(10)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 10

Testflight 1998 AMS installed on ISS in May,2011

(11)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 11

AMS-02 from CERN to Cape Canaveral on 26.08.2010 Loading the 7.5 tons at Geneva airport

(12)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 12

GALPROP Antiprotons Donata et al. [0810.5292]

Antiprotons: saturated by background?

GALPROP (with and without) convection has deficit of antiprotons. Darksusy and others (which only look into charged particles, no gamma rays) can saturate data.

Pamela

Gebauer and WdB,arXiv:0910.2027

(13)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 13

Propagation of charged cosmic rays (CR)

Present models use isotropic

propagation, i.e. same diffusion constant in halo and disc.

This does not allow for

significant convection, since CR„s do not return to disc->

too little secondary production from CR hitting gas in disc

HOWEVER, significant

convection observed by ROSAT CRs propagation can be

described by diffusion and convection, very much like a drop of ink inside streaming water (with water

velocity=convection velocity)

Radiaactive clocks like 10Be determine time from source to Sun (107 yrs) Need slow

diffusion in disc, but particles in halo drift to outer space with convection

With convection little flux of charged particles from DMA, since particles drift away.

(14)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 14

Present models: isotropic propagation

Is this right?

Isotropic propagation leads to

“propagation enhancement”:

of charged particles: trapping of charged

particles in “leaky” Galaxy for a long time->

Flux of gamma rays from DMA

Flux of antiprotons in such propagation models, Although we KNOW from LEP that fragmentation gives many more photons than antiprotons

Not nessarily!

CONVECTION = negligible with isotropic

propagation in contrast to observation

(15)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 15

Diffuse gamma rays

Great advantage of pointing to the source and propagation is

„straightforward“ without dependence on magnetic field and diffusion,

which plagues charged particles.

Astrophysical point sources can be

pinpointed and subtracted.

(16)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 16

Sun

disc

Basic principle for indirect dark matter searches

R Sun

bulge

disc

From rotation curve:

Forces: mv2/r=GmM/r2

or M/r=const.for v=cons.

and (M/r)/r2

1/r2

for flat rotation curve

Expect highest DM density IN CENTRE OF GALAXY

IF FLUX AND SHAPE MEASURED IN ONE DIRECTION, THEN FLUX AND SHAPE FIXED IN ALL (=120) SKY DIRECTIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

R1

THIS IS AN INCREDIBLE CONSTRAINT, LIKE SAYING I VERIFY THE EXCESS AND WIMP MASS WITH 180 INDEPENDENT MEAS.

(17)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 17

Wie sehen Haloprofile aus?

1) Erwarte für Galaxie mit flacher Rotationskurve:   1/r

2

2) Was passiert für r 0?

N-body Simulationen :   1/r „cuspy profile“

)

Übergang von   1/r

2

nach 1/r beschrieben durch NFW Profil:

(zuerst von Navarro, Frenk, White veröffentlicht)

Aber viele Rotationskurven zeigen eher   konst, wenn r 0 (isothermisches Profil)

3) Clumps zeigen Einasto-Profil (   1/r

n

n<1)

(18)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 18

Boostfactor by DM clumping

An artist picture of what we should see if our eyes were sensitive to 3 GeV gamma rays: clumps of DM

in diffuse DM halo (from hierarchical growth of galaxy combined with tidal disruption of clumps

diff  DM

clump  clump

(19)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 19

How to calculate DMA flux?

Beitröge von Sub- struktur (Ringe?)

(20)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 20

Weber, Thesis, 2010. KIT

Rotation curve Milky Way

Oort limit on local density prevents larger DM contr.

VLBI point

Weber, dB, arXiv:0910.4272

(Hipparcos data)

(21)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 21 A. Honma et al, PASJ 2007, Astrometry of Galactic Star-Forming Region Sharpless 269 with VERA:Parallax Measurements and Constraint on Outer Rotation Curve at 13 kpc

VERA: VLBI Exploration of Radio Astrometry

VLBI = Very Large

Baseline Interferometry allows very precise parallax measurements.

Maser light from

Molecular Clouds allows

large distance interferometry Measured parallax of 1896as at distance of >5 kpc

over 1 yr-> rotation velocity Japan

(22)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 22

W.dB, M. Weber, arXiv:1011.6323

Weitere VLBI Daten

(23)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 23

Substrudture in HALO PROFILE ?

Motivation for “outer ring”: Monocerus ring of stars (SDSS, 2002), discussed as tidal disruption of Canis Major dwarf AND gas flaring

Motivation for “inner ring”: dust ring

=

NFW (diffuse)+

Einasto (clumps) (expected from N-body simulations)

inner

ring outer ring

(24)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 24

Dust ring at 4 kpc

Inner Ring coincides with ring of dust and H2 ->

gravitational potential well!

H2

4 kpc coincides with ring of neutral hydrogen molecules!

H+H->H2 in presence of dust->

grav. potential well at 4-5 kpc.

(25)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 25

The Milky Way and its satellite galaxies

Canis Major

Tidal force ΔFG 1/r3

(26)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 26

Tidal streams of dark matter from CM and Sgt

CM

Sgt Sun

From David Law, Caltech

(27)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 27

Canis Major Dwarf orbits from N-body simulations to fit visible ring of stars at 13 and 18 kpc

Canis Major leaves at 13 kpc tidal stream of

gas(106 M from 21 cm line), stars (108 M ,visible), dark matter (1010 M, EGRET)

Movie from Nicolas Martin, Rodrigo Ibata

http://astro.u-strasbg.fr/images_ri/canm-e.html

(28)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 28

Core of Canis Major Dwarf just below Galactic disc

(29)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 29

Tidal disruption of Sagittarius

Movie from Kathryn Johnston (Wesleyan University ) http://astsun.astro.virginia.edu/~mfs4n/sgr/

(30)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 30

N-body simulation from Canis-Major dwarf galaxy

prograde retrograde

Observed stars

R=13 kpc

Canis Major (b=-150)

(31)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 31

Gas flaring in the Milky Way

no ring

with outer ring

P M W Kalberla, L Dedes, J Kerp and U Haud, arXiv:0704.3925

Gas flaring needs also outer ring with mass of 2.1010M!

Mass in ring few % of total

(32)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 32

Woher erwartet man Untergrund?

Quarks from WIMPS

Quarks in protons

Background from nuclear interactions (mainly p+p-> π0 + X -> + X inverse Compton scattering (e-+ -> e- + )

Bremsstrahlung (e- + N -> e- + + N)

Shape of background KNOWN if Cosmic Ray spectra of p and e- known

(33)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 33

Data driven analysis of gamma ray data (publicly available from NASA archive) Idea:

Fit known shapes of 3 main components:

Inverse Compton:(IC) CR electron density x ISRF

Bremstrahlung:(BR) CR electron density x gas density PCRPGas scattering:(0) CR proton density x gas density

Main unknowns: CR electron density CR proton density

(both measured locally, i.e. at a single point in Galaxy)

Alternative to data driven analysis:

compare data with Galactic Propagation Model

Best publicly available model: GALPROP (Moskalenko,Strong…)

(34)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 34

Background mainly in disk

(35)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 35

Usual astrophysicist‟s search strategies

Particle physicist: get rid of model

dependence by DATA DRIVEN calibration

(36)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 36

Instrumental parameters:

Energy range: 0.02-30 GeV Energy resolution: ~20%

Effective area: 1500 cm2 Angular resol.: <0.50

Data taking: 1991-1994 Main results:

Catalogue of point sources Excess in diffuse gamma rays

EGRET (Energetic Gamma Ray Experiment Telescope.) Data publicly available from NASA archive

EGRET excess

Hunter et al. 1997

(37)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 37

Experimentelle Schwierigkeiten

Experiment hat kein Magnetfeld

Dadurch werden zwei Spuren (e+e.) von konvertiertes Gamma ab ca. 5 GeV kaum getrennt.

Gamma unterscheidet sich von Elektron nur noch durch doppelt so hohe Ionisationsverluste.

Lokale Punktquellen, wie Pulsare, müssen abgezogen werden.

Kein großes Problem, wenn man über genügend große

Raumbereiche integriert (diff. Beitrag prop. Raumwinkel) Bei hohen Energien erzeugt elektromagnetischer Schauer

„backsplash“ von Teilchen, die Vetozähler setzen und dadurch Ereignis verwerfen.

Resultat: Experimente widersprechen sich, z.B. EGRET vs FERMI Oder FERMI Reprocessing P6 vs. P7,

(38)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 38

Untergrund + DM Annihilation beschreiben Daten

Blue: background uncertainty

Background + DMA signal describe EGRET data!

Blue: WIMP mass uncertainty 50 GeV

70

Brems . WIMPS IC

0

0 WIMPS IC Brems

. IC

W. de Boer et al., 2005

(39)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 39

FERMI measures GeV gamma rays + electrons

e+ e



(40)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 40

FERMI diffuse spectra from Galactic centre

without DMA with DMA

60 GeV DMA neutralino

0+IC+BR

(41)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 41

(42)

Wim de Boer, Karlsruhe Kosmologie VL, 23.01.2012 42

Es gibt interessante Hinweise für Teilchencharakter der DM:

a) Überschuss an Gammastrahlung von EGRET gemessen (aber FERMI misst weniger und Konsistenz mit

Antiprotonenfluss steht nach aus, abhängig vom Propagationsmodell)

b) Jährliche Modulation der Signale in Libra/DAMA (aber inkonsistent mit anderen Experimenten)

c) Überschüsse in Positronen (PAMELA Satellit)

(aber Pulsare oder andere Quellen bieten gute Lösung)

Zusammenfassung

Referenzen

ÄHNLICHE DOKUMENTE

The microscopic phase transition arises due to the competition of the relevant energy scales λ and J K 15 , so it is convenient to define δ loc , which is the ratio of the

Oder aber, ganz einfach: Die gesamte Masse des Universums war bei t = τP in einem Raumbereich lP konzentriert, der Schwarzschildradius dieser Masse entsprach aber bereits

Koherente Streuung am ganzen Kern meistens dominant, aber bei Streuung kann auch Drehimpuls eine Rolle spielen Dann wird  abhängig vom Spin S der Kerne im

Fermi data show excess of diffuse Galactic gamma rays w.r.t GALPROP. (see also DM claim using Fermi data by Goodenough and Hooper, arX

Koherente Streuung am ganzen Kern meistens dominant, aber bei Streuung kann auch Drehimpuls eine Rolle spielen Dann wird  abhängig vom Spin S der Kerne im

Indirect Dark Matter Searches in the Light of ATIC, FERMI, EGRET and PAMELA.. Annihilation products from dark

Kazakov, EGRET excess of diffuse Galactic Gamma Rays as.. EGRET excess of diffuse Galactic Gamma

Kazakov, EGRET excess of diffuse Galactic Gamma Rays as.. EGRET excess of diffuse Galactic Gamma