• Keine Ergebnisse gefunden

2.¨Ubung,L¨osungsvorschlag Variationsrechnung

N/A
N/A
Protected

Academic year: 2022

Aktie "2.¨Ubung,L¨osungsvorschlag Variationsrechnung"

Copied!
3
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Variationsrechnung

2. ¨ Ubung, L¨ osungsvorschlag

Gruppen¨ubung G 1 Let

D={u∈C1[0,1] : u(0) =a∧u(1) =b}

and letI[u] denote the length of curve x7→(x, u(x)) for u∈D.

1. WriteI[u] in integral form.

I[u] = Z 1

0

p1 + (u0(x))2dx.

2. Letφ∈C0 (0,1) and letf(t) =I[u+tφ] for t∈R. Observe thatu+tφ∈Dand then computef0(t).

f0(t) = d dt

Z 1 0

p1 + (u0(x) +tφ0(x))2dx= Z 1

0

φ0(x)(u0(x) +tφ0(x))

p1 + (u0(x) +tφ0(x))2dx (?) 3. Supposeu∈D is such that

I[u] = min

v∈DI[v].

What condition mustf satisfy? Is this condition also sufficient? Write a proper diffe- rential equation foru and solve it.

The condition is f0(0) = 0 and it is usually not sufficient for the minimum to exist.

Notice that

f0(0) = Z 1

0

φ0(x)u0(x) p1 + (u0(x))2dx

and so, after we differentiate by parts and note that φ(0) = φ(1) = 0 (since φ has compact support):

f0(0) =− Z 1

0

φ(x) d dx

u0(x) p1 + (u0(x))2

!

dx= 0.

Now, since φis an arbitrary function, we get the condition d

dx

u0(x) p1 + (u0(x))2

!

= 0 and so

u0(x)

p1 + (u0(x))2 =λ, where|λ|<1. Therefore

(u0(x))2

1 + (u0(x))2 = 1− 1

1 + (u0(x))22 and so

u0(x) =

r λ2

1−λ2 ⇒ u(x) =x |λ|

√1−λ2 +C.

Now we choose the constants λand C so thatu(0) =aandu(1) =b.

(2)

Variationsrechnung, L¨osungsvorschlag 2 G 2 Let

I[u] = Z 1

0

p1 + (u0(x))2+λu(x)dx

foru∈D withλ6= 0. Write the Euler-Lagrange equations and solve them.

This is done similarly as above. We get the equation

− d dx

u0(x) p1 + (u0(x))2

!

+λ= 0 and so

u0(x)

p1 + (u0(x))2 =λx+C.

This gives

1− 1

1 + (u0(x))2 = (λx+C)2 and so

u0(x) =− λx+C p1−(λx+C)2,

where we assumed thatλx+C ≤0. It is easy to integrate the above equation:

u(x) =p

1−(λx+C)2+C0.

This is a circle, whereC and C0 are chosen in such a way that u∈D.

G 3 Using Lagrange multipliers, minimizef(x, y) =x2+y2 subject to the condition x+y= 1.

We write

F(x, y, λ) =x2+y2−λ(x+y−1) and the necessary conditions are

0 =Fx = 2x−λ 0 =Fy = 2y−λ 0 =Fλ =−x−y+ 1.

From this we compute:

x=y= λ 2 λ= 1

and so x=y= 12. This in fact is a minimum, since the matrix of second derivatives

D2F 1

2,1 2,1

=

2 0 −1

0 2 −1

−1 −1 0

is positive-definite.

Haus¨ubung

(3)

Variationsrechnung, L¨osungsvorschlag 3 H 1 The isoperimetric problem

Let

D={u∈C1[−1,1] : u(−1) =u(1) = 0}

and let Ωu={(x, y)∈[−1,1]×R+: 0≤y≤u(x)}, Γu ={(x, y)∈[−1,1]×R+:y=u(x)}.

Let A[u] denote the area of Ωu and let L[u] be the length of the curve Γu. Our goal is to solve Euler-Lagrange equations for the problem

L[u] = min

v∈DL[v] with the condition A[u] =π,

that is, we want to find a curve of least possible length, starting at the point (−1,0) and ending in (1,0), with area under this curve being equal to π.

1. Write the lengthL[u] and areaA[u] functionals.

L[u] = Z 1

0

p1 + (u0(x))2dx, A[u] = Z 1

0

u(x)dx.

2. Take two functionsv, w∈C01[−1,1]. Lets, t∈R. Write the functionf(s, t) =L[u+sv+ tw] and compute its derivative. Find the conditions ons, tfor whichA[u+sv+tw] =π.

L[u+sφ+tψ] = Z 1

0

p1 + (u0(x) +sφ0(x) +tψ0(x))2dx fs(s, t) =

Z 1 0

φ0(x)

p1 + (u0(x) +sφ0(x) +tψ0(x))2dx ft(s, t) =

Z 1

0

ψ0(x)

p1 + (u0(x) +sφ0(x) +tψ0(x))2dx.

The conditions ons andt are s

Z 1

0

ψ(x)dx+t Z 1

0

φ(x)dx= 0 (since it is supposed thatA[u] =π).

3. Write the Euler-Lagrange equations and solve them.

Our goal is to minimize (cf.G 3)

F(s, t, λ) = Z 1

0

p1 + (u0(x) +sψ0(x) +tφ0(x))2+λ(u(x) +sψ(x) +tφ(x)−π)dx.

The minimum should be attained at s =t = 0, since u is this minimum. We get two equations which in fact are the same:

− d dx

1 p1 + (u0(x))2

!

+λ= 0.

This has been solved inG 2 and the solution is a circle.

Referenzen

ÄHNLICHE DOKUMENTE

Organizarea contabilităţii de gestiune şi calculaţiei costurilor pe baze ştiinţifice în întreprinderile din industria fierului şi oţelului asigură premisele pentru

Learning curves arising out of routing problems can be investigated by means of the java Enterprise Simulator 1 (henceforth jES), an agent-based platform for the modelization of

[r]

Une justification à cette approche est que la relation (3) soulève des problèmes d’identification. En effet, elle décrit la croissance des salaires comme une

(H¨ angendes Seil) Gesucht ist eine Funktion u(x), welche die Lage eines an den zwei Punkten (0, h) und (1, h) aufgeh¨ angten Seils der L¨ ange ` unter dem Einfluß der

We then perform data compaction into Chunk Base and Chunk Hash arrays: for each Head Flags i = 1 we write the value i into position of Chunk Base array specified by

If the error probability of a binary symmetric code is p, calculate the prob- abilities for each of the three codes from the previous exercise that any received vector will be

Segundo, desde la dimensión empírica aplicada, mediante la especificación y estimación de un modelo econométrico basado en la teoría planteada por Laffer para Colombia, utilizando