• Keine Ergebnisse gefunden

A. Appendix

A.4. The Log-Linearized System of the DMP Model

60 A.3.16. The Taylor Rule

Using the properties of the natural logarithm, the Taylor rule described in equation 6.2-1 can be expressed as

ln(𝑅𝑑) βˆ’ ln(𝑅)

= πœŒπ‘Ÿ[ln(π‘…π‘‘βˆ’1) βˆ’ ln(𝑅)]

+ (1 βˆ’ πœŒπ‘Ÿ)[πœŒπœ‹(ln(πœ‹π‘‘) βˆ’ ln(πœ‹)) + πœŒπ‘Œ(ln(π‘Œπ‘‘) βˆ’ ln(π‘Œ))] + πœ–π‘‘.

A first order Taylor expansion around steady-state yields, after dropping constant terms, the form

𝑅̃𝑑 = πœŒπ‘Ÿπ‘…Μƒπ‘‘βˆ’1+ (1 βˆ’ πœŒπ‘Ÿ)[πœŒπœ‹πœ‹Μƒπ‘‘+ πœŒπ‘ŒYΜƒt] + πœ–π‘‘. 0.a Consequently, the CEE variant described in section 3.8 has the log-linearized form

𝑅̃𝑑= πœŒπ‘Ÿπ‘…Μƒπ‘‘βˆ’1+ (1 βˆ’ πœŒπ‘Ÿ)[πœŒπœ‹Ξ•π‘‘πœ‹Μƒπ‘‘+1+ πœŒπ‘ŒYΜƒt] + πœ–π‘‘. 0.b A.3.17. Real Marginal Cost

As derived in appendix A.1, cost minimization in the intermediate goods sector implies that real marginal costs have the form of equation 3.5-2. Log-linearization yields

𝑠̃𝑑= π›Όπ‘ŸΜƒπ‘‘π‘˜+ (1 βˆ’ 𝛼)𝑀̃𝑑𝑅̃𝑑. A.3.17 A.3.18. The Cobb-Douglas Production Function

Equation 5.4.2-1 describes the production function in the intermediate goods sector, which has the following log-linearized form:

𝑦̃𝑑= π›Όπ‘˜Μƒπ‘‘+ (1 βˆ’ 𝛼)𝑙̃𝑑. A.3.18 A.3.19. The Real Wage as Defined in CEE

CEE define the wage in their thirteen variable system as shown in equation A.3.3.i. For ease of reference, the corresponding log-linearized form, equation A.3.3.ii, is quoted again:

𝑀̅̃𝑑 = π‘€Μƒπ‘‘βˆ’ πœ‹Μƒπ‘‘. A.3.19

A.3.20. Real Cash Balances

Consistent with equation A.3.19, real cash balances in log-linearized form give

π‘žΜ…Μƒπ‘‘ = π‘žΜƒπ‘‘βˆ’ πœ‹Μƒπ‘‘. A.3.20

61 A.4.1. The Aggregate Resource Constraint

In addition to the standard resource constraint used in CEE, vacancy posting costs need to be taken into account. Moreover, the Search and Matching framework now determines the aggregate amount of the homogeneous labor input used in the intermediate production process.

A few considerations are needed to derive the final equation. As explained in section 3.5, capital and labor is rented in perfectly competitive factor markets. Consequently, each producer faces identical factor prices and constant returns to scale in the production function imply that there is no need to distinguish between firms. Thus, the unweighted average of output can be expressed as

π‘Œβˆ— = ∫ π‘Œπ‘—π‘‘π‘— = ∫ π‘˜π‘—π›Όπ‘™π‘—1βˆ’π›Όπ‘‘π‘— = π‘˜π›Όπ‘™1βˆ’π›Ό,

1

0 1

0

A.4.1.i

where π‘˜ and 𝑙 represent the aggregate amount of capital and of the homogenous labor input:54 π‘˜ = ∫ π‘˜π‘—π‘‘π‘—

1

0

; 𝑙 = ∫ 𝑙𝑗𝑑𝑗.

1

0

A.4.1.ii

Time subscripts are omitted in order to be consistent with the derivation provided in the working paper of Christiano et al. (2001). Eventually, time subscripts will be reinserted to provide a correct representation of the log-linearized resource constraint. The authors list two reasons why this is not the best way to express the aggregate resource constraint. Firstly, total output should be related to total labor, calculated as in equation 5.5-1. This is preferable because 𝑛𝑑 characterizes labor as measured in the data, whereas 𝑙𝑑 is the amount of the homogenous labor input used in the intermediate goods production. Secondly, π‘Œβˆ— does not have any meaningful economic interpretation, because it is simply a sum of differentiated intermediate goods. The latter problem can be solved by substituting optimal demand for intermediate good 𝑗, characterized by equation 3.4-2, into A.4.1.i:

π‘Œβˆ— = ∫ π‘Œπ‘—π‘‘π‘— = ∫ (𝑃 𝑃𝑗)

πœ†π‘“ πœ†π‘“βˆ’1

π‘Œπ‘‘π‘— = π‘Œπ‘ƒ

πœ†π‘“ πœ†π‘“βˆ’1(π‘ƒβˆ—)

πœ†π‘“ 1βˆ’πœ†π‘“,

1

0 1

0

where π‘ƒβˆ— denotes the weighted average of all individual prices.55 Solving for π‘Œ and substituting out π‘Œβˆ— with the last term in equation A.4.1.i. gives

π‘Œ = (π‘ƒβˆ— 𝑃)

πœ†π‘“ πœ†π‘“βˆ’1

π‘˜π›Όπ‘™1βˆ’π›Ό.

Instead of the unweighted average output, this equation now contains the aggregate output, which is allocated between consumption, investment, the resources used up in capital utilization

54 CEE use capital letters, whereas here lower case letters are used to avoid confusion with steady-state values.

55 Note that the weights are not identical to the ones used in equation 3.4-3 because π‘ƒβˆ—= [∫ 𝑃𝑗

πœ†π‘“ 1βˆ’πœ†π‘“ 1

0 𝑑𝑗]

1βˆ’πœ†π‘“ πœ†π‘“

.

62 as well as the total vacancy posting costs. Consequently, the model economy is facing the following modified resource constraint:

𝑐 + 𝑖 + π‘Ž(𝑒)π‘˜Μ… + πœ…π‘£ ≀ (π‘ƒβˆ— 𝑃)

πœ†π‘“ πœ†π‘“βˆ’1

π‘˜π›Όπ‘™1βˆ’π›Ό.

The last modification needed regards the total labor force. Substituting equation 5.1-2, using definitions 5.5-1 and A.4.1.ii, gives

𝑐 + 𝑖 + π‘Ž(𝑒)π‘˜Μ… + πœ…π‘£ ≀ (π‘ƒβˆ— 𝑃)

πœ†π‘“ πœ†π‘“βˆ’1

π‘˜π›Ό(𝐴𝑛)1βˆ’π›Ό, A.4.1.iii

which corresponds to the sought-after resource constraint of equation 5.5-2. CEE state that the term in front of the production function is similar to the so called Solow residual, which is essentially the TFP part, denoted as 𝑧𝑑, of the production function described in equation 6.5-1.

Yun (1996) showed that in a first order approximation, as used here, this β€œSolow residual” is a constant. As CEE highlight, this result can be found by obtaining expressions for π‘Šβˆ—/π‘Š and π‘ƒβˆ—/𝑃 respectively.

Equivalent to the way equation 3.4-3 was rewritten in the form of equation 3.5-7, π‘ƒπ‘‘βˆ— and , π‘Šπ‘‘βˆ—can be expressed as

π‘ƒπ‘‘βˆ— = [(1 βˆ’ πœ‰π‘)𝑃̃𝑑

πœ†π‘“ 1βˆ’πœ†π‘“

+ πœ‰π‘(πœ‹π‘‘βˆ’1π‘ƒπ‘‘βˆ’1βˆ— )

πœ†π‘“ 1βˆ’πœ†π‘“]

1βˆ’πœ†π‘“ πœ†π‘“

.

Dividing this term by 𝑃𝑑 yields

π‘π‘‘βˆ—= [(1 βˆ’ πœ‰π‘)𝑝̂𝑑

πœ†π‘“ 1βˆ’πœ†π‘“

+ πœ‰π‘(πœ‹π‘‘βˆ’1π‘π‘‘βˆ’1βˆ— )

πœ†π‘“ 1βˆ’πœ†π‘“]

1βˆ’πœ†π‘“ πœ†π‘“

, A.4.1.iv

where π‘βˆ—= π‘ƒβˆ—/𝑃𝑑. Log-linearizing this expression around the steady-state results in π‘Μƒπ‘‘βˆ— = (1 βˆ’ πœ‰π‘)𝑝̂̃𝑑+ πœ‰π‘(πœ‹Μƒπ‘‘βˆ’1βˆ’ πœ‹Μƒπ‘‘+ π‘Μƒπ‘‘βˆ’1βˆ— ).

After substituting equation 3.5-8 into the log-linearized expression one obtains π‘Μƒπ‘‘βˆ— = πœ‰π‘π‘Μƒπ‘‘βˆ’1βˆ— .

Let’s supddpose 𝑝̃0βˆ— = 0. Therefore, π‘Μƒπ‘‘βˆ— = 0 for all future time periods and consequently, π‘ƒπ‘‘βˆ— = 𝑃𝑑 for all possible realizations of t. Since the almost identical steps apply for π‘Šπ‘‘βˆ— and this part is not required in the augmented model, this derivation is left out here.56 During log-linearization, the transformations above can be used to rationalize considering π‘ƒβˆ—/𝑃 as constant

56 CEE provide this part in their working paper appendix (2001).

63 equal to unity. For this reason, the following steps obtain the log-linearized resource constraint of equation A.4.1.iii. Using the properties of the natural logarithm, this constraint can be written as

ln(π‘Ž(𝑒)π‘˜Μ… + 𝑐 + 𝑖 + πœ…π‘£) = πœ†π‘“

πœ†π‘“βˆ’ 1ln (π‘ƒβˆ—

𝑃) + (1 βˆ’ 𝛼) ln(𝐴) + (1 βˆ’ 𝛼) ln(𝑛) + 𝛼 ln(π‘˜), where the inequality sign was switched to an equality sign because at the optimum all output is used up. After reinserting the omitted time subscripts, a linear first order Taylor expansion yields,

ln(π‘Ž(π‘ˆ)𝐾̅ + 𝐢 + 𝐼 + πœ…π‘‰) +1

π‘Œ(π‘Žβ€²(𝑒)πΎΜ…π‘ˆπ‘’Μƒπ‘‘+ π‘Ž(π‘ˆ)πΎΜ…π‘˜Μ…Μƒπ‘‘+ 𝑐𝑐̃𝑑+ 𝑖𝑖̃𝑑+ πœ…π‘‰π‘£Μƒπ‘‘)

= (1 βˆ’ 𝛼) ln(𝐴) + (1 βˆ’ 𝛼)𝐴̃𝑑+ (1 βˆ’ 𝛼) ln(𝑁) + (1 βˆ’ 𝛼)𝑛̃𝑑+ 𝛼 ln(𝐾) + π›Όπ‘˜Μƒπ‘‘ Using the relationship π‘˜π‘‘ = π‘’π‘‘π‘˜Μ…π‘‘ and equation A.3.A.3.5.i, this can be rewritten as

π‘Žβ€²(𝑒)𝐾

π‘Œπ‘’Μƒπ‘‘+𝑐 π‘Œπ‘Μƒπ‘‘+ 𝑖

π‘Œπ‘–Μƒπ‘‘+πœ…π‘‰

π‘Œ = (1 βˆ’ 𝛼)(𝐴̃𝑑+ 𝑛̃𝑑) + π›Όπ‘˜Μƒπ‘‘,

where the steady-state terms of the log-linearized resource constraint are already cancelled out. It helps to define

𝑠𝑐 = 𝑐/π‘Œ, 𝑠𝑖 = 𝑖/π‘Œ = 𝛿 𝐾/π‘Œ, π‘ π‘˜ = 𝐾/π‘Œ, π‘ π‘˜π‘£ = π‘˜π‘‰/π‘Œ.

Thus, in combination with equation A.3.A.3.5.ii, the log-linearized resource constraint can be written in the final version, which has the following form:

[1

π›½βˆ’ (1 βˆ’ 𝛿)]π‘ π‘˜

𝑠𝑐𝑒̃𝑑+ 𝑐̃𝑑+π›Ώπ‘ π‘˜

𝑠𝑐 𝑖̃𝑑+π‘ πœ…π‘£

𝑠𝑐 𝑣̃𝑑 = 𝛼

π‘ π‘π‘˜Μƒπ‘‘+1 βˆ’ 𝛼

𝑠𝑐 (𝐴̃𝑑+ 𝑛̃𝑑). A.4.1 A.4.2. The Labor Augmenting Technology Shock

Log-linearizing the labor augmenting technology shock of equation 5.1-3 yields

𝐴̃𝑑 = π›Ώπ΄Μƒπ‘‘βˆ’1 – πœ–π‘‘. A.4.2 A.4.3. The Price Charged for the Aggregate Labor Input

Equation 5.2-9 in log-linearized form yields

𝑝̃𝑑𝑀 = π‘šπ‘Μƒπ‘‘π‘€ A.4.3

A.4.4. The DMP Production Function

The homogenous aggregate labor input is produced according to equation 5.1-2. Using equation A.4.1.ii one obtains the following log-linearized form:

𝑙̃𝑑 = 𝐴̃𝑑+𝑛̃𝑑. A.4.4

64 A.4.5. The Law of Motion for Employment

The employment accumulation equation is described by equation 4-9, which has the log-linearized form

𝑁𝑛̃𝑑= (1 βˆ’ 𝜌)π‘π‘›Μƒπ‘‘βˆ’1+ π‘€π‘šΜƒπ‘‘βˆ’1. A.4.5 A.4.6. The Unemployment Equation

Log-linearizing equation 4-1 results in

(𝑁/π‘ˆ)𝑛̃𝑑= βˆ’π‘’Μƒπ‘‘. A.4.5

A.4.7. The Matching Function

Since the matching function defined in equation 4-2 has the form of a standard Cobb-Douglas function, the log-linearization was already described in section A.2 of the appendix. Applied to the matching function, log-linearization yields

π‘šΜƒπ‘‘= 𝛾̃𝑑+ πœ‰π‘’Μƒπ‘‘+ (1 βˆ’ πœ‰)𝑣̃𝑑 A.4.7 A.4.8. Labor Market Tightness

Equation 4-3 has the following log-linearized form:

πœƒΜƒπ‘‘= π‘£Μƒπ‘‘βˆ’ 𝑒̃𝑑 A.4.8

A.4.9. The Wage Equation

As already noted in section 4.3, the equilibrium real wage 𝑀𝑑 is obtained by maximizing the generalized Nash product denoted by

max𝑀𝑑

(π½π‘‘βˆ’ 𝑃𝑑)1βˆ’πœ‚(π»π‘‘βˆ’ 𝐼𝑑)πœ‚. For convenience, all relevant equations are stated again:

ο‚· Value of employment 4.1-1: 𝐻𝑑= 𝑀𝑑+ Ε𝑑𝛽[(1 βˆ’ 𝜌)𝐻𝑑+1+ πœŒπΌπ‘‘+1]

ο‚· Value of unemployment 4.1-2: 𝐼𝑑 = π‘œ + Ε𝑑𝛽[𝑓𝑑𝐻𝑑+1+ (1 βˆ’ 𝑓𝑑)𝐼𝑑+1]

ο‚· Value of a vacancy 4.2-1: 𝑃𝑑 = βˆ’πœ… + Ε𝑑𝛽[π‘ž(πœƒπ‘‘)𝐽𝑑+1+ (1 βˆ’ π‘ž(πœƒπ‘‘))𝑃𝑑+1]

ο‚· Value of a job 4.2-2: 𝐽𝑑 = π΄π‘‘βˆ’ 𝑀𝑑+ Ε𝑑𝛽[(1 βˆ’ 𝜌)𝐽𝑑+1+ πœŒπ‘ƒπ‘‘+1]

ο‚· Free entry of firms: 𝑃𝑑 = 0

Since the free entry condition is imposed, the value of a job equation reduces to the relationship 𝐽𝑑 = π΄π‘‘βˆ’ 𝑀𝑑+ Ε𝑑𝛽(1 βˆ’ 𝜌)𝐽𝑑+1. Therefore, it becomes evident that equation 5.2-8 is almost identical to equation 4.2-2. The only difference is the additional marginal cost term as well as the stochastic discount factor, which links the NK model to the DMP model, as described in section 5.2.

65 For ease of reference, equation 5.2-8 is quoted again:

𝐽𝑑= π‘šπ‘π‘‘π‘€π΄π‘‘βˆ’ 𝑀𝑑+ (1 βˆ’ 𝜌)πΈπ‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 𝐽𝑑+1.

In the Nash product above, taking the first order condition with respect to the real wage 𝑀𝑑 yields

(1 βˆ’ πœ‚)(βˆ’1)(π½π‘‘βˆ’ 𝑃𝑑)βˆ’πœ‚(π»π‘‘βˆ’ 𝐼𝑑)πœ‚+ πœ‚(π½π‘‘βˆ’ 𝑃𝑑)1βˆ’πœ‚(π»π‘‘βˆ’ 𝐼𝑑)πœ‚βˆ’1= 0.

This expression can be simplified to

πœ‚(π½π‘‘βˆ’ 𝑃𝑑) = (1 βˆ’ πœ‚)(π»π‘‘βˆ’ 𝐼𝑑). A.4.9.i Imposing the free entry condition and rearranging yields the form

𝐽𝑑 = 1 βˆ’ πœ‚

πœ‚ (π»π‘‘βˆ’ 𝐼𝑑), A.4.9.ii

which is identical to the Nash Sharing Search specification in Christiano et al. (2013). Taking the stochastic discount factor into account, inserting the value functions into A.4.9.i results in

πœ‚ (π‘šπ‘π‘‘π‘€π΄π‘‘βˆ’ 𝑀𝑑+ Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [(1 βˆ’ 𝜌)𝐽𝑑+1])

= (1 βˆ’ πœ‚) (𝑀𝑑+ Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [(1 βˆ’ 𝜌)𝐻𝑑+1+ πœŒπΌπ‘‘+1] βˆ’ π‘œ

βˆ’ Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [𝑓𝑑𝐻𝑑+1+ (1 βˆ’ 𝑓𝑑)𝐼𝑑+1]).

Multiplying out the terms that involve 𝑀𝑑 gives πœ‚π‘šπ‘π‘‘π‘€π΄π‘‘βˆ’ πœ‚π‘€π‘‘+ Ξ·Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [(1 βˆ’ 𝜌)𝐽𝑑+1]

= (1 βˆ’ πœ‚)𝑀𝑑

+ (1 βˆ’ πœ‚) {Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [(1 βˆ’ 𝜌)𝐻𝑑+1+ πœŒπΌπ‘‘+1] βˆ’ π‘œ

βˆ’ Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [𝑓𝑑𝐻𝑑+1+ (1 βˆ’ 𝑓𝑑)𝐼𝑑+1]}.

Solving for 𝑀𝑑 yields

𝑀𝑑= πœ‚π‘šπ‘π‘‘π‘€π΄π‘‘+ Ξ·Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [(1 βˆ’ 𝜌)𝐽𝑑+1] + (1 βˆ’ πœ‚)π‘œ

βˆ’ (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [(1 βˆ’ 𝜌)𝐻𝑑+1+ πœŒπΌπ‘‘+1] + (1 βˆ’ Ξ·)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [𝑓𝑑𝐿𝑑+1+ (1 βˆ’ 𝑓𝑑)𝐼𝑑+1].

66 Note that after imposing the free entry condition and forwarding by one period, equation A.4.9.i has the form

πœ‚Ξ•π‘‘π½π‘‘+1 = (1 βˆ’ πœ‚)Ε𝑑(𝐻𝑑+1βˆ’ 𝐼𝑑+1). A.4.9.iii The wage equation can be simplified using A.4.9.iii, together with equation 5.2-7, reformulated

as πœ…

Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 𝐽𝑑+1= π‘žπ‘‘. Using the fact that 𝑓𝑑

π‘žπ‘‘= πœƒπ‘‘, the equations can be combined to the form πœ…πœƒπ‘‘ = π‘“π‘‘Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 𝐽𝑑+1. A.4.9.iv

Using equation A.4.9.iii, one can obtain πœ‚Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 (1 βˆ’ 𝜌)𝐽𝑑+1 = (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 (1 βˆ’ 𝜌)(𝐻𝑑+1βˆ’ 𝐼𝑑+1), which can be rewritten as

Ξ·Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 (1 βˆ’ 𝜌)𝐽𝑑+1= (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 ((1 βˆ’ 𝜌)𝐻𝑑+1βˆ’ (1 βˆ’ 𝜌)𝐼𝑑+1), which in turn is identical to

Ξ·Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 (1 βˆ’ 𝜌)𝐽𝑑+1

= (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 ((1 βˆ’ 𝜌)𝐻𝑑+1+ πœŒπΌπ‘‘+1) βˆ’ (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1 πœ“π‘,𝑑 𝐼𝑑+1. Likewise, (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [𝑓𝑑𝐻𝑑+1+ (1 βˆ’ 𝑓𝑑)𝐼𝑑+1] can be written as (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [𝑓𝑑𝐻𝑑+1βˆ’ 𝑓𝑑𝐼𝑑+1] + (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1 πœ“π‘,𝑑 𝐼𝑑+1 . Thus, the wage equation has the form

𝑀𝑑= πœ‚π‘šπ‘π‘‘π‘€π΄π‘‘+ (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [(1 βˆ’ 𝜌)𝐻𝑑+1+ πœŒπΌπ‘‘+1] βˆ’ (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1 πœ“π‘,𝑑 𝐼𝑑+1

βˆ’(1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [(1 βˆ’ 𝜌)𝐻𝑑+1+ πœŒπΌπ‘‘+1]+(1 βˆ’ πœ‚)π‘œ + (1 βˆ’ Ξ·)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [𝑓𝑑𝐻𝑑+1βˆ’ 𝑓𝑑𝐼𝑑+1] + (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1 πœ“π‘,𝑑 𝐼𝑑+1 The terms (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 𝐼𝑑+1 as well as (1 βˆ’ πœ‚)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [(1 βˆ’ 𝜌)𝐻𝑑+1+ πœŒπΌπ‘‘+1] cancel.

Moreover, using A.4.9.iii and A.4.9.iv results in (1 βˆ’ Ξ·)Ξ•π‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 [𝑓𝑑𝐻𝑑+1βˆ’ 𝑓𝑑𝐼𝑑+1] = πœ‚πœ…πœƒπ‘‘.

67 Combining these considerations, the final solution to the Nash bargaining process is

𝑀𝑑= πœ‚(π‘šπ‘π‘‘π‘€π΄π‘‘+ πœ…πœƒπ‘‘) + (1 βˆ’ πœ‚)π‘œ, A.4.9.v which is identical to equation 5.3-1.

Taking logs results in

ln(𝑀𝑑) = ln( πœ‚(π‘šπ‘π‘‘π‘€π΄π‘‘+ πœ…πœƒπ‘‘) + (1 βˆ’ πœ‚)π‘œ), which after a linear first order Taylor expansion yields

ln(π‘Š) + 1

π‘Š(π‘€π‘‘βˆ’ 𝑀)

= ln(πœ‚(𝑀𝐢𝑀 βˆ— 𝐴 + πœ…πœƒ) + (1 βˆ’ πœ‚)π‘œ) + 1

π‘Š(πœ‚π‘€πΆπ‘€ βˆ— 𝐴𝐴̃𝑑+ 𝐴 βˆ— π‘€πΆπ‘€π‘šπ‘Μƒπ‘‘π‘€+ πœ…πœƒπœƒΜƒπ‘‘).

Canceling the steady-state terms and rearranging results in the final solution

π‘Šπ‘€Μƒπ‘‘= πœ‚π‘€πΆπ‘€ βˆ— 𝐴(𝐴̃𝑑+ π‘šπ‘Μƒπ‘‘π‘€) + πœ‚π‘˜πœƒπœƒΜƒπ‘‘. A.4.9 A.4.10. The Value of a Job Equation

For ease of reference, equation 5.2-8 is quoted again:

𝐽𝑑 = π‘šπ‘π‘‘π‘€π΄π‘‘βˆ’ 𝑀𝑑+ (1 βˆ’ 𝜌)πΈπ‘‘π›½πœ“π‘,𝑑+1 πœ“π‘,𝑑 𝐽𝑑+1. Taking the natural logarithm results in

ln (𝐽𝑑) = ln (π‘šπ‘π‘‘π‘€π΄π‘‘βˆ’ 𝑀𝑑+ (1 βˆ’ 𝜌)πΈπ‘‘π›½πœ“π‘,𝑑+1

πœ“π‘,𝑑 𝐽𝑑+1 ), which after a linear first order Taylor expansion yields

ln(𝐽) + 𝐽̃𝑑 = ln (𝑀𝐢𝑑𝑀𝐴 βˆ’ π‘Š + (1 βˆ’ 𝜌)πΈπ‘‘π›½πœ“π‘ πœ“π‘π½) +1

𝐽(𝑀𝐢 βˆ— 𝐴(𝐴̃𝑑+ π‘šπ‘Μƒπ‘‘π‘€) + π‘Šπ‘€Μƒπ‘‘+ (1 βˆ’ 𝜌)𝐸𝑑𝛽1

πœ“π½πœ“π‘(πœ“π‘,𝑑+1βˆ’ πœ“π‘ πœ“π‘ ) + (1 βˆ’ 𝜌)πΈπ‘‘π›½πœ“π‘

πœ“π‘2𝐽(πœ“π‘,π‘‘βˆ’ πœ“π‘) + (1 βˆ’ 𝜌)πΈπ‘‘π›½πœ“π‘

πœ“π‘π½ (𝐽𝑑+1βˆ’ 𝐽 𝐽 )).

Cancelling steady-state terms and combining terms results in the final equation

𝐽𝐽̃𝑑 = 𝑀𝐢 βˆ— 𝐴(𝐴̃𝑑+ π‘šπ‘Μƒπ‘‘π‘€) + π‘Šπ‘€Μƒπ‘‘+ (1 βˆ’ 𝜌)𝐸𝑑𝛽𝐽(πœ“Μƒπ‘,𝑑+1βˆ’ πœ“Μƒπ‘ + 𝐽̃𝑑+1) A.4.10

68 A.4.11. The Job Creation Condition

Equation 5.2-7 states

πœ…

π‘ž(πœƒπ‘‘)= πΈπ‘‘π›½πœ“π‘,𝑑+1 πœ“π‘,𝑑 𝐽𝑑+1. Taking logs results in

ln(πœ…) βˆ’ ln(π‘ž(πœƒπ‘‘)) = ln(𝛽) + ln(πœ“π‘,𝑑+1) βˆ’ ln(πœ“π‘,𝑑) + ln (𝐽𝑑+1) Linearization yields

ln(πœ…) βˆ’ [ln(π‘ž(πœƒ)) + 1

π‘ž(πœƒ)π‘žβ€²(πœƒ)πœƒ (πœƒπ‘‘βˆ’ πœƒ πœƒ )]

= ln(𝛽) + ln(πœ“π‘) + 1

πœ“π‘(πœ“π‘,𝑑+1βˆ’ πœ“π‘) βˆ’ [ln(πœ“π‘) + 1

πœ“π‘(πœ“π‘,π‘‘βˆ’ πœ“π‘)] + ln(𝐽) +1

𝐽(𝐽𝑑+1βˆ’ 𝐽).

Dropping steady-state terms and using the elasticity of the job filling rate with respect to the labor market tightness, defined as – πœ‰ =πœ•π‘ž(πœƒ)

πœ•πœƒ πœƒ

π‘ž(πœƒ), the function can be simplified to

πœ‰πœƒΜƒπ‘‘ = πœ“Μƒπ‘,𝑑+1βˆ’ πœ“Μƒπ‘,𝑑+ 𝐽̃𝑑+1. A.4.11