• Keine Ergebnisse gefunden

A. Appendix

A.5. Dynare and MATLAB Code

68 A.4.11. The Job Creation Condition

Equation 5.2-7 states

πœ…

π‘ž(πœƒπ‘‘)= πΈπ‘‘π›½πœ“π‘,𝑑+1 πœ“π‘,𝑑 𝐽𝑑+1. Taking logs results in

ln(πœ…) βˆ’ ln(π‘ž(πœƒπ‘‘)) = ln(𝛽) + ln(πœ“π‘,𝑑+1) βˆ’ ln(πœ“π‘,𝑑) + ln (𝐽𝑑+1) Linearization yields

ln(πœ…) βˆ’ [ln(π‘ž(πœƒ)) + 1

π‘ž(πœƒ)π‘žβ€²(πœƒ)πœƒ (πœƒπ‘‘βˆ’ πœƒ πœƒ )]

= ln(𝛽) + ln(πœ“π‘) + 1

πœ“π‘(πœ“π‘,𝑑+1βˆ’ πœ“π‘) βˆ’ [ln(πœ“π‘) + 1

πœ“π‘(πœ“π‘,π‘‘βˆ’ πœ“π‘)] + ln(𝐽) +1

𝐽(𝐽𝑑+1βˆ’ 𝐽).

Dropping steady-state terms and using the elasticity of the job filling rate with respect to the labor market tightness, defined as – πœ‰ =πœ•π‘ž(πœƒ)

πœ•πœƒ πœƒ

π‘ž(πœƒ), the function can be simplified to

πœ‰πœƒΜƒπ‘‘ = πœ“Μƒπ‘,𝑑+1βˆ’ πœ“Μƒπ‘,𝑑+ 𝐽̃𝑑+1. A.4.11

69

%%%%%%%%%%%%%

%% CEE part%%

%%%%%%%%%%%%%

% * indicates that the variable was present in the 13 variable system from the original CEE

%paper var

pi % inflation *

s % real marginal cost for intermediate goods firms in the CEE model qbar % transaction money / m1 *

q % real transaction money r % nominal interest rate * m2 % total money supply / m2 * mu % money growth rate

psi % marginal utility of consumption * c % consumption *

wbar % wage *

% w % real wage (now determined in the DMP model via Nash bargaining) p_ki % marginal product of capital in marginal utility terms *

% l % labor * (now determined in the DMP model part) h % habit formation *

kbar % capital stock * k % capital services * i % capital investment * y % output

u % capacity utilization rk % return to capital

z % TFP shock in the intermediate goods production sector (not part of CEE)

%%%%%%%%%%%%%

%% DMP part%%

%%%%%%%%%%%%%

l % aggregate labor input (produced by the DMP model firms)

% r % nominal interest rate (already defined in the CEE part)

pw % price paid by intermediate goods firms for the aggregate labor input mc % marginal costs for DMP model firms

% psi % stochastic discount factor term (already from CEE) w % real wage determined by Nash bargaining

% wc % Calvo wage un % unemployment

n % employment (as measured in the data and determined in DMP model) a % labor augmenting technology

v % vacancies

m % matching function theta % labor market tightness

j % value of a job (=value of a firm)

;

varexo epsilon_TFP, epsilon, eR; % eR is from the Taylor rule, epsilon from AR1 shock parameters

%%%%%%%%%%%%%%

%% CEE part %%

%%%%%%%%%%%%%%

R % steady-state nominal interest rate beta % discount rate

alph % labor share of production delt % capital depreciation rate

% b_w % simplifying parameter (defined below) redundant xi_p % price stickiness

% xi_w % wage stickiness (redundant)

lam_w % household labor market power (only needed for DMP model steady-state MC) mubar % steady-state money growth rate

mbar % steady-state m2 qbar_ss % steady-state m1

% wbar_ss % steady-state wage (redundant)

% lbar % steady-state labor supply b % habit parameter 1

chi % habit parameter 2 (see Appendix of Cleveland Fed Working Paper version) sig_c % simplifying parameter (defined below)

sig_a % relates capacity utilization to return on capital sig_q % relates cash holding and the interest rate

e_CEE % price elasticity for MC and markup in CEE model (markup=e/(e-1)) MC_CEE % steady-state marginal cost (1/markup)

K_Y % steady-state capital-output ratio K_H % steady-state capital-labor ratio Y_H % steady-state output-labor ratio C_Y % steady-state consumption output ratio

70

kappa_v_Y % steady-state total vacancy cost output ratio (from DMP model) rho_r % interest rate smoothing policy parameter

rho_pi % Taylor rule inflation response rho_y % Taylor rule output response

eta_k % investment adjustment cost parameter: (kappa in CEE: 1/eta_k is the elasticity of % investment with respect to a 1% in the current price of installed capital)

%%%%%%%%%%%%%

%% DMP part%%

%%%%%%%%%%%%%

A, % steady-state technology

delta_l, % AR1 shock to technology parameter (labor augmenting technology) delta_TFP % AR1 TFP shock

sigma_l, % AR1 shock sd (labor augmenting) sigma_TFP % AR1 TFP shock sd

e_DMP, % elasticity for steady-state MC in DMP model firms MC_DMP, % S.S. MC

L, % steady-state output of the aggregate labor input used in intermediate goods production

W % steady-state wage

THETA % steady-state labor market tightness qTHETA % steady-state job filling rate

% beta % discount factor (identical to CEE: depends on Households) xi % matching function elasticity parameter

rho % job separation rate kappa % costs per vacancy

Q % average vacancy filling rate eta % bargaining power of worker N % steady-state employment level U % steady-state unemployment level M % steady-state job matches

V % steady-state number of vacancies o % outside option

J % Value of a firm at steady-state

;

%---%

% PARAMETER values %

%---%

%%%%%%%%%%%%%

%% CEE part%%

%%%%%%%%%%%%%

% 1) PREFERENCES

% (intertemporal elasticity of sub. in C = 1)

b = 0.65; % degree of habit persistence (CEE: both models)

% b = 0.8; % CET

% b = 0.803; % GST

beta = 1.03^(-1/4); % subjective discount factor (CEE: both models, corresponds to 0.9926)

% beta = 0.9968; % CET

% beta = 0.99; % GST R = 1/beta; % steady-state nominal rate

% psi0 =1; % marginal disutility of hours

chi = 0.0; % habit parameter 2 (only specified because it is modelled like that % in CEE: but technically useless)

% 2) TECHNOLOGY

alph = 0.36; % share of capital (CEE: both models) use this also for_alpha1.mod

% alph = 0.26; % CET

% alph = 0.33; % GST

delt = 0.025; % depreciation rate (identical in all models)

% 3) CALVO PARAMETERS

% xi_w = 0.64; % on wages (only for CEE Benchmark model)

% xi_w = 0.000000001; % for fully flex model: if set to zero, the Wage Phillips Equation is % undefined: this shortcut allows sufficiently close results without deriving a new WPC) xi_p = 0.60; % on prices (both CEE: the reestimated model parameters are not % displayed in the paper by CEE because the degree of wage rigidity is driven to unity)

% xi_p = 0.79; % CET

% xi_p = 0.575; % GST

% 4) INDEXATION

lam_w = 1.05; % household labor market power (only needed for DMP model steady-state MC lam_f = 1.2; % firm market power (CEE BM)

% lam_f = 1.45; % CEE working paper

% lam_f = 1.36; % CET

% lam_f = 1.351; % GST

71

% 5) ELASTICITIES OF SUBSTITUTIONS

e_CEE = -lam_f/(1-lam_f); % price-elasticity of demand for a differentiated % good [calculated from lam_f=e_CEE/(e_CEE-1)]

MC_CEE = (e_CEE-1)/e_CEE; % marginal cost

% 6) OTHER CALIBRATIONS

% lbar = 1; % steady-state labor supplied by households [now

% determined in DMP model (only left here to show the old parameters as well]

sig_a = 0.01; % capital utilization adjustment parameter (both CEE)

% sig_a = 0.03; % CET

% sig_a = 5.76; % GST

mubar = 1.017; % steady state money growth rate, calibrated post WW2 % (just in CEE model, not part of the utility function in the other models) qbar_ss = mubar*(1-0.36/(beta*(1-alph)));% steady-state M1

mbar = (1/0.44)*qbar_ss; % steady-state M2

sig_q = 10.62; % relates cash holding and the interest rate (9.966 % according to the working paper)

eta_k = 2.48; % investment adjustment cost parameter: (kappa in CEE: 1/eta_k is the % elasticity of investment with respect to a 1% in the current price of installed capital)

% eta_k = 3.57; % CEE flex wage

% eta_k = 17.49 % CET

% eta_k = 1.179 % GST

% eta_k = 4.4; % lower investment adjustment cost: NKSM_low_I.mod

%%%%%%%%%%%%%

%% DMP part%%

%%%%%%%%%%%%%

e_DMP = -lam_w/(1-lam_w); % elasticity for steady-state MC in DMP model firms MC_DMP = (e_DMP-1)/e_DMP; % marginal cost at steady-state

delta_l = 0.97; % AR1 shock to technology parameter (labor augmenting) sigma_l = 0.07; % A1 shock sd (labor augmenting)

delta_TFP = 0.95; % AR1 TFP shock parameter sigma_TFP = 0.04; % AR1 TFP shock sd

xi = 0.55; % matching function elasticity parameter: CET

% xi = 0.5; % GST rho = 0.1; % job separation rate: CET

% rho = 0.105; % GST

Q = 0.7; % average vacancy filling rate: CET

% Q = 0.4517; % GST (also used for AK_CET_Vacancies: all other values like in CET eta = 0.44; % workers bargaining power: Hosios (1990) efficiency condition % for firms bargaining power says xi=eta: here the CET value is used

% eta = 0.589; % GST

%eta = 0.35; % for CET_barg1.mod

%eta=0.25; % for CET_barg2.mod

%eta = 0.589; % for CET_barg3.mod o = 0.965; % outside option: HM setup

% o = 0.982; % GST

%---%

% STEADY-STATE RATIOS and VALUES %

%---%

%%%%%%%%%%%%%

%% DMP part%%

%%%%%%%%%%%%%

N= 0.945; % steady-state employment: CET

% N= 0.94 % GST U = 1-N; % steady-state unemployment

M = rho*N; % steady-state matching: from N=(1-rho)N+M at the steady state V = M/Q; % steady-state vacancies

THETA = U/V; % steady-state labor market tightness qTHETA = M/V; % steady-state job filling rate kappa = 0.30; % costs per vacancy: CET

% kappa = 0.2093; % GST

W = eta*MC_DMP*A+(1-eta)*o+eta*k*THETA; % steady-state wage rate

L=N; % stead state aggregate labor input: since L=A*N with A=1 in steady-state J=(MC_DMP*A-W)/(1-(1-rho)*beta); % steady-state value of a job

%%%%%%%%%%%%%

%% CEE part%%

%%%%%%%%%%%%%

% underscore denotes a ratio

% 2) ENDOGENOUS VALUES (using A=1 at steady-state)

rk_bar = (1/beta-1+delt); % steady-state capital rental rate

K_H = MC_CEE^(1/(alph*(1-alph)))*(rk_bar/alph)^(1/(alph-1)); % capital-labor ratio Y_H = (K_H)^alph; % output-labor ratio

K_Y = K_H/Y_H; % capital-output ratio

72

C_Y = 1-delt*K_Y; % consumption output ratio I_Y = delt*K_Y; % investment over output K= (K_H)^(1/alph)/N % steady-state capital kappa_v_Y =(kappa*V)/(K^alph*L^(1-alph)); % steady-state total vacancy cost/ output ratio //wbar_ss = (1-alph)/alph*(K_H)*rk_bar;

% wbar_ss = MC_CEE^(1/(1-alph))*(1-alph)*alph^(alph/(1-alph))*rk_bar^(alph/(alph-1))/R;

% steady-state wage (redundant: determined in DMP model)

%---%

% Simplifying Parameters %

%---%

% b_w = (2*lam_w - 1)/((1-xi_w)*(1-beta*xi_w));

sig_c = (1-chi)/(1-chi-b)*(1-beta*chi)/(1-beta*chi-beta*b);

%---%

% MONETARY RULE %

%---%

rho_pi = 1.5; % monetary rule parameter (on inflation) as used by CEE

% rho_pi = 1.36; % CET

% rho_pi = 1.99; % GST

rho_y = 0.5; % monetary rule parameter (on output) as used by CEE

% rho_y = 0.01; % CET

% rho_y = 0.019; % GST

rho_r = 0.8; % monetary rule parameter (on lagged interest rate) as used by CEE

% rho_r = 0.82; % CET

% rho_r = 0.7; % GST

%---%

% Investment Shocks %

%---%

A = 1; % steady-state technology (normalized to 1)

delta_l = 0.97; % AR1 shock to technology parameter (labor augmenting) sigma_l = 0.7; % A1 shock sd (labor augmenting)

delta_TFP = 0.95; % AR1 TFP shock parameter sigma_TFP = 0.4; % AR1 TFP shock sd

model(linear);

%%%%%%%%%%%%%

%% CEE part%%

%%%%%%%%%%%%%

% A.3.1 Inflation Phillips curve

pi = (1/(1+beta))*pi(-1) + (beta/(1+beta))*pi(+1) + ((1-beta*xi_p)*(1-xi_p)/((1+beta)*xi_p))*s;

% A.3.2. Money demand

q = (-1/sig_q)*(R/(R-1)*r + psi);

% A.3.3 Wage Phillips curve

%0 = w(-1) - ((b_w*(1+beta*xi_w^2)-lam_w)/(b_w*xi_w))*w + beta*w(+1) + (beta*(pi(+1) - pi)

% - (pi - pi(-1))) + ((1-lam_w)/(b_w*xi_w))*(psi-l);

% A.3.4 Household intertemporal Euler equation 0 = psi(+1) + r(+1) - pi(+1) - psi;

% A.3.5 Capital Euler equation

0 = -p_ki - psi + psi(+1) + (1-beta*(1-delt))*(rk(+1)) + beta*(1-delt)*p_ki(+1);

% A.3.6 Aggregate resource constraint (without variable capital utilization)

1/beta - (1-delt))*(K_Y/C_Y)*u + c + delt*(K_Y/C_Y)*i = (alph/C_Y)*k + ((1-alph)/C_Y)*l;

% A.3.7 Loan market clearing

0 = mubar*mbar*(mu + m2) - qbar_ss*q - W*L*(pw + l);

% A.3.8 Relation between money growth and the inflation rate 0 = mu(-1) + m2(-1) - pi - m2;

% A.3.9 Definition of habit formation h = chi*h(-1) + (1-chi)*c(-1);

% A.3.10 Consumption Euler equation

0 = -beta*chi*psi(+1) + sig_c*(c - h*b/(1-chi)) - (b+chi)*beta*sig_c*(c(+1) - h(+1)*b/(1-chi)) + psi;

% A.3.11 Investment Euler equation

p_ki = eta_k*(i - i(-1) - beta*(i(+1) - i));

% A.3.12 Capital accumulation equation kbar = (1-delt)*kbar(-1) + delt*i;

73

% A.3.13 FOC for capital utilization u -(1/sig_a)*rk = 0;

% A.3.14 Definition of capacity utilization u = k - kbar(-1);

% A.3.15 Return on capital rk = pw + r + l - k;

% A.3.16 Taylor rule

r = (1-rho_r)*(rho_pi*pi + rho_y*y) +rho_r*r(-1) - eR;

% r = (1-rho_r)*(rho_pi*pi(+1) + rho_y*y) +rho_r*r(-1) - eR; % this is the CEE variant; also % use it for _Taylor.mod files

% A.3.17 Definition of real marginal cost s = alph*rk + (1-alph)*(pw + r);

% A.3.18 Cobb-Douglas production function

y = z+alph*k + (1-alph)*l; % including the TFP shock, denoted by z

% Definition of further variables (compare CEE)

% A.3.19 Real Wage qbar = q - pi;

A.3.20 Real Cash Balances wbar = w - pi;

%%%%%%%%%%%%%%

%% DMP part %%

%%%%%%%%%%%%%%

% A.4.1 Aggregate resource constraint (with variable capital utilization)

(1/beta - (1-delt))*(K_Y/C_Y)*u + c + delt*(K_Y/C_Y)*i +(kappa_v_Y/C_Y)*v= (alph/C_Y)*k + ((1-alph)/C_Y)*(n+a);

% A. 4.2 AR1 technology shock

0 = a - delta_l*a(-1) - epsilon; % labor augmenting (delete this for CEE variant) 0=z-delta_TFP*z(-1) - epsilon_TFP; % TFP shock (keep this for CEE as well)

% A.4.3 price charged for aggregate labor input equals marginal costs: competitive firms pw=mc;

% A.4.4 The DMP production fct: aggregate labor input used in intermediate goods production l=a+n;

% A.4.6 unemployment equation 0 = (N/U)*n+un;

% A.4.7 matching function m = (1-xi)*v+xi*un;

% A.4.8 labor market tightness theta = v-un;

% A.4.9 wage equation W*w = eta*MC_DMP*A*(a+mc)+eta*kappa*THETA*theta;

% A.4.10 marginal cost equation(value of a job equation) J*j=MC_DMP*A*(mc+a)-(W*w)+(1-rho)*beta*J*(j(+1)+psi(+1)-psi);

% A.4.11 job creation condition

xi*theta =psi(+1)-psi+j(+1);

end;

steady;

check;

shocks;

var eR; stderr 0.6;

var epsilon = sigma_l^2;

var epsilon_TFP= sigma_TFP^2;

end;

% stoch_simul(irf=25,nocorr,hp_filter=1600); % default: displays IRFs of the variables stoch_simul(irf=25,nocorr,nodisplay,hp_filter=1600);% used for the matlab function that % combines the IRFs automatically

74 The MATLAB code only needs to be copied into a new script and saved as a regular MATLAB file (with the ending .m). Once the Dynare files are saved accordingly, the MATLAB file produces all the figures used in this thesis.

%%% Alexander Koll, Johannes Kepler University Linz, May 2015 %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Unemployment, the business cycle and monetary policy %%%

%%% Augmenting a medium sized New Keynesian DSGE model

%%% with labor market dynamic

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this file produces all the Impulse Response Functions used throughout this thesis

% before running, make sure the files of all models are saved in the working directory

% with the names as written after each Dynare command below

% make sure the workspace in MATLAB is cleared to ensure no existing data interferes with the simulation

clear

% close all % only needed in case the graphs cannot be opened

% close all open % like above clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%

%%% the following part contains all the model names that need to be saved %%% in the working

%%%directory of MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%

dynare CEE2005_flexW.mod noclearall load('CEE2005_flexW_results.mat', 'oo_') irf1=oo_.irfs;

save irf1 oo_1=oo_

load irf1

dynare CEE2005_timing.mod noclearall load('CEE2005_timing_results.mat', 'oo_') irf2=oo_.irfs;

oo_2=oo_

save irf2 load irf2

dynare AK_CEE.mod noclearall load('AK_CEE_results.mat', 'oo_') irf3=oo_.irfs;

oo_3=oo_

save irf3 load irf3

unemp3=un_eR*U % this is needed to obtain percentage point deviations save irf3

load irf3

dynare AK_CET.mod noclearall load('AK_CET_results.mat', 'oo_') irf4=oo_.irfs;

oo_4=oo_

save irf4 load irf4 unemp4=un_eR*U save irf4 load irf4

dynare AK_GST.mod noclearall load('AK_GST_results.mat', 'oo_') irf5=oo_.irfs;

oo_5=oo_

save irf5 load irf5 unemp5=un_eR*U save irf5 load irf5

%%% lower investment adjustment costs dynare NKSM_low_I.mod noclearall load('NKSM_low_I_results.mat', 'oo_') irf6=oo_.irfs;

oo_6=oo_

75

save irf6 load irf6 unemp6=un_eR*U save irf6 load irf6

%%% impact of the steady-state vacancy filling rate dynare AK_CET_Vacancies.mod noclearall

load('AK_CET_Vacancies_results.mat', 'oo_') irf7=oo_.irfs;

oo_7=oo_

save irf7 load irf7 unemp7=un_eR*U save irf7 load irf7

%%% impact of different Taylor rules

dynare CEE2005_timing_Taylor.mod noclearall load('CEE2005_timing_Taylor_results.mat', 'oo_') irf8=oo_.irfs;

oo_8=oo_

save irf8 load irf8

%%% impact of the capital share on the models performance dynare CET_alpha1.mod noclearall

load('CET_alpha1_results.mat', 'oo_') irf9=oo_.irfs;

oo_9=oo_

save irf9 load irf9 unemp9=un_eR*U save irf9 load irf9

dynare CET_alpha2.mod noclearall load('CET_alpha2_results.mat', 'oo_') irf10=oo_.irfs;

oo_10=oo_

save irf10 load irf10 unemp10=un_eR*U save irf10 load irf10

%%% impact of the worker bargaining power in the CET parameterization dynare CET_barg1.mod noclearall

load('CET_barg1_results.mat', 'oo_') irf11=oo_.irfs;

oo_11=oo_

save irf11 load irf11 unemp11=un_eR*U save irf11 load irf11

dynare CET_barg2.mod noclearall load('CET_barg2_results.mat', 'oo_') irf12=oo_.irfs;

oo_12=oo_

save irf12 load irf12 unemp12=un_eR*U save irf12 load irf12

dynare CET_barg3.mod noclearall load('CET_barg3_results.mat', 'oo_') irf13=oo_.irfs;

oo_13=oo_

save irf13 load irf13 unemp13=un_eR*U save irf13 load irf13

76

% for TFP shocks

dynare AK_CET_TFP.mod noclearall load('AK_CET_TFP_results.mat', 'oo_') irf14=oo_.irfs;

oo_14=oo_

save irf14 load irf14

unemp14=un_epsilon_TFP*U save irf14

load irf14

dynare AK_CEE_TFP.mod noclearall load('AK_CEE_TFP_results.mat', 'oo_') irf15=oo_.irfs;

oo_15=oo_

save irf15 load irf15

unemp15=un_epsilon_TFP*U save irf5

load irf15

dynare AK_GST_TFP.mod noclearall load('AK_GST_TFP_results.mat', 'oo_') irf16=oo_.irfs;

oo_16=oo_

save irf16 load irf16

unemp16=un_epsilon_TFP*U save irf16

load irf16

%%%%%%%% commands that produce the graphs from this thesis %%%%%%

set(gcf,'Position',[400 50 800 700])

%% this code sets the size of %the plots in a way that ensures readability

%%% Taylor rules: section 6.2 of this thesis plot(oo_2.irfs.pi_eR,'k--');hold

all;plot(oo_8.irfs.pi_eR,'Color',[0.6,0.5,0.8],'marker','+');hold off;title('Response of Inflation to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend1=legend('Benchmark CEE','Benchmark CEE with Taylor Rule from CET','Location','Best');

set(legend1,'FontSize',17)

savefig('Response of Inflation to a MP shock for Different Taylor rules')

plot(oo_2.irfs.y_eR,'k--');hold

all;plot(oo_8.irfs.y_eR,'Color',[0.6,0.5,0.8],'marker','+');hold off;title('Response of Output to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend2=legend('Benchmark CEE','Benchmark CEE with Taylor Rule from CET','Location','Best');

set(legend2,'FontSize',17)

savefig('Response of Output to a MP shock for Different Taylor rules')

plot(oo_2.irfs.r_eR,'k--');hold

all;plot(oo_8.irfs.r_eR,'Color',[0.6,0.5,0.8],'marker','+');hold off;title('Response of the Interest Rate to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize',

17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17) legend3=legend('Benchmark CEE','Benchmark CEE with Taylor Rule from CET','Location','southeast');

set(legend3,'FontSize',17)

savefig('Response of the Interest Rate to a MP shock for Different Taylor rules')

%%% IRFs of shocks to Monetary Policy: section 6.3 of this thesis plot(oo_1.irfs.pi_eR,'b:');hold

all;plot(oo_2.irfs.pi_eR,'k--');plot(oo_3.irfs.pi_eR,'r');plot(oo_4.irfs.pi_eR,'c');plot(oo_5.irfs.pi_eR,'m'); hold off;title('Response of Inflation to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17) legend4=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CEE Parameters','NKSM CET Parameters','NKSM GST Parameters','Location','Best')

set(legend4,'FontSize',17)

axis([0 20 -0.4 0.6]) % this sets the axis limits for the various plots, the first two entries %relate to the size of the x axes

savefig('Response of Inflation to a MP shock')

plot(oo_1.irfs.w_eR,'b:');hold

all;plot(oo_2.irfs.w_eR,'k--');plot(oo_3.irfs.w_eR,'r');plot(oo_4.irfs.w_eR,'c');plot(oo_5.irfs.w_eR,'m');hold

77

off;title('Response of Wages to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend4=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CEE Parameters','NKSM CET Parameters','NKSM GST Parameters','Location','Best')

set(legend4,'FontSize',17) axis([0 25 -0.4 1.6])

savefig('Response of Wages to a MP shock')

plot(oo_1.irfs.y_eR,'b:');hold

all;plot(oo_2.irfs.y_eR,'k--');plot(oo_3.irfs.y_eR,'r');plot(oo_4.irfs.y_eR,'c');plot(oo_5.irfs.y_eR,'m');hold

off;title('Response of Output to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend5=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CEE Parameters','NKSM CET Parameters','NKSM GST Parameters','Location','Best')

set(legend5,'FontSize',17) axis([0 20 -0.5 1])

savefig('Response of Output to a MP shock')

plot(unemp3,'r');hold all;plot(unemp4,'c');plot(unemp5,'m');hold off;title('Response of Unemployment to a MP Shock', 'FontSize', 20);ylabel('Percentage Point Deviation from the Unshocked Path', 'FontSize', 17)

legend6=legend('NKSM CEE Parameters','NKSM CET Parameters','NKSM GST Parameters','Location','Best');xlabel('Quarters', 'FontSize', 17) set(legend6,'FontSize',17)

axis([0 15 -0.25 0.2])

savefig('Response of Unemployment to a MP Shock')

plot(oo_1.irfs.r_eR,'b:');hold

all;plot(oo_2.irfs.r_eR,'k--');plot(oo_3.irfs.r_eR,'r');plot(oo_4.irfs.r_eR,'c');plot(oo_5.irfs.r_eR,'m');hold

off;title('Response of the Interest Rate to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize',17)

legend7=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CEE Parameters','NKSM CET Parameters','NKSM GST Parameters','Location','Best')

set(legend7,'FontSize',17) axis([0 25 -0.7 0.2])

savefig('Response of the Interest Rate to a MP shock')

plot(oo_1.irfs.i_eR,'b:');hold

all;plot(oo_2.irfs.i_eR,'k--');plot(oo_3.irfs.i_eR,'r');plot(oo_4.irfs.i_eR,'c');plot(oo_5.irfs.i_eR,'m');hold off;title('Response of Investment to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17) legend8=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CEE Parameters','NKSM CET Parameters','NKSM GST Parameters','Location','Best')

set(legend8,'FontSize',17) axis([0 25 -1 2])

savefig('Response of Investment to a MP shock')

plot(oo_1.irfs.c_eR,'b:');hold

all;plot(oo_2.irfs.c_eR,'k--');plot(oo_3.irfs.c_eR,'r');plot(oo_4.irfs.c_eR,'c');plot(oo_5.irfs.c_eR,'m');hold off;title('Response of Consumption to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17) legend9=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CEE Parameters','NKSM CET Parameters','NKSM GST Parameters','Location','Best')

set(legend9,'FontSize',17) axis([0 25 -0.1 0.3])

savefig('Response of Consumption to a MP shock')

plot(oo_1.irfs.u_eR,'b:');hold

all;plot(oo_2.irfs.u_eR,'k--');plot(oo_3.irfs.u_eR,'r');plot(oo_4.irfs.u_eR,'c');plot(oo_5.irfs.u_eR,'m');hold

off;title('Response of Capital Utilization to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend10=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CEE Parameters','NKSM CET Parameters','NKSM GST Parameters','Location','Best')

set(legend10,'FontSize',17) axis([0 20 -0.6 1])

savefig('Response of Capital Utilization to a MP shock')

%%% Impulse Response Functions for a variant of the NKSM CET (lower investment adj. costs) and the BM CEE Model:

%%% Figure 6.3.8 and Figure 6.3.9 plot(oo_2.irfs.y_eR,'k--');hold

all;plot(oo_6.irfs.y_eR,'Color',[0.6,0.5,0.8],'marker','+');hold off;title('Response of Output to a MP Shock', 'FontSize', 20);ylabel('Percent Deviation from the Unshocked Path',

'FontSize', 17)

legend11=legend('Benchmark CEE','NKSM Lower Investment Adj.

Costs','Location','Best');xlabel('Quarters', 'FontSize', 17)

78

set(legend11,'FontSize',17)

savefig('Response of Output to Lower Investment Adjustment Cost')

plot(oo_2.irfs.r_eR,'k--');hold all;plot(oo_6.irfs.r_eR,'Color',[0.6,0.5,0.8],'marker','+');

hold off;title('Response of the Interest Rate to a MP Shock', 'FontSize',

20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend12=legend('Benchmark CEE','NKSM Lower Investment Adj. Costs','Location','Best') set(legend12,'FontSize',17)

savefig ('Response of the Interest Rate to Lower Investment Adjustment Cost')

plot(oo_2.irfs.i_eR,'k--');hold all;plot(oo_6.irfs.i_eR,'Color',[0.6,0.5,0.8],'marker','+');

hold off;title('Response of Investment to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17) legend13=legend('Benchmark CEE','NKSM Lower Investment Adj. Costs','Location','Best') set(legend13,'FontSize',17)

savefig ('Response of Investment to Lower Investment Adjustment Cost')

plot(oo_2.irfs.c_eR,'k--');hold all;plot(oo_6.irfs.c_eR,'Color',[0.6,0.5,0.8],'marker','+');

hold off;title('Response of Consumption to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17) legend14=legend('Benchmark CEE','NKSM Lower Investment Adj. Costs','Location','Best') set(legend14,'FontSize',17)

savefig ('Response of Consumption to Lower Investment Adjustment Cost')

plot(unemp4,'c');hold all;plot(unemp6,'Color',[0.6,0.5,0.8],'marker','+'); hold off;title('Response of Unemployment to a MP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend15=legend('NKSM CET Parameters','NKSM Lower Investment Adj. Costs','Location','Best') set(legend15,'FontSize',17)

axis([0 22 -0.25 0.1])

savefig('Response of Unemployment to Lower Investment Adjustment Cost')

%%% IRFs for different capital shares in the NKSM CET parameterization

%%% not provided in this thesis

plot(unemp4,'c'); hold on ;plot(unemp9,'m');plot(unemp10,'b');hold off;title('Response of Unemployment to Different Capital Shares', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percentage Point Deviation from the Unshocked Path', 'FontSize', 17)

legend16=legend('NKSM CET Parameters','NKSM CET \alpha=0.36','NKSM CET

\alpha=0.2','Location','Best') set(legend16,'FontSize',17)

savefig('Response of Unemployment to Different Capital Shares')

plot(oo_4.irfs.y_eR,'c'); hold on ;plot(oo_9.irfs.y_eR,'m');plot(oo_10.irfs.y_eR,'b');hold off;title('Response of Output to Different Capital Shares', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 20)

legend17=legend('NKSM CET Parameters','NKSM CET \alpha=0.36','NKSM CET

\alpha=0.2','Location','Best') set(legend17,'FontSize',17)

savefig('Response of Output to Different Capital Shares')

plot(oo_4.irfs.pi_eR,'c'); hold on ;plot(oo_9.irfs.pi_eR,'m');plot(oo_10.irfs.pi_eR,'b');hold off;title('Response of Inflation to Different Capital Shares', 'FontSize',

20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend18=legend('NKSM CET Parameters','NKSM CET \alpha=0.36','NKSM CET

\alpha=0.2','Location','Best') set(legend18,'FontSize',17)

savefig('Response of Inflation to Different Capital Shares')

%%% produces graphs for different vacancy filling rates

%%% Figure 6.4.1

plot(unemp4,'c'); hold on ;plot(unemp7,'Color',[0.6,0.5,0.8],'marker','+');hold off;title('Response of Unemployment to Different Vacancy Filling Rates', 'FontSize',

20);xlabel('Quarters', 'FontSize', 17);ylabel('Percentage Point Deviation from the Unshocked Path', 'FontSize', 17)

legend19=legend('NKSM CET Parameters','NKSM CET with Vacancy Filling Rate of GST','Location','Best')

set(legend19,'FontSize',17)

savefig('Response of Unemployment to Different Vacancy Filling Rates')

plot(oo_4.irfs.y_eR,'c'); hold on

;plot(oo_7.irfs.y_eR,'Color',[0.6,0.5,0.8],'marker','+');hold off;title('Response of Output to Different Vacancy Filling Rates', 'FontSize', 20);xlabel('Quarters', 'FontSize',

17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

79

legend20=legend('NKSM CET Parameters','NKSM CET with Vacancy Filling Rate of GST','Location','Best')

set(legend20,'FontSize',17)

savefig('Response of Output to Different Vacancy Filling Rates')

plot(oo_4.irfs.pi_eR,'c'); hold on

;plot(oo_7.irfs.pi_eR,'Color',[0.6,0.5,0.8],'marker','+');hold off;title('Response of

Inflation to Different Vacancy Filling Rates', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend21=legend('NKSM CET Parameters','NKSM CET with Vacancy Filling Rate of GST','Location','Best')

set(legend21,'FontSize',17)

savefig('Response of Inflation to Different Vacancy Filling Rates')

%%% IRFs for different values of the worker bargaining power (eta) plot(unemp4,'c'); hold on

;plot(unemp11,'r');plot(unemp12,'Color',[0.6,0.5,0.8]);plot(unemp13,'m');hold off;title('Response of Unemployment to Changes in Bargaining Power', 'FontSize',

20);xlabel('Quarters', 'FontSize', 17);ylabel('Percentage Point Deviation from the Unshocked Path', 'FontSize', 17)

legend22=legend('NKSM CET Parameters','NKSM CET \eta=0.35','NKSM CET \eta=0.25','NKSM CET

\eta=0.589 (GST)','Location','Best') set(legend22,'FontSize',17)

savefig('Response of Unemployment to Different Values of the Worker Bargaining Power')

plot(oo_4.irfs.y_eR,'c'); hold on

;plot(oo_11.irfs.y_eR,'r');plot(oo_12.irfs.y_eR,'Color',[0.6,0.5,0.8]);plot(oo_13.irfs.y_eR,'m ');hold off;title('Response of Output to Changes in Bargaining Power', 'FontSize',

20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 20)

legend23=legend('NKSM CET Parameters','NKSM CET \eta=0.35','NKSM CET \eta=0.25','NKSM CET

\eta=0.589 (GST)','Location','Best') set(legend23,'FontSize',17)

savefig('Response of Output to Different Values of the Worker Bargaining Power')

plot(oo_4.irfs.pi_eR,'c'); hold on

;plot(oo_11.irfs.pi_eR,'r');plot(oo_12.irfs.pi_eR,'Color',[0.6,0.5,0.8]);plot(oo_13.irfs.pi_eR ,'m');hold off;title('Response of Inflation to Changes in Bargaining Power', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend24=legend('NKSM CET Parameters','NKSM CET \eta=0.35','NKSM CET \eta=0.25','NKSM CET

\eta=0.589 (GST)','Location','Best') set(legend24,'FontSize',17)

savefig('Response of Inflation to Different Values of the Worker Bargaining Power')

plot(oo_4.irfs.w_eR,'c'); hold on

;plot(oo_11.irfs.w_eR,'r');plot(oo_12.irfs.w_eR,'Color',[0.6,0.5,0.8]);plot(oo_13.irfs.w_eR,'m ');hold off;title('Response of Wages to Changes in Bargaining Power', 'FontSize',

20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend24=legend('NKSM CET Parameters','NKSM CET \eta=0.35','NKSM CET \eta=0.25','NKSM CET

\eta=0.589 (GST)','Location','Best') set(legend24,'FontSize',17)

savefig('Response of Wages to Different Values of the Worker Bargaining Power')

%%% IRFs for TFP shock (with identical Taylor rules as used by CEE)

plot(oo_1.irfs.r_epsilon_TFP,'b:');hold

all;plot(oo_2.irfs.r_epsilon_TFP,'k--');plot(oo_14.irfs.r_epsilon_TFP,'c');plot(oo_15.irfs.r_epsilon_TFP,'r');plot(oo_16.irfs.r_eps ilon_TFP,'m'); hold off;title('Response of the Interest Rate to a TFP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend25=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CET Parameters','NKSM CEE Parameters','NKSM GST Parameters','Location','Best');

set(legend25,'FontSize',17)

savefig('Response of the Interest Rate to a TFP shock Taylor')

plot(oo_1.irfs.y_epsilon_TFP,'b:');hold

all;plot(oo_2.irfs.y_epsilon_TFP,'k--');plot(oo_14.irfs.y_epsilon_TFP,'c');plot(oo_15.irfs.y_epsilon_TFP,'r');plot(oo_16.irfs.y_eps ilon_TFP,'m');hold off;title('Response of Output to a TFP Shock', 'FontSize',

20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend26=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CET Parameters','NKSM CEE Parameters','NKSM GST Parameters','Location','Best')

set(legend26,'FontSize',17)

savefig('Response of Output to a TFP shock Taylor')

80

plot(unemp14,'c');hold all;plot(unemp15,'r');plot(unemp16,'m');hold off;title('Response of Unemployment to a TFP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize',

17);ylabel('Percentage Point Deviation from Unshocked Path', 'FontSize', 17) legend27=legend('NKSM CET Parameters','NKSM CEE Parameters','NKSM GST

Parameters','Location','Best') set(legend27,'FontSize',17)

savefig('Response of Unemployment to a TFP Shock Taylor')

plot(oo_1.irfs.i_epsilon_TFP,'b:');hold

all;plot(oo_2.irfs.i_epsilon_TFP,'k--');plot(oo_14.irfs.i_epsilon_TFP,'c');plot(oo_15.irfs.i_epsilon_TFP,'r');plot(oo_16.irfs.i_eps ilon_TFP,'m');hold off;title('Response of Investment to a TFP Shock', 'FontSize',

20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend28=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CET Parameters','NKSM CEE Parameters','NKSM GST Parameters','Location','Best')

set(legend28,'FontSize',17)

savefig('Response of Investment to a TFP shock Taylor')

plot(oo_1.irfs.pi_epsilon_TFP,'b:');hold

all;plot(oo_2.irfs.pi_epsilon_TFP,'k--');plot(oo_14.irfs.pi_epsilon_TFP,'c');plot(oo_15.irfs.pi_epsilon_TFP,'r');plot(oo_16.irfs.pi_

epsilon_TFP,'m');hold off;title('Response of Inflation to a TFP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend29=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CET Parameters','NKSM CEE Parameters','NKSM GST Parameters','Location','Best')

set(legend29,'FontSize',17)

savefig('Response of Inflation to a TFP shock Taylor')

plot(oo_1.irfs.y_epsilon_TFP,'b:');hold

all;plot(oo_2.irfs.y_epsilon_TFP,'k--');plot(oo_14.irfs.y_epsilon_TFP,'c');plot(oo_15.irfs.y_epsilon_TFP,'r');plot(oo_16.irfs.y_eps ilon_TFP,'m');hold off;title('Response of Output to a TFP Shock', 'FontSize',

20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend26=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CET Parameters','NKSM CEE Parameters','NKSM GST Parameters','Location','Best')

set(legend26,'FontSize',17) axis([0 15 -0.2 0.8])

savefig('Response of Output to a TFP shock Taylor 2')

plot(unemp14,'c');hold all;plot(unemp15,'r');plot(unemp16,'m');hold off;title('Response of Unemployment to a TFP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize',

17);ylabel('Percentage Point Deviation from the Unshocked Path', 'FontSize', 17) legend27=legend('NKSM CET Parameters','NKSM CEE Parameters','NKSM GST

Parameters','Location','Best') set(legend27,'FontSize',17) axis([0 15 -0.2 0.2])

savefig('Response of Unemployment to a TFP Shock Taylor 2')

plot(oo_1.irfs.pi_epsilon_TFP,'b:');hold

all;plot(oo_2.irfs.pi_epsilon_TFP,'k--');plot(oo_14.irfs.pi_epsilon_TFP,'c');plot(oo_15.irfs.pi_epsilon_TFP,'r');plot(oo_16.irfs.pi_

epsilon_TFP,'m');hold off;title('Response of Inflation to a TFP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend29=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CET Parameters','NKSM CEE Parameters','NKSM GST Parameters','Location','Best')

set(legend29,'FontSize',17) axis([0 15 -0.8 0.2])

savefig('Response of Inflation to a TFP shock Taylor 2')

plot(oo_1.irfs.r_epsilon_TFP,'b:');hold

all;plot(oo_2.irfs.r_epsilon_TFP,'k--');plot(oo_14.irfs.r_epsilon_TFP,'c');plot(oo_15.irfs.r_epsilon_TFP,'r');plot(oo_16.irfs.r_eps ilon_TFP,'m'); hold off;title('Response of the Interest Rate to a TFP Shock', 'FontSize', 20);xlabel('Quarters', 'FontSize', 17);ylabel('Percent Deviation from the Unshocked Path', 'FontSize', 17)

legend25=legend('Benchmark Flexible Wage','Benchmark CEE','NKSM CET Parameters','NKSM CEE Parameters','NKSM GST Parameters','Location','Best')

set(legend25,'FontSize',17) axis([0 15 -0.4 0.2])

savefig('Response of the Interest Rate to a TFP shock Taylor 2')

81 B. List of Figures

Figure 3.1-1 Model and VAR based Impulse Responses (CEE 2005) ... 6

Figure 3.3-1 The Model Economy ... 7

Figure 3.6-1 Habit Formation in the Utility Function ... 12

Figure 4-1 Dice-DFH Mean Vacancy Duration Measure ... 20

Figure 6.2-1 Impact of different Taylor Rules ... 33

Figure 6.2-2 Impact of different Taylor Rules on the Interest Rate ... 33

Figure 6.3-1 Impulse Response of Inflation for Flexible and Sticky Wages ... 34

Figure 6.3-2 Response of Wages to a Monetary Policy Shock ... 35

Figure 6.3-3 Response of Output to a Monetary Policy Shock ... 35

Figure 6.3-4 Response of Unemployment to a Monetary Policy Shock ... 36

Figure 6.3-5 Response of Capital Utilization to a Monetary Policy Shock ... 37

Figure 6.3-6 Impulse Response Functions of Several Variables to a Monetary Policy Shock ... 38

Figure 6.3-7 Impulse Response Functions for a variant of the NKSM CET and the BM CEE Model ... 39

Figure 6.3-8 Impulse Response of Unemployment to a MP shock with lower Investment Adustment Costs ... 39

Figure 6.4-1 Impulse Responses of the NKSM CET Model with Different Vacancy Filling Rates ... 41

Figure 6.4-2 Impulse Responses of the NKSM CET Model to Changes in Worker Bargaining Power ... 42

Figure 6.5-1 Impulse Response Functions to a TFP Shock in the NKSM CET Model ... 44

Figure 6.5-2 Impulse Response Functions to a Neutral Technology Shock in the Cristiano et al. (2013) Model 44 Figure 6.5-3 Impulse Response of Output, Unemployment and Inflation to a TFP Shock ... 46

Figure 6.5-4 Impulse Responses of the Interest Rate to a TFP Shock ... 47

82 C. References

Adjemian, S., Bastani, H., Juillard, M., KaramΓ©, F., Mihoubi, F., Perendia, G., . . . Villemot, S. (2011). Dynare:

Reference Manual, Version 4. Retrieved Jan 2015, from Dynare Working Papers:

http://www.dynare.org/manual/index_4.html

Andolfatto, D. (1996, Mar). Business Cycles and Labor-Market Search. Retrieved Nov 2014, from The American Economic Review, Vol. 86, No. 1, pp.112-132:

http://www.econ.ucdavis.edu/faculty/kdsalyer/LECTURES/Ecn200e/Andolfatto_Search_RBC.pdf Baldwin, R., Forslid, R., Martin, P., Ottaviano, G., & Robert-Nicoud, F. (2005). Economic Geography and

Public Policy. Princeton University Press.

Barro, R. J. (1977). Long-Term Contracting, Sticky Prices, and Monetary Policy. Journal of Monetary Economics , 3, 305-316. Retrieved Mar 2015, from Journal of Monetary Economics 3, pp. 305-316:

ftp://ftp.soc.uoc.gr/students/master/macro/Barro%20-%20JME%20%281977%29.pdf

Barro, R. J. (2000). An Alternative Approach to Search Frictions. Journal of Political Economy, 108(5), 851-873.

Barro, R. J., & Sala-i-Martin, X. (2004). Economic Growth (2nd ed.). MIT Press.

Basu, S., Fernald, J. G., & Shapiro, M. D. (2001). Productivity Growth in the 1990s: Technology, Utilization, or Adjustment. NBER Working Paper Series, 8359. Retrieved Jan 2015, from

http://www.nber.org/papers/w8359.pdf

Batini, N., & Haldane, A. (1999). Monetary policy rules and inflation forecasts. Retrieved April 2015, from http://www.bankofengland.co.uk/archive/Documents/historicpubs/qb/1999/qb990105.pdf

Blundell, R. (1992). Labour Supply and Taxation: A Survey. Fiscal Studies , 13(3), 15-40.

Calvo, G. A. (1983). Staggered Prices in a Utility-Maximizing Framework. Journal of Monetary Economics(12), 383-398. Retrieved Feb 2015, from Journal of Monetary Economics 12:

http://isites.harvard.edu/fs/docs/icb.topic500592.files/calvo.pdf

Christiano, L. J., Eichenbaum, M. S., & Trabandt, M. (2013, Aug). Unemployment and Business Cycles.

Retrieved Oct 2014, from NBER WORKING PAPER SERIES: http://www.nber.org/papers/w19265 Christiano, L. J., Eichenbaum, M., & Evans, C. (2001, July). Nominal Rigidities and the Dynamic Effects of a

Shock to Monetary Policy. Retrieved Dec 2014, from NBER Working Paper No. 8403:

http://www.nber.org/papers/w8403.pdf

Christiano, L. J., Eichenbaum, M., & Evans, C. L. (1999). Monetary Policy Shocks: What Have We Learned and to What End? Handbook of Macroeconomics, edited by John B. Taylor and Michael Woodford,

1A(Elsevier Sci).

Christiano, L. J., Eichenbaum, M., & Evans, C. L. (2005). Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy. Journal of Political Economy(1), 1-45. Retrieved Oct. 22, 2014, from Journal of Political Economy, vol.113, no.1:

http://www.jstor.org/stable/pdfplus/10.1086/426038?acceptTC=true

Christoffel, K., Kuester, K., & Linzert, T. (2009, Mar). The Role of Labor Markets for Euro Area Monetary Policy. Retrieved Jan 2015, from ECB Working Paper Series:

https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1035.pdf

Christofides, L. N., & Oswald, A. J. (1992). Real Wage Determination and Rent-Sharing in Collective bargaining Agreements. Quarterly Journal of Economics, 107((3)), 985-1002.

Clarida, R., GalΓ­, J., & Gertler, M. (1999, Dec.). The Science of Monetary Policy: A New Keynesian Perspective. Journal of Economic Literature, XXXVII, 1661-1707. Retrieved April 2015

Davis, S. J., Faberman, J. R., & Haltiwanger, J. (2010). The Establishment-Level Behaviour of Vacancies and Hiring. (N. W. SERIES, Ed.) Retrieved Mar 2015, from http://www.nber.org/papers/w16265.pdf Diamond, P. A. (1982, Oct.). Aggregate Demand Management in Search Equilibrium. Journal of Political

Economy, 90(5), 881-89. Retrieved Nov 2014, from Journal of Political Economy, Vol. 90, No. 5, pp.

881-894: http://www.jstor.org/stable/1837124

Dice Holding. (2015). Dice-DFH Vacancy Duration Measure. Retrieved Mar 2015, from http://dicehiringindicators.com/data-charts/

Dixit, A. K., & Stiglitz, J. E. (1977, Jun). Monopolistic Competition and Optimum Product Diversity. The American Economic Review, 67(3), 297-308. Retrieved Aug 2013, from

http://www.nuff.ox.ac.uk/users/klemperer/IO_Files/monopolistic%20competition%20Dixit%20and%20 Stiglitz.pdf

Erceg, C. J., Henderson, D. W., & Levin, A. T. (2000). Optimal monetary policy with staggered wage and price contracts. Journal of Monetary Economics, 46(2), 281-313.

83

Fred Database. (2015, Jan.). LNU03008276. Retrieved from Federal Reserve Bank of St. Louis:

http://research.stlouisfed.org/fred2/series/LNU03008276/downloaddata

Fuhrer, J., & Moore, G. (1995, Feb). Inflation Persistence. The Quarterly Journal of Economics, 110(1), 127-159. Retrieved Apr 2015, from

https://www.uni-erfurt.de/fileadmin/user-docs/Makrooekonomie/SS2013/MA_MakroII/Fuhrer_and_Moore_1995_-_Inflation_Persistence.pdf Gali, J., & Gertler, M. (2000, Feb). Inflation Dynamics: A Structural Econometric Analysis. Retrieved Apr 2015,

from NBER Working Paper 7551: http://www.nber.org/papers/w7551

Gertler, M., Sala, L., & Trigari, A. (2008, Dec). An Estimated Monetary DSGE Model with Unemployment and Staggered Nominal Wage Bargaining. Journal of Money, Credit and Banking, 40(8). Retrieved Nov 2014, from Journal of Money, Credit and Banking, Vol. 40, No. 8:

http://www.econ.nyu.edu/user/gertlerm/GSTaug26.pdf

Greenwood, J., & Hercowitz, Z. (1991, Dec.). The Allocation of Capital and Time over the Business Cycle.

Retrieved April 2015, from http://www.jeremygreenwood.net/papers/gherc91.pdf

Haefke, C., Sonntag, M., & van Rens, T. (2013, Aug). Wage Rigidity and Job Creation. Journal of Monetary Economics, 60(8), 887–899. Retrieved May 2015, from http://www.thijsvanrens.com/wage/

Hagedorn, M., & Manovskii, I. (2008). The Cyclical Behaviour of Equilibrium Unemployment and Vacancies Revisited. Retrieved Aug 2014, from http://economics.sas.upenn.edu/~manovski/papers/BCUV.pdf Hall, R. E. (2005). Job Loss, Job Finding and Unemployment in the U.S. over the Past Fifty Years. NBER

Macroeconomics Annual, 20. Retrieved Oct 2014, from NBER Macroeconomics Annual, Vol. 20:

http://www.nber.org/chapters/c0075.pdf

Hall, R. E., & Milgrom, P. R. (2008). The Limited Influence of Unemployment on the Wage Bargin. American Economic Review, 98(4), 1653-1674. Retrieved Aug 2014, from http://web.stanford.edu/~rehall/Hall-Milgrom_AER_Sept_2008.pdf

Hansen, L. P., & Renault, E. (2010, May). Pricing Kernels and Stochastic Discount Factors. Retrieved Feb 2015, from Encyclopedia of Quantitative Finance:

http://www.unc.edu/depts/econ/profs/renault/Hansen-Renault%20%28EQF-Wiley%29.pdf

Hildreth, A. K., & Oswald, A. J. (1997). Rent-Sharing and Wages: Evidece from Company and Establishment Panels. Journal of Labor Economics, 15((2)), 318-337.

Ilut, C., Motto, R., Rostagno, M., & Christiano, L. (2008, Oct). Monetary Policy and Stock Market Boom-Bust Cycles. Retrieved Nov 2014, from ECB Working Paper Series No 955:

http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp955.pdf

Krause, M. U., & Lubik, T. A. (2007). The (ir)relevance of real wage rigidity in the New Keynesian model with search frictions. Journal of Monetary Economics(54), 706–727. Retrieved May 2014, from Journal of Monetary Economics 54, pp.706–727.

Lagos, R. (2000). An Alternative Approach to Search Frictions. Journal of Political Economy, 108((5)), 851-873.

Lubik, T. A. (2009). Estimating a Search and Matching Model of the Aggregate Labour Market. Economic Quarterly, 95(2), 101–120. Retrieved Mar 2014, from Economic Quarterly, Volume 95, Number 2, pp.101–120:

https://www.richmondfed.org/publications/research/economic_quarterly/2009/spring/pdf/lubik.pdf Merz, M. (1995). Search in the labor market and the real business cycle. Journal of Monetary Economics, 36,

269-300. Retrieved Jun 2014, from http://individual.utoronto.ca/zheli/D14.pdf

Mortensen, D. T., & Pissarides, C. A. (1994, Jul.). Job Creation and Job Destruction in the Theory of Unemployment. The Review of Economic Studies, 61(3), 397-415. Retrieved Aug 2014, from http://www.jstor.org/stable/2297896

Petrongolo, B., & Pissarides, C. A. (2001, Jun). Looking into the Black Box: A Survey of the Matching Function. Journal of Economic Literature, XXXIX, 390-431. Retrieved Mar 2015, from http://personal.lse.ac.uk/petrongo/jel-final.pdf

Pissarides, C. A. (2009, Sept.). The Unemployment Volatility Puzzle: Is Wage Stickyness the Answer?

Econometrica, 77(5), pp. 1339-1369. Retrieved May 2014, from http://personal.lse.ac.uk/pissarid/papers/WB_ECMA.pdf

Rogerson, R., Shimer, R., & Wright, R. (2005, Dec). Search-Theoretic Models of the Labor Market: A Survey.

Journal of Economic Literature, XLIII, 959-988. Retrieved Feb 2015, from http://home.uchicago.edu/shimer/wp/search-survey.pdf

Rubinstein, A. (1982). Perfect Equilibrium in a Bargaining Model. Econometrica , 50((1)), 97-109.

Shimer, R. (2005). Mismatch. Retrieved April 2015, from http://www.nber.org/papers/w11888.pdf

Shimer, R. (2005, Mar.). The Cyclical Behavior of Equilibrium Unemployment and Vacancies. The American Economic Review, 95(1), 25-49. Retrieved Jan 2015, from http://www.jstor.org/stable/4132669

Shimer, R. (2008). Labor Markets and Business Cycles. Retrieved from NBER Reporter: Research Summary No 3: http://www.nber.org/reporter/2008number3/shimer.html