• Keine Ergebnisse gefunden

A. Appendix

A.3. The Log-Linearized System of the CEE Model

All equations that are relevant for simulating the model developed in this thesis are log-linearized with one of the two methods outlined in section A.2 of the appendix. Christiano et al. (2001) use thirteen Euler and other equations to solve the dynamics of the system. Moreover, the Dynare code uses seven auxiliary equations that facilitate finding the solution. The following subsections describe all these equations. For the sake of brevity, only the more complex derivations are shown in detail for the CEE model. The numeric listing is identical to the Dynare code provided in section A.4.

A.3.1. The Inflation Phillips Curve

To facilitate a coherent characterization of the intermediate goods sector problem, the inflation Phillips curve was already discussed in section 3.5. Therefore, no further details will be given here. For ease of reference, equation 3.5-10 is quoted again:

πœ‹Μƒπ‘‘= 1

1 + π›½πœ‹Μƒπ‘‘βˆ’1+ 𝛽

1 + π›½πΈπ‘‘πœ‹Μƒπ‘‘+1+(1 βˆ’ π›½πœ‰π‘)(1 βˆ’ πœ‰π‘)

πœ‰π‘ 𝐸𝑑𝑠̃𝑑 A.3.1

A.3.2. The Money Demand Function

Equation 3.6-9 describes the household’s FOC for nominal cash balances. Log-linearization yields, after dropping constant terms and solving for cash balances:

π‘žΜƒπ‘‘ = βˆ’ 1 πœŽπ‘ž[ 𝑅

𝑅 βˆ’ 1𝑅̂𝑑+ πœ“Μƒπ‘,𝑑] A.3.2 A.3.3. The β€œWage Phillips Curve”

The equation involving the aggregate wage rate is derived as the log-linearized equation 3.7-5, together with 3.7-2. For ease of reference, these equations are quoted again:

Ξ•π‘‘βˆ‘(π›½πœ‰π‘€)π‘™πœ“π‘,𝑑+𝑙(π‘ŠΜ‚π‘‘π‘‹π‘‘π‘™

𝑃𝑑+𝑙 βˆ’ πœ†π‘€2πœ“0(𝑛𝑖,𝑑+𝑙)

πœ“π‘,𝑑+𝑙 ) 𝑛𝑖,𝑑+𝑙 = 0

∞

𝑙=0

,

𝑛𝑖𝑑 = (π‘Šπ‘‘ π‘Šπ‘–π‘‘)

πœ†π‘€ πœ†π‘€βˆ’1

𝑙𝑑. CEE use a few additional definitions in their working paper:

π‘žΜ…π‘‘ = 𝑄𝑑

π‘ƒπ‘‘βˆ’1, 𝑀̅𝑑= π‘Šπ‘‘

π‘ƒπ‘‘βˆ’1 , 𝑀̂𝑑= π‘ŠΜ‚π‘‘

π‘Šπ‘‘. A.3.3.i

In percentage terms, the deviation of the household’s real wage rate from its non-stochastic steady-state value is given by 𝑀̂̃𝑑+ 𝑀̃𝑑. Moreover, 𝑀̅̃𝑑= π‘€Μƒπ‘‘βˆ’ πœ‹Μƒπ‘‘, where πœ‹π‘‘ corresponds to the time 𝑑 inflation rate, denoted by πœ‹π‘‘ = 𝑃𝑑/π‘ƒπ‘‘βˆ’1. This result follows from taking logs of the term in the middle of the equation A.3.3.i, which yields

55 ln(𝑀̅𝑑) = ln(π‘Šπ‘‘) βˆ’ ln(π‘ƒπ‘‘βˆ’1).

The term ln(π‘Šπ‘‘) can be rewritten using the definition of real variables, 𝑀𝑑 = π‘Šπ‘‘/𝑃𝑑. Therefore, ln(𝑀̅𝑑) = ln(𝑀𝑑) βˆ’ ln (𝑃𝑑) βˆ’ ln(π‘ƒπ‘‘βˆ’1).

The time 𝑑 inflation rate in log-linearized terms has the form πœ‹Μƒπ‘‘ = π‘ƒΜƒπ‘‘βˆ’ π‘ƒΜƒπ‘‘βˆ’1. Consequently,

𝑀̅̃𝑑 = π‘€Μƒπ‘‘βˆ’ πœ‹Μƒπ‘‘. A.3.3.ii

Log-linearization of equation 3.7-5, using equation 3.7-2 results in 𝑀̂̃𝑑+ 𝑀̃𝑑 = βˆ‘(π›½πœ‰π‘€)𝑙

∞

𝑙=1

(πœ‹Μƒπ‘‘+π‘™βˆ’ πœ‹Μƒπ‘‘+π‘™βˆ’1) +(1 βˆ’ π›½πœ‰π‘€)(πœ†π‘€ βˆ’ 1)

2πœ†π‘€βˆ’ 1 βˆ‘(π›½πœ‰π‘€)𝑗

∞

𝑗=𝑙

[𝐿̃ 𝑑+𝑗+ πœ†π‘€

πœ†π‘€ βˆ’ 1𝑀̃𝑑+π‘—βˆ’ πœ“Μƒπ‘,𝑑+𝑗].

A.3.3.iii

Comparable to equation 3.5-7, equation 3.7-3 can be rewritten as

π‘Šπ‘‘ = [(1 βˆ’ πœ‰π‘€)π‘ŠΜ‚

𝑑 1

1βˆ’πœ†π‘€+ πœ‰π‘€(πœ‹π‘‘βˆ’1π‘€π‘‘βˆ’1)

1 1βˆ’πœ†π‘€]

1βˆ’πœ†π‘€

.

Dividing this equation by the price level of the current period, and log-linearizing, yields (1 βˆ’ πœ‰π‘€)𝑀̂̃𝑑 = πœ‰π‘€π‘€Μƒπ‘‘βˆ’ πœ‰π‘€(π‘€Μƒπ‘‘βˆ’1(πœ‹Μƒπ‘‘βˆ’ πœ‹Μƒπ‘‘βˆ’1)). A.3.3.iv Merging equation A.3.3.iii with A.3.3.iv results, after some rearrangement, in the final equation

π‘€Μƒπ‘‘βˆ’1 =𝑏𝑀(1 + π›½πœ‰π‘€2) βˆ’ πœ†π‘€

π‘π‘€πœ‰π‘€ πΈπ‘‘π‘€Μƒπ‘‘βˆ’ 𝛽𝐸𝑑𝑀̃𝑑+1

βˆ’ 𝐸𝑑[𝛽(πœ‹Μƒπ‘‘+1βˆ’ πœ‹Μƒπ‘‘) βˆ’ (πœ‹Μƒπ‘‘βˆ’ πœ‹Μƒπ‘‘βˆ’1)]

βˆ’1 βˆ’ πœ†π‘€

π‘π‘€πœ‰π‘€ 𝐸𝑑(πœ“Μƒπ‘,π‘‘βˆ’ 𝑙̃𝑑),

A.3.3

where 𝑏𝑀 = 2πœ†π‘€βˆ’1

(1βˆ’πœ‰π‘€)(1βˆ’π›½πœ‰π‘€).

A.3.4. The Householdβ€˜s Intertemporal Euler Equation

Equation 3.6-10 corresponds to the FOC with respect to the household’s beginning of period 𝑑 + 1 money stock, which has the log-linearized form

𝐸𝑑(πœ“Μƒπ‘,𝑑+1+ 𝑅̃𝑑+1βˆ’ πœ‹Μƒπ‘‘+1βˆ’ πœ“Μƒπ‘,𝑑) = 0 A.3.4

56 A.3.5. The Capital Euler Equation

The fifth equation is the log-linearized Capital Euler equation. To derive this equation, it helps to collect several definitions and functional form assumptions here.

The following two steady-state constraints are imposed on the capital utilization function π‘Ž(𝑒𝑑)

π‘ˆ = 1; π‘Ž(π‘ˆ) = 0. A.3.5.i

Moreover, at the steady-state, the real rental rate on capital equals π‘Ÿπ‘˜ = 1

π›½βˆ’ (1 βˆ’ 𝛿) = π‘Žβ€²(𝑒), A.3.5.ii where the last equality follows directly from equation 3.6-11. Function 3.6-15 describes the evolvement of the capital stock, which is restricted to

𝑆(1) = 𝑆′(1) = 0; πœ‚π‘˜ ≑ 𝑆′′(1) > 0; 𝐹1 = 1; 𝐹2 = 0 A.3.5.iii Given these functional form assumptions, equation 3.6-14 implies that at the steady-state

π‘ƒπ‘˜β€²,𝑑 = π‘ƒπ‘˜β€²,𝑑+1 = 1. A.3.5.iv Equation 3.6-17 is also repeated here for convenience:

Ξ•π‘‘πœ“π‘,𝑑+1[𝑒𝑑+1π‘Ÿπ‘‘+1π‘˜ + π‘ƒπ‘˜β€²,𝑑+1(1 βˆ’ 𝛿) βˆ’ π‘ƒπ‘˜β€²,π‘‘π‘Ž(𝑒𝑑+1)] βˆ’ Ξ•π‘‘πœ“π‘,π‘‘π‘ƒπ‘˜β€²,𝑑 = 0.

Taking logs and ignoring the expectations operator to keep notation concise results in ln(πœ“π‘,𝑑) + 𝑙𝑛(π‘ƒπ‘˜β€²,𝑑) = ln(𝛽) + 𝑙𝑛(πœ“π‘,𝑑+1) + ln [𝑒𝑑+1π‘Ÿπ‘‘+1π‘˜ + π‘ƒπ‘˜β€²,𝑑+1(1 βˆ’ 𝛿) βˆ’ π‘ƒπ‘˜β€²,π‘‘π‘Ž(𝑒𝑑+1)].

Linearization with a first-order Taylor expansion yields 1

πœ“(πœ“π‘,𝑑 βˆ’ πœ“) + 1

π‘ƒπ‘˜β€²(π‘ƒπ‘˜β€²,𝑑 βˆ’ π‘ƒπ‘˜β€²)

= 1

πœ“(πœ“π‘,𝑑+1βˆ’ πœ“)

+ 1

π‘ˆπ‘Ÿπ‘˜βˆ’ π‘Ž(π‘ˆ) + π‘ƒπ‘˜β€²(1 βˆ’ 𝛿)[π‘Ÿπ‘˜(𝑒𝑑+1βˆ’ π‘ˆ)π‘ˆ

π‘ˆ+ π‘ˆ(π‘Ÿπ‘‘+1π‘˜ βˆ’ π‘Ÿπ‘˜)π‘Ÿπ‘˜ π‘Ÿπ‘˜ + (1 βˆ’ 𝛿)(π‘ƒπ‘˜β€²,𝑑+1βˆ’ π‘ƒπ‘˜β€²)π‘ƒπ‘˜β€²

π‘ƒπ‘˜β€²βˆ’ π‘ƒπ‘˜β€²π‘Žβ€²(π‘ˆ)(𝑒𝑑+1βˆ’ π‘ˆ)π‘ˆ π‘ˆ + π‘Ž(π‘ˆ)(π‘ƒπ‘˜β€²,π‘‘βˆ’ π‘ƒπ‘˜β€²)π‘ƒπ‘˜β€²

π‘ƒπ‘˜β€² ], where the steady-state relations were already omitted.

57 This can be greatly simplified using equations A.3.5.i to A.3.5.iv. The term preceding the square brackets can be reformulated with the following steps:

1

π‘ˆπ‘Ÿπ‘˜βˆ’ π‘Ž(π‘ˆ) + π‘ƒπ‘˜β€²(1 βˆ’ 𝛿)= 1

π‘Ÿπ‘˜+ (1 βˆ’ 𝛿)= 1 1

π›½βˆ’ (1 βˆ’ 𝛿) + (1 βˆ’ 𝛿)

= 𝛽. A.3.5.v

Consequently, the total equation can be written as πœ“Μƒπ‘,𝑑+ π‘ƒΜƒπ‘˜β€²,𝑑 = πœ“Μƒπ‘,𝑑+1

+ 𝛽[π‘Ÿπ‘˜π‘ˆπ‘’Μƒπ‘‘+1+ π‘ˆπ‘Ÿπ‘˜π‘ŸΜƒπ‘‘+1π‘˜ + (1 βˆ’ 𝛿)π‘ƒπ‘˜β€²π‘ƒΜƒπ‘˜β€²,𝑑+1βˆ’ π‘ƒπ‘˜β€²π‘Žβ€²(π‘ˆ)π‘ˆπ‘’Μƒπ‘‘+1 + π‘Ž(π‘ˆ)π‘ƒπ‘˜β€²π‘ƒΜƒπ‘˜β€²,𝑑].

Moreover, the term in square brackets can be simplified further. Since π‘ƒπ‘˜β€² = 1, the first and fourth term cancel each other due to A.3.5.ii. The fifth drops out because of A.3.5.i. Thus,

πœ“Μƒπ‘,𝑑 + π‘ƒΜƒπ‘˜β€²,𝑑 = πœ“Μƒπ‘,𝑑+1+ 𝛽[π‘Ÿπ‘˜π‘ŸΜƒπ‘‘+1π‘˜ + (1 βˆ’ 𝛿)π‘ƒΜƒπ‘˜β€²,𝑑+1].

Applying similar steps as the ones carried out in equation A.3.5.v, this expression can be written as

πœ“Μƒπ‘,𝑑+ π‘ƒΜƒπ‘˜β€²,𝑑 = πœ“Μƒπ‘,𝑑+1+ [1 βˆ’ 𝛽(1 βˆ’ 𝛿)]π‘ŸΜƒπ‘‘+1π‘˜ + (1 βˆ’ 𝛿)π›½π‘ƒΜƒπ‘˜β€²,𝑑+1.

Substituting for the return on capital, given by π‘ŸΜƒπ‘‘+1π‘˜ = 𝑀̃𝑑+1+ 𝑅̃𝑑+1+ 𝑙̃𝑑+1βˆ’ π‘˜Μƒπ‘‘+1, results in the final solution, which after reinserting the expectations operator is identical to the equation provided by CEE

0 = 𝐸𝑑{βˆ’π‘ƒΜƒπ‘˜β€²,𝑑 βˆ’ πœ“Μƒπ‘,𝑑+ πœ“Μƒπ‘,𝑑+1+ (1 βˆ’ 𝛽(1 βˆ’ 𝛿))[𝑀̃𝑑+1+ 𝑅̃𝑑+1+ 𝑙̃𝑑+1βˆ’ π‘˜Μƒπ‘‘+1]

+ 𝛽(1 βˆ’ 𝛿)π‘ƒΜƒπ‘˜β€²,𝑑+1}. A.3.5

A.3.6. The Aggregate Resource Constraint

For convenience, the derivation is postponed to subsection A.4.1. This is useful because the steps are identical except for an additional term that accounts for vacancy posting costs in the augmented model. The log-linearized form of the resource constraint provided in equation 3.9-2 is given by

[1

π›½βˆ’ (1 βˆ’ 𝛿)]𝑠𝐾

𝑠𝑐 𝑒̃𝑑+ 𝑐̃𝑑+π›Ώπ‘ π‘˜

𝑠𝑐 𝑖̃𝑑 = 𝛼

π‘ π‘π‘˜Μƒπ‘‘+1 βˆ’ 𝛼

𝑠𝑐 𝑛̃𝑑. A.3.6

A.3.7. The Loan Market Clearing Condition

Equation 3.9-1 in real terms has the form πœ‡π‘‘π‘šπ‘‘βˆ’ π‘žπ‘‘ = 𝑀𝑑𝑙𝑑. Log-linearization results in 𝑀̃𝑑+ 𝑙̃𝑑 = 1

πœ‡π‘€ βˆ’ 𝑄(𝑀(πœ‡π‘‘βˆ’ πœ‡)πœ‡

πœ‡+ πœ‡(π‘šπ‘‘βˆ’ 𝑀)𝑀

π‘€βˆ’ (π‘žπ‘‘βˆ’ 𝑄)𝑄 𝑄).

At the steady-state, 𝑀𝐿 = πœ‡π‘€ βˆ’ 𝑄.

58 Therefore, combining terms and rearranging yields

πœ‡π‘€(πœ‡Μƒπ‘‘+ π‘šΜƒπ‘‘) βˆ’ π‘„π‘žΜƒπ‘‘βˆ’ 𝑀𝐿(𝑀̃𝑑+ 𝑙̃𝑑) = 0. A.3.7 A.3.8. The Money Growth Rate

The money growth rate is defined as πœ‡π‘‘βˆ’1= 𝑀𝑑

π‘€π‘‘βˆ’1. Log-linearization gives

πœ‡Μƒπ‘‘βˆ’1+ π‘šΜƒπ‘‘βˆ’1βˆ’ πœ‹Μƒπ‘‘βˆ’ π‘šΜƒπ‘‘= 0, A.3.8 where again, prior to log-linearization, the definition of real variables, 𝑀𝑑 = π‘Šπ‘‘/𝑃𝑑, was used to rewrite the equation as

πœ‡π‘‘βˆ’1= π‘šπ‘‘π‘ƒπ‘‘ π‘šπ‘‘βˆ’1π‘ƒπ‘‘βˆ’1. A.3.9. The Generalized Habit Formation

CEE define the utility of consumption as π‘π‘‘βˆ’ 𝐻𝑑, with 𝐻𝑑= πœ’π»π‘‘βˆ’1+ π‘π‘π‘‘βˆ’1.52 Log- linearization yields

𝐻̃𝑑 = 1

πœ’π»+𝑏𝐢(πœ’(π»π‘‘βˆ’1βˆ’ 𝐻) + 𝑏(π‘π‘‘βˆ’1βˆ’ 𝑐)𝐢

𝐢), where the steady-state relations 1

πœ’π»+𝑏𝐢 = 𝐻 and 𝐻(1 βˆ’ πœ’) = 𝑏𝑐 can be used to rewrite it as π»Μƒπ‘‘βˆ’ πœ’π»Μƒπ‘‘βˆ’1βˆ’ (1 βˆ’ πœ’)π‘Μƒπ‘‘βˆ’1= 0. A.3.9 However, CEE estimate a value of πœ’ = 0, which essentially renders this equation futile.

Equation A.3.9 is only kept in the system of equations to keep notation in line with CEE.

A.3.10. The Generalized Consumption Euler Equation

Equation 3.6-7, together with equations 3.6-8 and A.3.9 can be log-linearized to the form

𝐸𝑑 {

βˆ’π›½πœ’πœ“Μƒπ‘,𝑑+1 + πœŽΜƒπ‘π‘–[π‘Μƒπ‘‘βˆ’ 𝑏 1 βˆ’ πœ’π»Μƒπ‘‘]

βˆ’(𝑏 + πœ’)π›½πœŽΜƒπ‘π‘–[𝑐̃𝑑+1βˆ’ 𝑏

1 βˆ’ πœ’π»Μƒπ‘‘+1] + πœ“Μƒπ‘,𝑑 }

= 0, A.3.10 with πœŽΜƒπ‘π‘– = 1βˆ’πœ’

1βˆ’πœ’βˆ’π‘ 1βˆ’π›½πœ’ 1βˆ’π›½πœ’βˆ’π›½π‘ .53

52 Note that the working paper of CEE erroneously writes 𝐻𝑑= πœ“π»π‘‘βˆ’1+ π‘π‘π‘‘βˆ’1.

53 Note that given πœ’ = 0, equation A.3.A.3.10 collapses to the standard version because 𝐻̃𝑑= (1 βˆ’ πœ’)π‘Μƒπ‘‘βˆ’1. Therefore, π‘Μƒπ‘‘βˆ’ 𝑏/(1 βˆ’ πœ’)𝐻̃𝑑 becomes π‘Μƒπ‘‘βˆ’ π‘π‘Μƒπ‘‘βˆ’1.

59 A.3.11. The Investment Euler Equation

The log-linearized form of 3.6-14 is

πΈπ‘‘π‘ƒΜƒπ‘˜β€²,𝑑 = πœ‚π‘˜πΈπ‘‘{π‘–Μƒπ‘‘βˆ’ π‘–Μƒπ‘‘βˆ’1βˆ’ 𝛽[𝑖̃𝑑+1βˆ’ 𝑖̃𝑑]}, A.3.11 where equations A.3.5.iii and A.3.5.iv were used for the derivation.

A.3.12. The Capital Accumulation Equation

Capital evolves according to equation 3.6-3, which using the equation 3.6-15, together with the corresponding functional form assumptions provided in A.3.5.iii yields the log-linearized form

π‘˜Μ…Μƒπ‘‘+1 = (1 βˆ’ 𝛿)π‘˜Μ…Μƒπ‘‘+ 𝛿𝑖̃𝑑, A.3.12 where the steady-state relation 𝑖 = π›Ώπ‘˜ was used.

A.3.13. The Household’s Capital Utilization Decision

The Euler equation linked to the household’s capital utilization decision is given by equation 3.6-11. Using the functional form assumptions of equation A.3.5.i and the inverse of the elasticity of the utilization rate to the rental rate of capital as defined in equation 6.3-1, the log-linearized form becomes

𝐸𝑑[π‘ŸΜƒπ‘‘π‘˜βˆ’ πœŽπ‘Žπ‘’Μƒπ‘‘] = 0 A.3.13 This completes the derivation of the thirteen equations used by CEE. The following seven auxiliary equations augment the system in a way that facilitates the solution process in Dynare.

A.3.14. The Definition of Capacity Utilization

Recall from section 3.6 that the physical capital stock, π‘˜Μ…π‘‘, is associated with capital services via the relationship π‘˜π‘‘= π‘’π‘‘π‘˜Μ…π‘‘, with 𝑒𝑑 symbolizing the utilization rate of capital. Log- linearization results in

𝑒̃𝑑 = π‘˜ΜƒΜ…π‘‘βˆ’ π‘˜Μƒπ‘‘, A.3.14 where the Dynare code takes into account that the physical capital stock is assumed to be predetermined in the system.

A.3.15. The Return on Capital

As already mentioned in the discussion of equation A.3.5, the return on capital has the following log-linearized form

π‘ŸΜƒπ‘‘+1π‘˜ = 𝑀̃𝑑+1+ 𝑅̃𝑑+1+ 𝑙̃𝑑+1βˆ’ π‘˜Μƒπ‘‘+1. A.3.15

60 A.3.16. The Taylor Rule

Using the properties of the natural logarithm, the Taylor rule described in equation 6.2-1 can be expressed as

ln(𝑅𝑑) βˆ’ ln(𝑅)

= πœŒπ‘Ÿ[ln(π‘…π‘‘βˆ’1) βˆ’ ln(𝑅)]

+ (1 βˆ’ πœŒπ‘Ÿ)[πœŒπœ‹(ln(πœ‹π‘‘) βˆ’ ln(πœ‹)) + πœŒπ‘Œ(ln(π‘Œπ‘‘) βˆ’ ln(π‘Œ))] + πœ–π‘‘.

A first order Taylor expansion around steady-state yields, after dropping constant terms, the form

𝑅̃𝑑 = πœŒπ‘Ÿπ‘…Μƒπ‘‘βˆ’1+ (1 βˆ’ πœŒπ‘Ÿ)[πœŒπœ‹πœ‹Μƒπ‘‘+ πœŒπ‘ŒYΜƒt] + πœ–π‘‘. 0.a Consequently, the CEE variant described in section 3.8 has the log-linearized form

𝑅̃𝑑= πœŒπ‘Ÿπ‘…Μƒπ‘‘βˆ’1+ (1 βˆ’ πœŒπ‘Ÿ)[πœŒπœ‹Ξ•π‘‘πœ‹Μƒπ‘‘+1+ πœŒπ‘ŒYΜƒt] + πœ–π‘‘. 0.b A.3.17. Real Marginal Cost

As derived in appendix A.1, cost minimization in the intermediate goods sector implies that real marginal costs have the form of equation 3.5-2. Log-linearization yields

𝑠̃𝑑= π›Όπ‘ŸΜƒπ‘‘π‘˜+ (1 βˆ’ 𝛼)𝑀̃𝑑𝑅̃𝑑. A.3.17 A.3.18. The Cobb-Douglas Production Function

Equation 5.4.2-1 describes the production function in the intermediate goods sector, which has the following log-linearized form:

𝑦̃𝑑= π›Όπ‘˜Μƒπ‘‘+ (1 βˆ’ 𝛼)𝑙̃𝑑. A.3.18 A.3.19. The Real Wage as Defined in CEE

CEE define the wage in their thirteen variable system as shown in equation A.3.3.i. For ease of reference, the corresponding log-linearized form, equation A.3.3.ii, is quoted again:

𝑀̅̃𝑑 = π‘€Μƒπ‘‘βˆ’ πœ‹Μƒπ‘‘. A.3.19

A.3.20. Real Cash Balances

Consistent with equation A.3.19, real cash balances in log-linearized form give

π‘žΜ…Μƒπ‘‘ = π‘žΜƒπ‘‘βˆ’ πœ‹Μƒπ‘‘. A.3.20