• Keine Ergebnisse gefunden

Lepus

X- ray survey: dipole velocity profile

Figure 4.3. Left: A projetion of the intermediate-sale struture inour

neigh-bourhoodto thesupergalati

x − y

plane. Theontoursindiatedensityaording

to

(1, 3, 0.5) × 10 3

lusters Mp

2

respetively. The Shapley onentration repre-sents the most massive strutureinthe shown distane range. Onean learly see

thezoneofavoidane,fromwhihoptialdataannotbetaken. Right: dipoleprole

as derived fromreent X-ray galaxy surveys. TheShapley superluster dominantly

ontributesto thedipolebetween

∼ 100

Mpand

∼ 200

Mp. Thepituresare taken

from[TSVZ92 ℄and[KME04 ℄.

onditionandhave

v 2 c ≃ φ

, whihleadsusto

(4.2)

∆T (θ, ϕ) T

RS

∼ φ 3/2 ∼ δM

d 3/2

.

Wearegoingtomodelthenon-linearstruturebyaspheriallysymmetriLTBmodelembedded

in a at (

Ω = 1

) Friedmann-Robertson-WalkerUniverse. Substituting theexpression for the massexesswithinthismodel[Pan92℄weobtainthePaneksaling

(4.3)

∆T (θ, ϕ) T

RS

∼ δρ

ρ 3/2

d t

3

.

Werepeat,

t

istheosmitimeatwhihtheCMBphotonsrossedthestruture,

d

isitsphysial

sizeand

δρ/ρ

itsdensityontrast. InsertingtheharateristisoftheShapleysuperluster,we seethatindeed aCMBanisotropyof

10 −5

dueto aloalRees-Siamaeetisreasonable.

Foralargeangularsaleof thesoureloaland nearbystrutures this indues

ontri-butionsto thelow-

multipoles, espeiallythedipole,quadrupole and otopole. This, in turn, ould inlude a non-Doppler ontribution to thedipole. This would imply ahange of afew

perent in the inferred dipole veloity, whih might also explain someof theCMB anomalies

[FGM

+

06℄. The Shapleyonentrationis anon-linear struture,and the amplitudeof the

in-duedanisotropiesannot be reliablyalulatedin linearperturbation theory. Aordingto a

omparisonoflinearandexatalulationsforGreatAttrator-likeobjetswiththeLTBmodel

in [FSA94℄, linear theoryis reliableat distanes omparableto the Hubblesale, but failsfor

strutureswithin1000

h −1

Mporso.

The advantage of the spherial symmetry of the LTB model is that it allows exat

al-ulations fornon-linear objets; thedrawbakis that theobserved non-linearobjetssuh as

theGreatAttratorandtheShapleyonentrationdonotappearto bespheriallysymmetri.

Figure4.4. AMollweidemapshowingtheforegroundswhihtheWMAP

ollabora-tiontakesintoaountformapleaning.Theonlyextendedforegroundisrepresented

by the galatiregion. Theregions shownin pinkand beige indiatethe so alled

Kp0andKp2diuseemissionmasksusedbytheWMAPollaborationtoobtain

os-mologialmaps. Fordetails ofthemap-makingproess see[J

+

07a ℄ and[H

+

07℄. All

oftheremainingforegroundsthathavebeentakenintoaountarepointsoures. In

this workwe areonsideringthe(Rees-Siama)eetofextendedloalforegrounds,

seeg.4.8. Thepitureistakenfrom[WMAa ℄.

theShapleyonentrationdoesseem toberoughlyspherial[PQC

+

06℄. Also,if thepreferred

diretion indiated by the low-

anomalies is due to loal strutures, this implies that there

indeedisadegreeofsymmetryintheloalmassdistribution.

In addition, there is aseond motivation for studying aspheriallysymmetri

inhomoge-neous model, namely dark energy. If interpreted in the framework of isotropi and

homoge-neousosmology,observationsofSNIaimplythattheexpansionoftheUniverseisaelerating,

.f. se. 1.2.2. However, in an inhomogeneous spaetime the observations are not neessarily

inonsistentwith deeleration, see se. 1.3. Inpartiular, in theLTB model theparameter

q 0

denedwiththeluminositydistane isnolongeradiret measureofaeleration[HMM97℄. It

hasbeensuggestedbyseveralgroupsthataspheriallysymmetriinhomogeneityouldbeused

to explain the SNIa data, see se. 1.3, though it is not lear whether suh amodel ould be

onsistentwithwhatisknownaboutstruturesintheloalUniverse[Bol05℄ortheobservation

ofbaryonosillationsinthematterpowerspetrum. HerewewillonernonlytheCMB.

ThepitureoftheloalUniversethatweadoptisaspheriallysymmetridensity

distribu-tion,withtheloalgroupfallingtowardstheoreoftheoverdensityat theentre,.f. g.4.2.

Thelinebetweenourloationandtheentredenesapreferreddiretion

z ˆ

,whihinthepresent

aseorrespondstothediretionofthedipole aftersubtratingourmotionwithrespettothe

loalgroupandtheloalgroup'sinfalltowardsthenearbyVirgolusterassumingthe

primor-dialomponentofthedipoletobenegligible. Thediretions ontheskythatareimportantfor

ouranalysis aregivenin tab.4.2. Thissetupexhibits rotationalsymmetrywithrespetto the

axis

z ˆ

negletingtransverseomponentsofourmotion. Consequently,onlyzonal harmonis (

m = 0

in the

z ˆ

-frame)aregenerated. Wehavealreadyantiipated thisresult,it isonsistent

withourpreditionthatameoutfromtheanalytialtreatmentoftheRees-Siamaeetusing

anLTBmodel inse. 1.3.3. Notethat anyothereet withaxialsymmetrywouldalsoindue

anisotropyonlyin thezonalharmonis.

ThedensityeldhastwoeetsontheCMBseenbyano-entreobserver.First,photons

omingfrom dierentdiretions traveldierent routes throughtheloal overdensity,and this

reatesanisotropyevenwithaperfetlyhomogeneousdistributionofphotons. Inastationary

Figure 4.5. Left: thegalatioordinatesystem. Thegalatioordinatesystem

is denedasbeing parallelwiththeplaneoftheMilkyWayandentredonthesun.

Sotheequatoringalatioordinates(redirle,

0

galatilatitude)liesintheplane

of ourgalaxy. Thegalatilatitude

b

is theangle aboveor belowthis plane(yellow

angle)andthegalatilongitude

l

(greenangle)ismeasuredfrom

0

to

360

,ounter

lokwisewithrespettothenorthgalatipole.

0

ofgalatilongitudeisarbitrarily dened asthe diretionpointing tothe galatientre(Sagittarius). Sometimes,in

astronomytheequatorialoordinatesystemisused. Right: therelationofthegalati

oordinatesystemtotheequatorialoordinatesystem. Thelatterisdenedthrough

the planeofthe Earth'sequator. Importantreferene diretionsontheskythat we

usehereare,ingalatioordinates: thenortheliptipole

(l, b) ≃ (96.4 , 29.8 )

,the

equinox

(l, b) ≃ (276.3 , 60.2 )

andthenorthgalatipole

(l, b) = (0 , 90 )

. Pitures

are takenfrom[Ast℄and[Org ℄.

CMB. Seond, the environmentwill aet the evolution of the intrinsi anisotropies as the

homogeneousbakgroundspaedoes,byhangingtheangulardiameterdistane. Theomplete

alulation taking into aount both of these eets would be to study the evolution of the

CMBanisotropiesastheytravelarossthedensityeldusing perturbationtheoryontheLTB

bakground. Asinearliertreatments,weneglettheseondeetandsimplyaddtheanisotropy

generatedbytheLTBmodelontopoftheintrinsiontribution. Itispossiblethatthistreatment

missessomeeetsofproessingtheanisotropiesalreadypresent. Inpartiular,simplylinearly

adding a new soure of anisotropy will in general add multipole power, not redue it, while

aproperanalysis of the proessing of the intrinsi anisotropies ould leadto amultipliative

modiationoftheamplitudes ofthelowmultipoles, asmentionedin[GHHC05℄.

It hasbeen suggestedthat spheriallysymmetri inhomogeneities of the order of horizon

sizeorlargerwouldontributetothelowCMBmultipoles [DZS78,RT81,PP90, LP96℄; itwas

laimedin[Mof05℄ thatthis ouldexplaintheobservedpreferredaxis. Leavingasidethe issue

thatassumingspherialsymmetryfortheentireUniverseseemsquestionable,theobservational

signatureonthelowmultipoles isidentialto thatfrom theLTB modelused todesribeloal

strutures,possiblyapartfromtheamplitude.

4.3. Angular PowerAnalysis

Firstweaddressthequestionhowtheosmimirowaveskyis aetedbythe loal

Rees-Siama eet. We are going to study how maps of the CMB are aeted by the anisotropy

induedbyadditionalaxisymmetri ontributions

a axial ℓ0

onthelargestangular salesbyusing

0 1 2 3 4 5 6

0 0.05 0.1 0.15 0.2 0.25 0.3

Likelihood

C 2 in [0.1 mK] 2

WMAP(1yr) WMAP(3yr) a 20 axial = 0 µK [WMAP(1yr) best-fit ΛCDM]

20 µK 40 µK 70 µK

0 2 4 6 8 10 12 14

0 0.05 0.1 0.15 0.2 0.25 0.3

Likelihood

C 3 in [0.1 mK] 2

WMAP(1yr) WMAP(3yr) a 30 axial = 0 µ K [WMAP(1yr) best-fit Λ CDM]

20 µ K 40 µ K 70 µK

Figure 4.6. Likelihood of quadrupole and otopole power for inreased axial

ontributions. Vertial lines denote experimental data: WMAP(1yr) ut-sky and

WMAP(3yr)maximumlikelihoodestimate. Consideringthe quadrupoleaddingany

multipolepower was exluded at

> 99%

C.L. with respet to WMAP(1yr) but it

is possible to add up to

60µ

K within the same exlusion level with respet to the

WMAP(3yr)value. Adding

80µ

K(

100µ

K)tothequadrupoleleadstoanexlusionof

99.7%

C.L.(

99.9%

C.L.). Theotopoleismoreresistantagainstaxialontaminations as itispossibletoadd awhole

100µ

Kbeforereahingthesameexlusionlevelwith

respettotheupdatedWMAPdata.

Wesawin se. 3.3.2that theangularpowerspetrumin termsof theoeients

a ℓm

an

beexpressedas

(4.4)

C ℓ = 1

2ℓ + 1 X ℓ

m=−ℓ

| a ℓm | 2 .

Aspreditedbythestandardpereptionofinationaryosmology,theprimordialperturbations

arebelievedtofollowagaussianstatisti. Deviationsfromthiswouldbehardtoreonilewith

thestandardinationary paradigm. Therefore,theomplexoeients

a ℓm = a Re ℓm + i a Im ℓm

are

expetedtobegaussianlydistributed withzeromeanand varianegivenbytheangularpower

C ℓ

,aordingto

(4.5)

f (a ℓ0 ) = 1

√ 2πC ℓ

exp

− (a Re ℓ0 ) 2 2C ℓ

and f (a Re,Im ℓm ) = 1

√ πC ℓ

exp − (a Re,Im ℓm ) 2 C ℓ

! .

Therefore,in thestandardmodel, theoeients

a ℓm

are fullyharaterised by theirangular power,forwhihweusethevaluesfromthebestt

Λ

CDMtemperaturespetrumtotheWMAP data. Inouraxisymmetrimodel,weparameterisetheeetofaloalstruturebyaddingaxial

ontributions

a axial ℓ0

to thequadrupoleandotopole. Itis obviousthattheadditivemehanism

annotmakethepowerdeitanomaly disappear. Forthestatistial analysiswegenerate

10 5

MonteCarlorealisationsof thequadrupoleand theotopole. Inthe followingwedesribethe

resultsofourMonte Carloanalysisfortheangularpower(4.4)withrespettoone-yearaswell

asthree-yearWMAPdata.

4.3.1. WMAP(1yr) Angular Power. Consideringone-yeardata,thevaluesof

C 2

and

C 3

determinedfrom theWMAP ut-sky[H

+

03℄, thesoalled TOHmap [TdOCH03℄, the

La-grange ILC map [EBGL04℄ and the ILC map [B

+

03a℄ are listed in tab. 4.3. The extrated

quadrupoleshavebeenDoppler-orretedasdesribedin[SSHC04℄,exeptfortheut-skyvalue.

Thevaluesof

C 2

and

C 3

fromthefull-skymapsaresigniantlylargerthantheut-skyvalues.

In g. F.1 we show how the

C 2

and

C 3

histograms ompare with the one-year data as

a axial ℓ0

is inreased. For

a axial ℓ0 = 40µ

K, the number of Monte Carlo hits that are onsistent

with theWMAP ut-skydata is smallerby afator of

∼ 2

for both

C 2

and

C 3

asompared

0 0.5 1 1.5 2 2.5 3 3.5

0 0.2 0.4 0.6 0.8 1

Likelihood

S nNEP

ILC(3yr)

ILC(1yr)

axis in direction of WMAP dipole a l0 axial = 40 µK 70 µK 0 µK

0 0.5 1 1.5 2 2.5 3 3.5

0 0.2 0.4 0.6 0.8 1

S nEQX

ILC(3yr) ILC(1yr) axis in direction of WMAP dipole a l0 axial = 0 µK 40 µK 70 µK

0 0.5 1 1.5 2 2.5 3 3.5

0 0.2 0.4 0.6 0.8 1

S nNGP

ILC(3yr) ILC(1yr) axis in direction of WMAP dipole

a l0 axial = 40 µK 70 µK 0 µK

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.2 0.4 0.6 0.8 1

Likelihood

S nNEP

ILC(3yr)

ILC(1yr)

axis in direction of north ecliptic pole a l0 axial = 40 µK 70 µK 0 µK

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.2 0.4 0.6 0.8 1

S nEQX

ILC(3yr) ILC(1yr) axis in direction of north ecliptic pole

a l0 axial = 40 µK 70 µK 0 µK

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.2 0.4 0.6 0.8 1

S nNGP

ILC(3yr) ILC(1yr) axis in direction of north ecliptic pole

a l0 axial = 40 µK 70 µK 0 µK

Figure 4.7. WMAPone- and three-year ILCmapsomparedtothe likelihoodof

analignment(4.7)ofquadrupoleandotopolenormalswithastrophysialdiretions

[northeliptipole(NEP),equinox(EQX)andnorthgalatipole(NGP)inolumns℄,

for twoorthogonal realisations ofthe preferred diretion

ˆ z

(WMAP dipole, NEPin

rows). The bold histograms represent statistially isotropi and gaussian skies as

preditedbythe

Λ

CDMmodel. Inreasingtheaxialontributionmakestheanomalies worsefor

ˆ z

beingalignedwiththeWMAPdipole,butwiththeexlusionsbeing less

signiantfor theILC(3yr)thanfor theILC(1yr). AtthesametimeaSolarsystem

eet is preferred by the data. Thenumberof MonteCarlo realisations pertest is

always

10 5

.

with the duial CMB sky. For

a axial ℓ0 = 70 µ

K, the number of onsistent Monte Carlo hits

for

C 2 (C 3 )

is redued by a fator of

∼ 5(15)

ompared with the standard CMB sky. Note

thatadding anypowerto thetheoretiallyexpeted quadrupole isexluded atthe

> 99%

C.L.

level from the ut-sky analysis, but for the otopole the same exlusion level is not reahed

until

a axial 30 = 80µ

K.Further,adding

50µ

K(

100µ

K)to thequadrupoleleadsto anexlusionof

99.6%

C.L.(

99.9%

C.L.). Ing.4.6 weshowaomparisonofone-andthree-yeardata.

4.3.2. WMAP(3yr) Angular Power. In g. 4.6 we show howthe histograms for the

quadrupoleandotopolepoweromparewiththemeasuredvaluesfromWMAP(1yr,3yr).

Con-sideringtheWMAP(1yr)ut-sky,addinganypowertothequadrupolewasalreadyexludedat

> 99%

C.L. whereasthe WMAP(3yr) data allowsfor addingup to

a axial 20 = 60µ

Kin order to

reahthesameexlusionlevel. Theotopoleisquiterobustagainstaxialontaminations asit

liesbetteronthet: inordertoreahthesameexlusionlevelof

> 99%

C.L.itisneessaryto

add

a axial 30 = 80µ

KwithrespettotheWMAP(1yr)ut-skyandawhole

a axial 30 = 100µ

Kwith

re-spettotheWMAP(3yr)value. Addingamoderateaxialontributionof

a axial ℓ0 = 40µ

Kleadsto

anapproximatebisetionof thenumberofonsistentMonteCarlohits regardingWMAP(1yr)

data(exluded at

99.5%

C.L for

C 2

and

91.5%

C.L for

C 3

), where for theupdated ut-skya

ontributionof

a axial ℓ0 = 40µ

Kanbeexludedat

> 98%

C.L.for

C 2

andonlyat

∼ 71%

C.Lfor

theotopole.

4.4. Extrinsi AlignmentAnalysis

Nowweaskwhat kindwhat kindofdiretionalpatterns theontribution

a axial ℓ0

indues on

theCMBsky. Inthemultipolevetorrepresentation[CHS04℄anyrealmultipole

T ℓ

onasphere

anbeexpressedwith

unit vetors

v ˆ (ℓ,i)

andonesalar

A (ℓ)

as

(4.6)

T ℓ (θ, ϕ) =

X ℓ

m=−ℓ

a ℓm Y ℓm (θ, ϕ) ≃ A (ℓ) Y ℓ

i=1

ˆ

v (ℓ,i) · ˆ e(θ, ϕ) ,

where

e(θ, ϕ) = (sin ˆ θ cos ϕ, sin θ sin ϕ, cos θ)

isaradialunitvetor.Notethattherighthandside

ofequation(4.6)ontainsontributionswith`angularmomentum'

ℓ − 2

,

ℓ − 4

,...Theuniqueness

ofthemultipolevetorsisensuredbyremovingthese termsbytakingtheappropriatetraeless

symmetriombination;for detailssee [CHS04℄. Beausethesigns ofallthemultipole vetors

anbeabsorbedintothequantity

A (ℓ)

, theirsignsareunphysialand sooneisfreeto hoose

the hemisphere of eah vetor. Also note that the multipole vetors are independent of the

angularpower. Withthedeomposition(4.6)weahievedauniquefatorisationofamultipole

intoasalarpart

A (ℓ)

,whihmeasuresitstotalpower,and

unitvetors

v ˆ (ℓ,i)

thatontainall

thephaseinformation.

Now it is neessary to dene a suitable statisti to ope with the information from the

multipolevetors. Introduingthe

ℓ(ℓ − 1)/2

orientedareas

n (ℓ;i,j) ≡ ˆ v (ℓ,i) × v ˆ (ℓ,j) / | v ˆ (ℓ,i) × ˆ v (ℓ,j) |

,

wearereadytodeneastatistiinordertoprobealignmentofthenormals

n (ℓ;i,j)

withagiven

physialdiretion

x ˆ

[SSHC04℄,

(4.7)

S nx ≡ 1

4 X

ℓ=2,3

X

i<j

n (ℓ;i,j) · x ˆ .

This statistiis a sumoverall dot produtsfor a given

x ˆ

, so it does notimply anyordering

betweenthetermsandisauniqueandompatquantity. Foromputingthemultipole vetors

we use themethod introdued by [CHS04℄. For mathematial details of the multipole vetor

formalismwereferto e.g.[Fis07℄.

AstheontributionofthestruturedesribedbytheLTBmodel,weaddtothequadrupole

andtheotopoleaomponent,denotedby

a axial ℓ0

,whihisapure

m = 0

modewithrespetto

agivenphysialdiretion

z ˆ

. Forthediretion

x ˆ

weewantto inserttherelevantastrophysial diretionswhih giveriseto alignment,likethediretionoftheelipti plane,theequinoxet.

Butthereisaath. Onewerotatethe

z ˆ

axisofourinitialoordinatesystemintothediretion

ofthepreferredaxisofourmodel,thediretionsonthesky,likenortheliptipoleet.,haveto

berealulatedinthatframe. ThisanbedoneintermsofWignerrotationmatries[CHSS06℄.

Writtenasvetors,theoeients

a

transformunderrotationsas

a = D a ℓ

,wherethevetor

notationmeansthat

a ℓ

isavetorofthe

-thmultipole oeientwith

(2ℓ + 1)

entries and

D

denotingtherotation. TherotationsanbeparameterisedintermsofthesoalledEulerangles

α, β, γ

andaregivenin matrixform by[CHSS06℄

D m (ℓ) ′ m (α, β, γ) = e im γ d (ℓ) m ′ e imα with d (ℓ) m ′ m = X

k

( − 1) ℓ−m −k [(ℓ + m )!(ℓ − m )!(ℓ + m )!(ℓ − m )!] 1/2 k!(l − m − k)!(l − m − k)!(m + m + k)!

×

cos β 2

2k+m +m sin β

2

2ℓ−2k−m −m

.

(4.8)

WehavearriedouttherotationswiththehelpofaMATHEMATICAroutine. Next,letusreviewour

resultsoftheMonteCarloanalysisforthealignmentstatisti(4.7)withrespettoastrophysial

diretions.

4.4.1. WMAP(1yr) Alignment. Welook for alignmentwith three dierentdiretions

ˆ

x

: thenorthelipti pole,theequinoxandthenorthgalatipole. Thersttwoarepreferred

diretionsin theSolar systemandthe lastdenes theplaneof thedominantforeground. The

observed

S

-valuesfromthedierentCMBmapsaregivenintab.4.3. Theresultsofthe

orre-dipole and equinox lieveryloseto eah other, so analignmenttest with the dipole will give

resultsverysimilartotheonewiththeequinox.

In g.F.2 thepreferredaxis

z ˆ

ishosentobethemeasured WMAP(1yr)dipole [B

+

03b℄.

Weperformalignmenttests(4.7)withrespettothethreetestdiretions

x ˆ

. Forallthreetests

theanomaly gets learly worse, that is the axial mehanismdrives thehistograms awayfrom

thedata. Next,instead of using themotion of theloal group with respet to theCMB rest

frame [KLS

+

93℄ as the test diretion, we takethe veloityof theloal groupwhen orreted

forVirgoentrimotion[PK98℄,sinethisdiersmorefromtheWMAPdipole. Theresultsare

shown in g. F.3. The situation forthe alignment with theequinoxis again worse, but there

is not muh eet on the elipti alignment. For the alignment with the galati plane, the

axialontributionmakesanapparentgalatiorrelationmoreprobable,i.e.thereis aertain

probability of overestimating the galati foreground. For both test diretions by now, the

alignment with the equinox gets worse. Forexample, in the diretion of the Virgo-orreted

loal groupmotionanexlusion of

∼ 99.9%

C.L. for

a axial l0 = 50µ

K anbe givenwith respet

to all three leaned maps. Note that adding any multipole powerin this test analready be

exludedat the

≥ 99.4%

C.L.

Asaomplementarytestweshowthealignmentlikelihoodwithregardtoanorthogonaltest

diretion,namelythenortheliptipole,ing.F.4. Anelipti extraontributionintheCMB

wouldindeedindue analignmentofnormalvetorssimilartotheobservedone. Inpartiular,

for

a axial ℓ0 = 50µ

K, the probability of nding an alignment with the north elipti pole itself beomesroughly

5%

, andtheprobabilityfortheequinoxalignmentrisesto

1%

.

Table 4.3. Testsappliedto variousleanedmaps,asdenedinequation(4.7) ,for

one- andthree-year data,as wellas thevaluesfor angularpower(4.4) .

Foreground-leaned maps: TOH(1yr)is due to [TdOCH03 ℄, LILC (1yr) to [EBGL04℄, the ILC

mapsto[H

+

03 ,H

+

07 ℄andtheMaximumLikelihoodEstimate(MLE)forlow

multi-polesto[H

+

07 ℄. Allone-yearquadrupolesexepttheut-skyvaluehavebeen

Doppler-orreted.

utsky(1yr) TOH(1yr) LILC(1yr) ILC(1yr) ILC(3yr) MLE(3yr)

C 2

129

µ

K

2

203

µ

K

2

352

µ

K

2

196

µ

K

2

261

µ

K

2

221

µ

K

2 C 3

320

µ

K

2

454

µ

K

2

571

µ

K

2

552

µ

K

2

550

µ

K

2

545

µ

K

2

S nNEP

- 0.194 0.193 0.210 0.252

-S nEQX

- 0.886 0.866 0.870 0.846

-S nNGP

- 0.803 0.803 0.810 0.794

-4.4.2. WMAP(3yr) Alignment. Similarly,wetestforalignmentwiththethreegeneri

diretions

x ˆ

: northeliptipole,equinoxandnorthgalatipole. Theresultsoftheorrelation

analysis are shown in g. 4.7: in the rst row the preferred diretion

z ˆ

oinides with the

diretion of loal motion, the dipole. Here the anomaly beomes worse when inreasing the

amplitudeoftheaxialontribution. Butfor

x ˆ = NEP

theexlusionbeomessomewhatmilder

goingfromone-yeartothree-yeardata;e.g.

a axial ℓ0 = 40µ

Kleadstoanexlusionof

99.2%

C.L.for

ILC(1yr)butonly

98.2%

C.L.fortheupdatedILCmap. Findinganalignmentwiththeequinox

thoughisstronglyexludedat

> 99.2%

C.L.,evenwithanvanishingaxialontributionforboth one-and three-yeardata. Forinstane, for

x ˆ = EQX

adding aontribution of

a axial ℓ0 = 20µ

K

(

a axial ℓ0 = 70µ

K) leads to an exlusion level of

99.4%

C.L. (

99.9%

C.L.) with respet to

three-year data. Similarlyto above,aSolarsystemeet is preferredbythe data. Forexample, an

alignmentwiththeeliptiitself(

x ˆ = NEP

)mayonlybeexludedatthelevelof

92.3%

C.L.after

addingan axialontribution of

a axial ℓ0 = 40µ

K.Forthesameaxial ontribution, thealignment withtheequinoxbeomeslessanomalousas

99.2%C.L. → 98.2%

C.L.