• Keine Ergebnisse gefunden

Figure 5.2. Mollweideprojetionoftheskywithquadrupole(upperrow)and

o-topole(lowerrow) multipolevetors [equation(5.5) ℄. Themeshonsists of stepsin

30

.Displayedaretenpairsofquadrupolevetors(smalldots)andtheirtenarea

ve-tors [equation(5.6) (bigdots)℄as wellasten triplesofotopolevetors (smalldots)

and theirarea vetors(bigdots);togethernessisindiatedbyolour. Thearbitrary

signofthevetorshasbeenusedtogaugethemall tothenorthernhemisphere. The

statistially isotropi and Gaussianase (leftolumn) isbrokenbythe imprintof a

strongaxialeet

a ℓ0 = 1000µ

K(rightolumn)whereuponmultipolevetorsmoveto

thepoleandareavetorsmovetotheequatorialplane. Theonsetoftheshown

sep-arationofmultipolevetorsandrossprodutsanalreadybeobservedatmoderate

axialontributionsof

a ℓ0 ∼ 100µ

K,.f.g.F.11.

[RLLA07℄ross-orrelationanalysisofCMBdataandgalaxysurveydatashowsnoevidenefor

an`Axis ofEvil' in theobservedlarge-salestruture. Inontrast, reentlyanopposite laim

hasbeenput forward[Lon07℄,whereitwaslaimedthatananalysisofSDSSdatagivesriseto

apreferredaxisintheUniverse.

Motivatedby these observedCMBanomalies, several mehanismsbasedon some

axisym-metri eet have been proposed, although the operational denition of the `Axis of Evil'

[LM05, LM07℄ does not neessarily imply the existene of suh a strong symmetry. Among

thevarious eetsthathavebeensuggestedtopossiblyintrodueapreferredaxisinto

osmol-ogyare: a spontaneous breaking of statistial isotropy [GHHC05℄, parityviolation in general

relativity[Ale06℄, anisotropiperturbations ofdarkenergy[KM06,BM06℄, residuallarge-sale

anisotropiesafter ination[CCT06,GCP06℄, oraprimordial preferreddiretion [ACW07℄. At

thesametime, ithas been studied [RRS06b, IS06℄ howthe loal Rees-Siamaeet ofan

ex-tendedforeground,non-linearindensityontrast,aetsthelowmultipolemomentsoftheCMB

viaitstime-varyinggravitationalpotential,seetheprevioushapter. Inasenariowithasingle

overdensitytheoeientsofthespherialharmonideomposition,the

a ℓm

,beomemodied

byonlyzonalharmonis,i.e.

m = 0

modes. Thisis equivalenttoan axialeet alongtheline

onnetingourposition withtheentreofthesoure.

Infat,theobservedpatternin theCMBforquadrupoleandotopoleisanearly pure

a ℓℓ

moderespetively; asseeninaframe where the

z

-axisequalsthe normalofthe planedened

bythe twoquadrupole multipole vetors[CHSS06℄. In [CHSS07℄ it hasalready beenargued,

thatforegroundmehanismsoriginatingfromarelativelysmallpath oftheskywouldmainly

theprimordial utuationswould havediulties explainingthelowmultipole powerat large

saleswithoutahaneanellation.

It is important to study how theinlusion of apreferred axisompareswith the intrinsi

multipoleanomalies atlargestsales. Ouranalysis isrestritedto axisymmetrieets ontop

oftheprimordialutuationsfromstandardination,thusseondaryorsystematieets. We

aregoing to quantify howpoorlyan axisymmetri eet at lowmultipoles of whateverorigin

mathesthethreeyear-dataofWMAP.Further,wewilldemonstratethatthereisnoorrelation

betweenthetwotypesofintrinsilow-

anomalies: thetwo-pointorrelationdeitandintrinsi

alignment;andthatthereremainsnoneevenwhenapreferredaxisisintroduedtotheproblem.

5.2. Choieof Statisti

A ommon observable is the multipole power. Aording to the standard pereption of

inationary osmology, the CMB utuations are believed to follow a Gaussian statisti and

tobedistributed in astatistially isotropiway. Thenotionofstatistial isotropymeansthat

theexpetationvalueofpairsofoeients

h a ′ m a ℓm i

isproportionalto

δ ℓ ℓ δ m m

,.f. (3.39).

Theproportionalityonstantmeasuringthe expetation valueofthe multipole onthefull sky

isommonlyestimated by

C ℓ

,.f. se.3.3.2. Theangularpoweranalsobewrittenas

(5.1)

C ℓ ≡ 1

2ℓ + 1 X ℓ

m=−ℓ

| a ℓm | 2 = 1 2ℓ + 1

Z

dΩ T 2 (θ, ϕ) ,

with

T ℓ

beingthe

-thmultipoleoftheCMBtemperatureanisotropy. Itanbeexpandedwith thehelp ofspherialharmonisas:

T ℓ = P

m a ℓm Y ℓm

. Notethat, sine weonsider multipole

momentsthat arereal,the

a ℓm

mustfulltheadditionalondition:

a ℓm = ( − 1) m a ℓ−m

. Using

theestimator(5.1))theangulartwo-pointorrelationfuntion isgivenby

(5.2)

C(θ) = 1

4π X ∞

ℓ=0

(2ℓ + 1)C ℓ P ℓ (cos θ) ,

wherethe

P ℓ

aretheLegendrePolynomialsof

-thorder.

Besides of the multipole power itself, it is useful to introdue an all-sky quantity that

embraesallsales. Asinspiredbythe

S 1/2

statisti,presentedin[S

+

03℄formeasuringthelak

ofangularpoweratsaleslargerthan

60

,weusehereananalogousall-skystatisti[CHSS07℄

(5.3)

S full ≡

Z 1

−1

C 2 (θ) d(cosθ) .

It is a measure of the total power squared on the full-sky. In ontrast to the

S 1/2

statisti

[S

+

03℄, the

S full

statistidoes notontain any apriori knowledge onthe variation of thetwo

pointangular orrelation (5.2)for angles

> 60

. Here weare onsidering espeially the large

angularsalesbut wearenotinterestedinthemonopoleand dipoleandthusarriveat

(5.4)

S full trunc = 1

2 5C 2 2 + 7C 3 2 .

Ofourse,allmultipoleshavetobeonsideredforthefull-skystatisti(5.3)butweanusethe

trunated part(5.4), beause herethe anomalies are mostpronouned and wewant to hek

for the interplay of this part of the full-sky powerstatisti with the other (phase) anomalies

withinquadrupoleandotopole. Thispartisthensimplytobeaddedtotherestofthesumof

(squared)multipolepowerin(5.3),reoveringtheexpressionforthefull-sky.

Next weturn to thestatistisinvolvingthephaserelationshipsof multipoles. Weuse the

oneptofMaxwell'smultipolevetors[Max79℄inordertoprobestatistial isotropy,sinethis

representationproved to be useful foranalyses of geometri alignments and speial diretions

0 1 2 3 4 5 6 7 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Likelihood ILC(3yr) DQ-corrected

100 µK 0 µK 200 µK 700 µK 1000 µK 2000 µK a ℓ0 =

S nn

0 2 4 6 8 10 12 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Likelihood ILC(3yr) DQ-corrected

100 µK 0 µK 200 µK 700 µ K 1000 µ K 2000 µK a ℓ0 =

S ww

Figure5.3. EvolutionoftheMonteCarlolikelihoodofthealignmentstatistis

S nn

(5.7)and

S w w

(5.8) . TheeetofanaxisintheCMBismodeledviainreasing

addi-tionalzonalharmoniswithoeients

a ℓ0

. At

a ℓ0 = 1000µ

Kthemultipolesbeome

purely zonalingoodapproximation. RegardingWMAP'sILC(3yr) map

S nn

is

un-expetedat

98.3%

C.L.and

S w w

isoddat

99.5%

C.L.withrespettothestatistially isotropi and Gaussiansky (bold histograms). Thebestimprovementisreahedfor

bothstatistisatroughly

a ℓ0 = 100µ

K.

oeients

a ℓm

ontaining the physis. Alternatively, with the use of the multipole vetors formalismweanexpandanyrealtemperaturemultipolefuntion onasphereinto

(5.5)

T ℓ (θ, ϕ) = X ℓ

m=−ℓ

a ℓm Y ℓm (θ, ϕ) = A (ℓ)

" Y

i=1

v ˆ (ℓ,i) · ˆ e(θ, ϕ)

− L (θ, ϕ)

# ,

and

ˆ e

isaradialunitvetor,justlikein(4.6). The`angularmomentum'residualsaresubtrated

withthehelpoftheterm

L (θ, ϕ)

. Wehoosethesignofthemultipolevetorssothattheyall

pointtothenorthernhemisphere.

Inordertodisloseorrelationsamongthemultipolevetorswerstonsiderforeah

the

ℓ(ℓ − 1)/2

independentorientedareasbuiltfromtherossproduts

(5.6)

w (ℓ;i,j) ≡ ± v ˆ (ℓ,i) × v ˆ (ℓ,j) ,

whereofwewill also usethe normalisedvetors

n (ℓ;i,j) ≡ w (ℓ;i,j) / | w (ℓ;i,j) |

. Now,in [SSHC04℄

andsubsequentworks,thedotprodutsoftheareavetorshaveproventobeahandyexpression

inordertoquantifyalignmentsofthemultipolevetorsamongeahotherandalsowithexternal

diretions(whih wedo notonsider here). The following measure,asstated in [Wee04℄, and

usedin[SSHC04,CHSS06,CHSS07℄servesasanaturalhoieofastatistiinordertoquantify

theintrinsialignmentofquadrupole andotopoleorientedareas:

(5.7)

S ww ≡ 1

3 X

i<j

w (2;1,2) · w (3;i,j) .

Note that weonsider onlythe verylargestsales, i.e. we use thestatisti only for

ℓ = 2, 3

.

Analogously,astatistiinvolvingthenormalisedareavetorsisgivenby:

(5.8)

S nn ≡ 1

3 X

i<j

n (2;1,2) · n (3;i,j) .

5.3. Standard Model Preditions

Standardinationary

Λ

CDMosmologyrequirestheCMBanisotropiestobeGaussianand statistiallyisotropi. Forthesubsequentanalysis wehaveprodued Monte Carlorealisations

of the harmoni oeients

a ℓm

following the underlying

Λ

CDM theory. From [CHS04℄ an

0 1 2 3 4 5 6 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Likelihood ILC(3yr) DQ-corrected

+100 µK

± 10 µ K

± 100 µ K

± 1000 µ K

S nn a 20 =

a 30 =

0 1 2 3 4 5 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Likelihood ILC(3yr) DQ-corrected

+100 µK

± 10 µK

± 100µK

± 1000µK

S ww a 20 = a 30 =

Figure 5.4. The sign of additional axial ontributions

a ℓ0

has nophysial eet

onthestatistis

S nn

and

S w w

. Forthe quadrupolethisfollows fromthesymmetry

of the LegendrePolynomial

P 2

[see equation (5.13)℄. The quadrupoleontribution is kept xed at

a 20 = 100µ

Kwhile the axialontribution to the otopole is varied bothinmagnitudeandinsign. Respetive pairsof

±a 30

histogramslievirtually on

eah otherandtheir statistis are thusindistinguishable. Thereferene histograms

following fromthe axially unmodied

Λ

CDM model(bold histograms ing. 5.3 lie

nearlyontopofthedisplayed

a 20 = 100µ

Kand

a 30 = ±10µ

Kases,andarethusnot

shown.

Mollweide maps of a sample of random Gaussian and statistially isotropi quadrupole and

otopolevetorsas wellastheirnormalsaregivenin g.5.2(leftolumn).

Conerning thequestionoforrelationsbetweenthemultipole powerandthealignmentof

multipolevetors,itappearsnaturalto expetthat there isnone. That isbeauseweinvoked

Gaussianrandomandstatistiallyisotropiskies,leadingtomultipolevetors(5.5)independent

ofthemultipole power(5.1). Thisassumptionneedstobetestedand quantied.

Nevertheless,asmallorrelationouldbeexpetedfrom thefollowingreason: Considering

onlymultipolesuptosomelimitingpower,theresultingprobabilitydensitydistributionforthe

a ℓm

must be non-Gaussian. In fat, this restrition leads to a negative kurtosis for the

a ℓm

distribution(the skewnessvanishes). Havingthatinmind,itappearssuddenlyunlearwhether

thenaiveexpetationofvanishingorrelationofpowerwithintrinsialignmentwillhold. Below

wesubstantiatetheabseneoforrelationsbymeansofaMonte Carloanalysis.

Let us rst look at thealignment anomalies. In g. 5.3 the likelihood of the quadrupole

and otopole alignment statistis

S ww

and

S nn

is shown. The preditions of the standard

inationary

Λ

CDM model are shown as the bold histograms respetively (

=

vanishing axial

ontamination). Aordingtothethree-yearILCmapfromWMAP[WMAa ℄wegetthe

follow-ingmeasuredvaluesforthealignmentstatistis:

S nn ILC(3yr) = 0.8682 and S ww ILC(3yr) = 0.7604 ,

when[CHSS07℄ orreted for theDoppler-quadrupole. The totalnumber of Monte Carloswe

produedpersampleis

N = 10 5

. Weinferthat theunmodiedinationary

Λ

CDMpredition

isunexpetedat

98.3%

C.L.withthe

S nn

statistiandunexpetedat

99.5%

C.L.awithrespet

tothe

S ww

statisti.

Next weonsidertheross-orrelationbetweentheintrinsiphaseanomalies andthe

mul-tipole power(5.1) within thelow-

. Forthiswehose those

a ℓm

that allowfor saythe lowest

possible

5%

inthelefttailofthedistributionsfor

C 2

and

C 3

thatfollowfromstatistialisotropy,

Gaussianityandthe

Λ

CDMbest-ttotheWMAPdata. Thenweomputetheexpression

S ww

fortheseleted

a ℓm

andompareittotheaordingILC(3yr)value. Asexpeted,noorrelation

a

Thevaluequotedabovewas[CHSS07℄

99.6%

C.L.Thesmalldiereneisduetotheinorporationofthe

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 WMAP(3yr)

S w w

S full trunc [0.1mK] 4

Figure5.5. Contourofthesatterofintrinsialignment(5.7)versusfull-skypower

squared(5.4) . The shapeanbe understoodfrom thefolding ofthe tworespetive

distributions. The total numberof Monte Carlopoints is

N = 10 5

. The measured

data point from WMAP three-year data is inluded. The maximum of likelihood

requires

S w w

farsmallerthanobtainedfromILC(3yr). Consistenywiththedataan

beexludedat

99.95%

C.L.Contoursorrespond tolinesof

1/2 n

timesthe maximal

likelihood,with

n = 1, . . . , 5

.

isfound,thatisneithertheshapenortheexpetationvalueofthealignmentstatistiisshifted.

Wendthesamealsofortheombinationofthe lowest allowed

5%

in

C 2

andthehighest

5%

fromtherighttailofthedistributionof

C 3

andtheremainingtwopossibleombinationsthereof.

Aswedo notndanyorrelations, we anonludethat the

S ww

and

S nn

statistisare not

sensitivetothenon-Gaussianityinduedbytherestritiontolowmultipole power.

Moreover,weprobetheoppositediretionbytaggingthose

a ℓm

thatlieintheallowedright

tailof the

S ww

distributionwithrespetto

S ww ILC(3yr)

. Thedistribution ofthemultipole power for

C 2

and

C 3

madeofthese

a ℓm

remainsunhanged. Thelatterndingonrmsthatmultipole

powerandtheshapeofmultipoles(phases)areunorrelated.

UsingEquation(5.4),the[WMAa ℄MaximumLikelihoodEstimate(MLE)fromtheWMAP

ILC(3yr)map for the angular power spetrum yields

S full trunc,MLE = 29431µK 4

. Compared to

thevalueof

136670µK 4

fromthe

Λ

CDMbest-t toWMAP(3yr) data,this isnotsigniantly

unexpeted, withanexlusionlevelofonly

92.1%

C.L.

Nowwewanttohekfororrelationsbetweentheall-skymultipolepowerandthemultipole

alignment. Asforreasonsexplainedinthenextsetionwepreferthe

S ww

statistito

S nn

inthe

followingorrelationanalysis. InFigure5.5thesatterplotof

S ww

against

S full trunc

isshown. The

formoftheontouranbeunderstoodasjustthefoldingofthe

χ 2

-likeformofthedistribution for

S full trunc

withthegaussian-likeformofthe

S ww

distribution. AtrstglaneweseefromFigure 5.5that theMLEfromWMAP(3yr)

S full trunc,MLE = 29431µ

K

4

requiresthealignmentstatistito

beofmiddlevalues(around

0.4

),whihisinonsistentwiththerespetivemeasuredanomalous valuefrom ILC(3yr). Moreoverthe lak of any linear behaviour in the ontour suggeststhat

thereisnoorrelationbetweenthetwostatistis.

Giventhatnoorrelationispresentbetween

S ww

and

S full trunc

,wewouldexpetthatthejoint

probabilitythatbothpowerandalignmentarein aordanewithdatafatorisesaordingto:

(5.9)

p S full trunc ≤ data ∧ S ww ≥ data

= p 1 S full trunc ≤ data

p 2 (S ww ≥ data) .

But in realitywe anonly aess nitestatistial samples ofthese quantities andthe

fa-torisationwill notbe exat. However, we want to will hek the validity of (5.9) within our

statistialensemble. Whenusing thefull sample with

N = 10 5

respetively weobtainajoint likelihood of

p ≃ 0.05%

. The error

of the fatorisation, whih we dene asthe dierene betweenthelefthandsidein(5.9)andtherighthandside,isoftheorder

O (10 −5 )

,thatisofthe

orderoftheMonteCarlonoise. Inorderto traktheevolutionoftheerror

wealsoompute

thejointlikelihood(5.9)forsmallersubsamples;seetab.5.3. Reduing

N

to

N = 10 4

weobtain

anevensmallerjointlikelihood of

p = 0.02%

but withanerrorthatis ofthesamemagnitude.

With

N = 10 3

wedonothaveasinglehit for thejoint Monte Carlosleadingto

p = 0%

with

thesameerror asin the

N = 10 4

ase of

∆ = 0.02%

. Notethat just one Monte Carlo hit in

favourofthejointasewouldraisetheerrorhereto

∆ = 0.08%

. Intheend,theonvergeneof

thejointlikelihoodappearstobeveryslowwithrespettothesamplesize

N

.

Furthermore weareinterestedin thestabilityoftheresultsfor

with respetto hanges

inthemeasureddata. Forthiswehoose theWMAP(1yr)values:

(5.10)

S trunc,pseudo

-

C ℓ

full = 10154µK 4 and S ww ILC(1yr) = 0.7731 .

We use a sample of the full size

N = 10 5

and obtain a joint likelihood with respet to the

one-yeardataof

p = 0.001%

withanerror

∆ = 0.002%

. That is,withrespetto one-yeardata

both the joint likelihood and its error are of the order of the Monte Carlo noise. From the

WMAP(1yr) data aloneweould exludethejointase(5.9) rather onservativelyat

99.99%

C.L.Thisappearstobeastrongerexlusionthantheonefromthree-yeardata. Butwedonot

bothermuhaboutthedierenebeauseofthedierentestimatorsthathavebeenusedbythe

WMAPteamfortheangularpowerspetrum(pseudo-

C ℓ

vs. MLE)[WMAa℄.

samplesize

N

joint

p

error

100000

0.048% 0.008%

100000

b

0.001% 0.002%

10000

0.02% 0.02%

1000

0% 0.02%

Table5.1. Jointlikelihoods(5.9)for

S full trunc

and

S w w

beinginaordanewithdata

simultaneously. Theexperimental values referto WMAP's ILC(3yr) map [WMAa℄

exept forthe seondrow. Theerror

ofthe fatorisationinequation(5.9) isthe dierenebetweenlefthandsideandrighthandsideinthatequation.

Wequoteherethemostonservativeresult,namelythefullsamplejointlikelihoodasefor

S ww

and

S full trunc

withrespet to theWMAP(3yr) data. Thereforeweanexludethat aseat

> 99.95%

C.L. with anerrorin thethird digit after theommalyingwithin the Monte Carlo

erroroftheusedsample(

N = 10 5

).

Finally weattempt to analyse theorrelationof theall-skypowerstatisti

S full trunc

and the

intrinsimultipolealignment

S ww

byquantitativemeans. Itiswellknownfrom statistis,that whenhekinganitetwo-dimensionalsamplefororrelations,theempiriovariane

(5.11)

cov[ S full trunc , S ww ] ≡ 1 N − 1

X N

i=1

S trunc full,i − S ¯ full trunc

S ww, i − S ¯ ww

isa ruial quantity. Thebar standsfor the meanof avariable. As theovarianeis a sale

dependentmeasure, i.e.depending onthe magnitudesof thesample values

S ww, i

and

S ww, i

,

the dimensionless Bravais-Pearsonoeient orempirial orrelation oeient is the better

expressiontouse:

(5.12)

ρ S trunc full , S ww ≡ cov[ S trunc full , S ww ]

p cov[ S full trunc , S full trunc ] cov[ S ww , S ww ] .

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 WMAP(3yr) 0.8

S w w

S trunc full [0.1mK] 4

Figure5.6. Satterontourofpairsof

S w w

and

S full trunc

afteranaxialmodiationof

a ℓ0 = 70µ

Khasbeenapplied;thisistheontributioninvolvingmaximalimprovement in

S w w

(seeg.5.3). ThetotalnumberofMonteCarlopairsis

N = 10 5

. Notethat

the horizontal axis now runs from zero to

1.4 × 10 −6 mK 4

, whereas in g. 5.5 the

maximal displayed value is

4 × 10 7 mK 4

. Theinlusion of a preferred axis leaves

all-skymultipolepowerandintrinsialignmenttotallyunorrelatedandinonsistent

withtheWMAP(3yr)data. Contourlinesaredenedasing.5.5.

Finally,employingtheWMAP(3yr)dataweobtainanempirialorrelationoeientof

ρ S full trunc ,S ww = − 0.0027 ,

withrespettothefullsample

N = 10 5

,whihindeedindiates onlymarginalorrelation.

5.4. Inlusionof a Preferred Axis

Now we ask what happens when introduing axial ontributions on top of a statistially

isotropiandgaussianmirowavesky. Thepresene ofapreferreddiretion withaxisymmetry

in theCMB will exlusively exitethe zonal modes in asethe axisis ollinearto the

z

-axis.

Herewedonotbotheraboutexternaldiretionssinetheinternalalignmentsareindependent

ofthese. Thereforesuh anaxiswill manifest itself throughadditionalontributions

a ℓ0

. We

areonsidering thequadrupoleand theotopoleandthequestionarises,in howfarthesignof

theaxialontributions

± a ℓ0

playsarole. Theoeients

a ℓm

anbereonstrutedfrom

(5.13)

a ℓm =

Z ∆T

T (θ, ϕ) Y ℓm dΩ .

Obviously, within the quadrupole the sign of

± a 20

is irrelevant beause of the symmetry of

theLegendre Polynomial

P 2

with respet to

θ = 90

. The Legendre Polynomial

P 3

however

isantisymmetriwith respet to

θ = 90

. Therefore therelevaneof the signof the otopole

ontributions

a 30

hasto belaried. Consequentlywehavehosen axed valuefor theaxial quadrupoleontribution

a 20

andhave thenvaried theaordingotopole ontributionin sign andin magnitude. Theresultsaredisplayeding.5.4. Apparentlythe

S nn

and

S ww

statistis

thatareimportanthere,donotdistinguishbetweenthesignoftheappliedaxialeet. Therefore

weneednottobotheraboutthesignsofthe

a ℓ0

andletthemheneforthbepositive.

In Figure5.3 theevolutionof the

S ww

and

S nn

statistiswith respetto inreasingaxial

Letusrstlookattheevolutionofthe

S nn

statisti. Thisexpressionmeasurestheaverage

| cos |

of the angles between the quadrupole oriented area and the otopole areas. The pure

Monte Carlo peaks at

0.5

reeting the fat that the average distane of four isotropially distributedvetorsonahalf-sphere fromeahother is

60

intheaseofstatistialisotropy. It

isahalf-spherebeausethesignsofthemultipole vetorsarearbitraryandso wehoosethem

alltopointtothenorthernhemisphere. Wheninreasingtheontributionoftheaxialeetthe

multipolesbeomeinreasinglyzonalandarriveatbeingpurelyzonalinagoodapproximation

at values of

a ℓ0 = 1000µ

K. On the level of the multipole vetors this means that their ross

produtsallmovetotheequatorialplane(seeg.5.2). Thatisthereasonwhythehistogramin

g.5.3(left)movestotherightwhenweinreasetheaxialeet,beausenowisotropyisbroken

fromthehalf-spheretothehalf-irlemakingthe

S nn

histogrampeaksharperathighervalues.

ThemeasuredvaluefromtheILC(3yr)mapof

S nn ILC(3yr) = 0.868

isanomalousat

98.3%

C.L.with

respet to the pure Monte Carlo (bold histogram in g. 5.3 whih standsfor the statistially

isotropiandgaussianmodel. Byaddingaxialontributionthemaximalimprovementisreahed

at

a ℓ0 = 100µ

Kwhere theILC(3yr)beomesunexpeted at

96.7%

C.L. Furtherenhanement

oftheaxialeet makesthe

S nn

statistimoreandmorenarrowaroundanexpetation value

< 0.7

. Thismakesitimpossibletoremovetheanomalyinthe

S nn

ross-alignmentwithrespet to the ILC(3yr) experimental value only by inreasing the axial ontribution to high enough

values.

On the other hand the

S ww

statistiadditionally measures themodulus of the sin of the anglesbetweenthemultipolevetorsthemselves. Asanbeseenfromg.5.2multipolevetors

are all moving toward the north pole lustering more and more as the axial ontribution is

enhaned. The

S ww

statisti measures theaverage of themodulusof the produts ofthe sin

of angles between quadrupole vetors, otopole vetors and the os of the angle between the

areavetors. Therefore ontopof theinformation alreadyontainedin

S nn

the

S ww

statisti

isable to goto zerofor highestzonal ontamination asthe losenessof themultipole vetors

in that asedampenstheprodut ofsines andosines quadratiallyto arbitrarysmall values.

Thus wendthat

S ww

is themoreonvenientstatistiforfurther analyses,asit doesontain

moreinformationthan the

S nn

statistiandadditionallyshowsasimpleandlearasymptoti behaviour. In the ase of this statisti the anomaly is signiant at

99.5%

C.L. with respet

to

S ww ILC(3yr) = 0.7604

. Similarlyto before themaximal improvement is reahed with anaxial ontributionof

a ℓ0 = 70µ

K,whih degradestheanomalyin

S ww

to

99.2%

C.L.

Nowwereturn totheorrelation analysisof thealignmentwiththepure multipole power

C ℓ

. Whenintroduinganaxialeet,say

a ℓ0 = 100µ

K,weimprovethettothe

S ww

statisti,

butinterestinglythemultipolepoweranomalybeomesmuhmorepronouned. Thisbehaviour

isexpeted[RRS06b,RRS06a℄forthe

C ℓ

-distribution(beingamodied

χ 2

-distribution)when theaxial ontribution is enhaned, but it is unexpeted that exatly the samehappens for a

multipolepowerdistribution`thatknowsoftheintrinsialignmentofquadrupoleandotopole'.

Thisindiatesthatthereisnoorrelationatallbetweenmultipolepowerandthephasealignment

evenwhentheyaretuned toeahother.

Proeedingwiththeanalysisoforrelationsbetweenalignmentandthefull-skypower

statis-ti,again wetryto provokeorrelationwith the help of axial symmetryin theCMB. In fat

weapply anaxial eet oftheideal magnitude(

a ℓ0 = 70µ

K) in order ahievelargervaluesin

S ww

. The negativeresultis shown in g.5.6: as

S full trunc

is alinearombinationof squared

C ℓ

distributions it is asharplypeaked

χ 2

-likedistribution beingverysensitive to axial ontribu-tions. Thereforetheontouring.5.7 isfairlyshiftedto theright(tohigher valuesin

S full trunc

)

andbroadenedwithrespet tothe axiallyunmodiedase,obviatinganyorrelationwith the

intrinsialignment. Theshapeoftheoverallontourisroughlyleftinvariantbythesaleshift

in

S full trunc

.

Theg.5.7illustratesthepurezonalase. Hereawhole

a ℓ0 = 1000µ

Khasbeeninduedinto

themultipolevetors. Again,duetothesensitivityof

S trunc full

toaxialontaminationthispushes theallowedregioninthesatterplottoveryhighvaluesinfull-skypowersquared,degenerating