• Keine Ergebnisse gefunden

Principles  of  molecular  dynamic  simulations

3.   Results  and  Discussion

3.2. Molecular  dynamic  simulations  of  the  CTLD  of  perlucin  and   MBP-­‐A

3.2.1.   Principles  of  molecular  dynamic  simulations

The   very   basic   principle   (apart   from   sophisticated/efficient   implementations   of   the   algorithms)  of  a  molecular  dynamic  simulation  is  to  evaluate  the  force  acting  on  each   particle  of  the  simulation  from  a  given  potential  at  a  given  time  and  calculate  from  this  

forces   new   positions   of   all   particles.   The   force   acting   on   a   single   particle  𝑝𝑝  can   be   calculated  from  

 

𝐹𝐹!(𝑟𝑟! 𝑡𝑡 ) = 𝑚𝑚!⋅𝑑𝑑!𝑟𝑟! 𝑡𝑡 )

𝑑𝑑𝑡𝑡! = −∇  𝑉𝑉(𝑟𝑟! 𝑡𝑡 )   (3.2.1.)    

where  ∇  𝑉𝑉(𝑟𝑟! 𝑡𝑡 )  denotes   the   gradient   of   the   potential   energy   at   the   location  𝑟𝑟!(𝑡𝑡)  of   the  particle  𝑝𝑝.  

During   a   MD   simulation   the   positions   and   velocities   of   an   evolving   system   under   a   given  potential  function  are  calculated  at  small  successive  time  intervals  𝛥𝛥𝑡𝑡.  Cuendet   and  van  Gunsteren  (Cuendet  &  van  Gunsteren  [2007])  give  some  introductory  remarks   about   two   common   integration   algorithms   (see   also  Allen   &   Tildesley   [1987]):   the   Verlet   (see   also   Verlet   [1967])   and   leapfrog   algorithm.   To   give   an   idea   how   the   calculation  of  positions  and  velocities  during  an  MD  simulation  can  be  performed  in  the   following  the  first-­‐order  leapfrog  algorithm  is  stated.  Let  𝛥𝛥𝛥𝛥  be  the  time  step  employed   during  the  simulation  and  set  𝑡𝑡! = 𝑛𝑛 ⋅ 𝛥𝛥𝛥𝛥  the  time  after  𝑛𝑛  time  steps.  The  acceleration   𝑎𝑎! 𝑡𝑡!  of   a   particle   p   at   position    𝑟𝑟! 𝑡𝑡!  and   the   force   –   resulting   from   the   potential   energy  of  the  particle  –  are  related  through  Newton’s  law  

 

𝑎𝑎! 𝑡𝑡! =𝐹𝐹!(𝑡𝑡!)

𝑚𝑚! =   − 1

𝑚𝑚!∇  𝑉𝑉(𝑡𝑡!)   (3.2.2.)    

The  first  order  (with  respect  to  the  time  step)  leapfrog  algorithm  can  then  be  stated  as    

𝑟𝑟! 𝑡𝑡!!! =  𝑟𝑟! 𝑡𝑡! +  𝑣𝑣! 𝑡𝑡!!!/! ⋅ 𝛥𝛥𝛥𝛥   (3.2.3.)    

𝑣𝑣! 𝑡𝑡!!!/! =  𝑣𝑣! 𝑡𝑡!!!/! −∇  𝑉𝑉 𝑡𝑡!

𝑚𝑚! ⋅ 𝛥𝛥𝛥𝛥   (3.2.4.)    

These  two  equations  allow  the  calculation  of  the  position  and  velocity  of  particles  in  a   MD  simulation.  Note  the  characteristic  shift  of  𝛥𝛥𝛥𝛥 2  between  the  calculated  velocities   and  positions.  Examples  of  higher  order  approximations  can  be  found  in  Cuendet  et  al.  

(Cuendet  &  van  Gunsteren  [2007]).  

The  potential  energy  used  during  the  simulations  with  the  “sander”  software  module  of   AMBER  can  be  described  as  (e.g.  Ponder  &  Case  [2003],  Cornell  et  al.  [1995],  Wang  et   al.  [2000],  Duan  et  al.  [2003])  

 

𝑉𝑉 𝒓𝒓 = 𝐾𝐾! 𝑏𝑏 − 𝑏𝑏! !

!"#$%

 + 𝐾𝐾!   𝜃𝜃 − 𝜃𝜃! !

!"#$%&

+ 𝑉𝑉!

!"!!"#$%& 2

(1 + cos(𝑛𝑛  𝜙𝜙 − 𝛿𝛿))

+   𝐴𝐴!"

𝑟𝑟!"!"−𝐵𝐵!"

𝑟𝑟!"! +𝑞𝑞!  𝑞𝑞! 𝜀𝜀  𝑟𝑟!"

!"!#"!$%$

!"#$%  !";  !!!

 

(3.2.5.)  

 

Here  𝒓𝒓  denotes   the  3𝑁𝑁  Cartesian   coordinates   of   a  𝑁𝑁  particle   system.   The   individual   terms   have   the   following   meanings.   The   first   sum   describes   the   contribution   of   the   covalent  bonds  to  the  potential  energy.  The  potential  energy  is  described  as  a  harmonic   potential  with  equilibrium  bond  length  𝑏𝑏!  between  two  atoms  and  force  constant  𝐾𝐾!.   The  next  sum  considers  the  angle  between  three  covalent  bonded  atoms.  Consider  the   water  molecule  as  an  example.  The  hydrogen  and  oxygen  atoms  lie  in  a  plane.  Then  the   angle  between  both  of  the  O-­‐H  bonds  would  be  the  angle  𝜃𝜃  mentioned  in  3.2.5.  Again  a   harmonic  potential  is  used  to  model  these  interactions  with  the  equilibrium  angle  𝜃𝜃!   and   force   constant  𝐾𝐾!.   The   third   sum   runs   over   all   dihedral   angles.   Here   four   consecutive   covalently   bound   atoms   are   involved   in   the   formation   of   one   dihedral   angle   (see   Fig.   3.2.19.   for   more   information   on   dihedral   angles).   In   general   the   potential   energy   of   one   dihedral   angle   is   composed   of   at   least   one   summand   of   a   Fourier   series.   This   is   indicated   by   the   integer  𝑛𝑛  appearing   as   index   of   the   torsional   force  parameter  𝑉𝑉!  and  as  the  factor  of  the  angle  variable  𝜙𝜙.  Note  that  the  references   stating   equation   3.2.5.   the   phase  𝛿𝛿  is   not   indexed.   A   glance   at   the   parameter   files   (parm99.dat   and   frcmod.ff03   supplied   with   AMBER   10)   used   here   reveals   that   the   phase  is  either  0°  or  180°  –  this  is  also  stated  by  Duan  et  al.  (Duan  et  al.  [2003])  –  and   depends  on  𝑛𝑛  and  the  atoms  involved  in  the  dihedral  angle  formation.  

The  last  sum  contains  three  different  interactions  where  𝑟𝑟!"  is  the  distance  between  to   atoms  𝑖𝑖  and  𝑗𝑗  that   are   not   covalently   bound   to   each   other.   The   first   two   summands   constitute  the  “Lennard-­‐Jones”  interaction  (see  e.g.  Lennard-­‐Jones  [1931]).  The  term   proportional  to  𝑟𝑟!!"  describes  the  repulsion  of  two  atoms  within  short  distance  due  to  

Pauli’s   exclusion   principle.   The   attractive   contribution   proportional   to  𝑟𝑟!!  is   the   van   der   Waals   interaction.   It   arises   from   correlated   electric   dipole   fluctuations   (see   e.g.  

Lennard-­‐Jones  [1931],  Leckband  &  Israelachvili  [2001]).  The  final  contribution  is  the   electrostatic  or  Coulomb  interaction  between  two  point  charges.  Note  that  the  usual   factor  1/4𝜋𝜋𝜀𝜀!  is  omitted  here.  In  many  of  the  references  cited  here  it  does  not  appear.  

At  least  two  reasons  are  possible.  On  the  one  hand  constant  factors  depend  on  the  used   system  of  units  (see  e.g.  Jelitto  [1994])  and  on  the  other  hand  they  might  be  omitted   for   improved   readability   and   considered   only   in   final   results   or   numbers   (see   e.g.  

Appendix  A  in  Deserno  &  Holm  [1998]).  In  explicit  solvent  calculations  the  dielectric   constant  is  set  to  𝜀𝜀 = 1.  

In   the   last   sum   all   atom   pairs   are   considered   (only   once)   that   are   not   covalently   bonded   and   are   separated   at   least   by   three   bonds.   The   Lennard-­‐Jones   and   Coulomb   interactions  between  atoms  that  are  separated  by  three  covalent  bonds  are  scaled  by  a   factor   of  1/2.0  and  1/1.2  (see   Cornell   et   al.   [1995],   Duan   et   al.   [2003]).   Usually   the   Lennard-­‐Jones   interactions   between   non-­‐bonded   atoms   are   calculated   only   if   their   distance   is   below   a   certain   threshold   (here:  9  Å  during   the   heating   phase   and  10  Å   during   the   unconstrained   MD   simulations).   Reasons   may   be   the   reduction   of   computational  expense  and  obeying  the  minimum  image  convention  (see  e.g.  Allen  &  

Tildesley  [1987]).  In  terms  of  the  Coulomb  interaction  this  cut-­‐off  value  indicates  up  to   which  distance  the  electrostatic  interaction  is  calculated  as  a  direct  space  sum  (see  one   of  the  following  paragraphs  on  the  PME  method).  

The   entity   of   necessary   parameters   in   equation   3.2.5.   is   termed   “force   field”.   In   summary  equation   3.2.5.   describes   a   “minimalist”   (Cornell   et   al.   [1995],   p.   5181)   potential   function   that   is   able   to   describe   biomolecules   in   conjunction   with   an   appropriate  solvation  model  (Lee  &  Duan  [2004]).  It  has  fixed  charges  and  polarization   effects   are   not   included.   Polarizable   force   fields   (see   e.g.   Halgren   &   Damm   [2001],   Ponder  &  Case  [2003]  for  introductory  remarks)  are  not  considered  further.  The  used   force  field  is  a  revision  made  by  Duan  et  al.  (Duan  et  al.  [2003])  of  the  “parm99”  force   field  of  Wang  et  al.  (Wang  et  al.  [2000]).  The  latter  one  is  based  on  the  “Cornell”  force   field  (Cornell  et  al.  [1995]).  

       

Non-­‐bonded  interactions  –  Periodic  boundary  conditions    

As  it  can  be  seen  in  equation  3.2.5.  the  calculation  of  the  non-­‐bonded  interactions  of  a   𝑁𝑁  particle  system  would  require  the  evaluation  of  interactions  in  the  order  of  𝑁𝑁!.  This   complexity  can  be  reduced  through  cut-­‐off  distances  in  the  sense  that  the  non-­‐bonded   interaction  is  only  calculated  between  atoms  with  a  distance  below  this  cut-­‐off.  

To  give  an  illustrative  (neglecting  any  screening  effects)  example:  given  the  parameters   for   a   Cα   atom   the   Lennard-­‐Jones   interaction   energy   between   two   Cα   atoms   at   their   equilibrium   distance  𝑑𝑑! = 3.816  Å  is  𝜖𝜖! = −0.1094  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚.   When   the   distance   between   these   two   atoms   is  𝑑𝑑 = 10  Å  then   the   interaction   energy   increased   to   𝜖𝜖 ≈ 0.005 ⋅  𝜖𝜖!.  In  contrast  the  Coulomb  energy  of  two  particles  with  +0.5  unit  charge   (SI   units)   each,   with   a   distance   of  3.8  Å  is  ≈ 22  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚.   If   these   particles   have   a   distance  of  10  Å  then  their  Coulomb  interaction  energy  is  still  ≈ 0.38 ⋅ 22  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚.    

Compared   to   Lennard-­‐Jones   interactions   the   Coulomb   interaction   is   classified   as   a   long-­‐range   interaction.   Allen   and   Tildesley   (Allen   &   Tildesley   [1987])   state   that   an   interaction   that   decays   not   faster   than  𝑟𝑟!𝒟𝒟(𝒟𝒟  is   the   system   dimension)   is   frequently   defined  as  a  long-­‐range  interaction.  Obviously  the  Coulomb  interaction  needs  special   attention.  Cheatham  and  Brooks  (section  4  in  Cheatham  III.  &  Brooks  [1998])  state  that   a  simple  cut-­‐off  scheme  of  the  long-­‐range  electrostatic  interactions  can  lead  to  artefacts   such   as   unrealistic   pairing   distances   of   equal   charged   ions   that   do   not   occur   with   different  treatments.  

In   this   work   here   a   biomolecule   is   simulated   in   a   water   box   with   explicit   water   molecules  to  mimic  a  natural  aqueous  environment.  However  a  single,  isolated  water   box  would  be  surrounded  by  a  vacuum  and  therefore  introduce  an  artificial  interface   not   present   in   real   aqueous   solutions.   Cheatham   and   Brooks   (see   section   3   in   Cheatham   III.   &   Brooks   [1998])   describe   that   at   this   interface   a   surface   tension   can   build  up  that  leads  to  unwanted  effects  like  water  ordering  and  high  pressures  in  the   simulation  cells.  

To  circumvent  this  the  (primary)  water  box  with  the  solute  is  repeated  periodically  in   the  three  dimensional  space.  This  introduces  periodic  boundary  conditions  (PBC).  Now   molecules   close   to   the   boundary   can   interact   with   molecules   in   neighbouring   boxes   (see  e.g.  Allen  &  Tildesley  [1987])  and  therefore  are  in  an  environment  that  is  more   similar   to   the   environment   further   away   from   the   edges   of   the   primary   box.   Since  

every  molecule  in  the  primary  box  can  interact  now  with  its  periodic  image  an  artificial   periodicity  is  introduced  into  the  system.    

The   Coulomb   interaction   energy   of   a   system   comprising  𝑁𝑁  particles   and   an   infinite   number  of  (periodic)  images  can  now  be  written  as  (see  e.g.  Allen  &  Tildesley  [1987],   Deserno  &  Holm  [1998])  

 

𝑉𝑉!"#$ = 1 2

𝑞𝑞!  𝑞𝑞! 𝑟𝑟!"+ 𝑛𝑛

~

!

!

!,!

  (3.2.6.)  

 

Here  the  inner  sum  runs  over  all  vectors  𝑛𝑛  that  describe  the  position  of  every  image   cell  relative  to  the  primary  cell.  The  tilde  indicates  that  if  𝑛𝑛 = 0  (primary  cell)  it  must   be  𝑖𝑖 ≠ 𝑗𝑗  in   the   outer   sum.   The   calculation   of   the   electrostatic   interactions   with   PBC   requires  that  the  primary  cell  is  neutral  otherwise  the  electrostatic  energy  of  the  whole   system   diverges   (see   e.g.   Allen   &   Tildesley   [1987]   or   Sagui   &   Darden   [1999]).   As   described   for   example   by   Allen   and   Tildesley   (Allen   &   Tildesley   [1987])   the   central   idea  to  calculate  the  electrostatic  energy  is  in  a  first  step  to  introduce  counter  charges   around  the  point  charges  of  the  atoms.  These  charge  densities  can  have  the  shape  of  a   Gaussian,  like  

 

𝜌𝜌! 𝑟𝑟 = 𝑞𝑞! 𝛽𝛽!

𝜋𝜋!  exp(−𝛽𝛽!  𝑟𝑟!)   (3.2.7a.)    

where  𝛽𝛽  determines   the   spatial   extent   of   the   charge   distribution.   These   counter   charges  screen  the  interactions  of  the  point  charges.  It  is  assumed  that  the  Coulomb   interactions   between   the   screened   point   charges   decrease   sufficiently   fast   with   increasing   charge   distance.   Therefore   these   interactions   are   evaluated   in   the   direct   space  with  a  cut-­‐off.  The  artificially  introduced  Gaussian  charge  distributions  must  be   cancelled  by  opposite  charge  distributions  so  that  the  original  potential  is  not  changed.  

The  latter  charge  distributions  are  summed  in  the  reciprocal  space.  

One  can  also  motivate  the  improved  treatment  of  long-­‐range  electrostatic  interactions   by  the  following  identity  (see  e.g.  Deserno  &  Holm  [1998],  Sagui  &  Darden  [1999])    

1 𝑟𝑟 =

erfc(α  𝑟𝑟)

𝑟𝑟 +1 − erfc(α  𝑟𝑟)

𝑟𝑟   (3.2.7b.)  

 

with   the   complementary   error   function   (erfc).   This   allows   to   split   the   Coulomb   interaction   energy   into   faster   converging   sums.   The   first   summand   in   3.2.7b.   is   evaluated  in  the  direct  space  when  𝑟𝑟  is  smaller  than  a  specified  cut-­‐off  (this  is  the  same   cut-­‐off   of   9  Å  and   10  Å  respectively   introduced   above   for   the   Lennard-­‐Jones   interaction).  The  second  one  is  evaluated  in  the  reciprocal  space.  

Such  a  decomposition  scheme  due  to  Ewald  (in  (Kittel  [2006])  in  “Anhang  B”  the  Ewald   summation  is  shown  for  a  crystal)  results  in  

 

𝑉𝑉!"#$ = 𝑉𝑉!"#+ 𝑉𝑉!"#+ 𝑉𝑉!"##   (3.2.8.)    

The   energy   contribution   calculated   in   the   reciprocal   space  𝑉𝑉!"#  involves   a   Fourier   transformation   of   the   charge   distribution   in   the   primary   cell.   This   can   be   evaluated   with  a  three  dimensional  fast  Fourier  transformation  (FFT)  when  the  charges  in  the   primary   cell   are   mapped   onto   a   three   dimensional   mesh.   This   is   the   Particle   Mesh   Ewald   (PME)   method   (Darden  et  al.   [1993])   that   allows   the   calculation   of   the   long-­‐

range   Coulomb   interaction   with   a  𝑁𝑁 ⋅ ln 𝑁𝑁  order   algorithm   implemented   in   AMBER   (Essmann  et  al.  [1995],  a  flow  chart  can  be  found  in  Darden  et  al.  [1999]).  Toukmaji   and  Board  reviewed  different  Ewald  summation  techniques  in  (Toukmaji  &  Board  Jr.  

[1996]).  

The   artificial   periodicity  of   the   system   necessary   for   the   Ewald   methods   can   lead   to   artifacts,   e.g.   hindered   rotation   of   dipoles,   but   they   seem   to   be   negligible   for   water   environments  with  high  dielectric  constants  (Smith  &  Pettitt  [1996]).  In  summary  the   PME   method   (or   similar   techniques)   for   inclusion   of   the   long-­‐range   electrostatics   seems   to   be   necessary   for  simulations   of   macromolecules  and   introduced   errors   are   outweighed  (e.g.  Cheatham  III.  et  al.  [1995],  York  et  al.  [1993],  Cheatham  III.  &  Brooks   [1998]).  

 

Explicit  water  –  TIP3P  water  model    

The   aqueous   environment   incorporating   the   protein   is   represented   here   through   water  molecules  (“explicit  water”)  and  not  as  a  dielectric  continuum  (“implicit  water”)   surrounding   the   solute   (see   Fig.   3.2.1.A).   Following   the   review   on   computer   simulations   on   water   by   Guillot   (Guillot   [2002])   water   models   can   be   roughly  

distinguished   in   terms   of   rigidity/flexibility   of   the   internal   water   bonds,   polarizability/non-­‐polarizability,  (point)  charge  distribution  on  a  water  molecule  and   Lennard-­‐Jones   interaction   parameters.   Usually   the   parameters   of   water   models   are   adjusted   to   reflect   the   thermodynamical   (for   example   density   and   heat   of   vaporization),   structural   (for   example   oxygen-­‐oxygen   radial   distributions)   and   dielectric  properties  of  real  water  during  the  molecular  dynamic  simulation.  

 

Figure  3.2.1.  The  left  image  A)  shows  a  perlucin  molecule  immersed  in  a  water  box.  The  three   dimensional   shape   of   the   water   box   is   that   of   a   truncated   octahedron.   The   right   image   B)   highlights  some  physico-­‐chemical  features  of  the  TIP3P  (Jorgensen  et  al.  [1983])  water  model.  

TIP3P   is   a   rigid   and   non-­‐polarizable   water   model   with   three   point   charges   centred   on   the   oxygen   and   hydrogen   atoms   respectively.   Charges   are   given   as   fractional   charges   of   the   elementary   charge.   For   the   computation   of   the   Lennard-­‐Jones   interaction   between   a   water   molecule   and   any   other   atom   only   parameters   assigned   to   the   oxygen   atom   are   used.   This   means  that  the  Lennard-­‐Jones  parameters  for  oxygen  include  the  effect  of  the  hydrogen  atoms   implicitly.   To   highlight   this   property   a   dashed   circle   is   depicted   around   the   oxygen   atom   incorporating  the  hydrogen  atoms.  According  to  the  “parm99”  force  field  supplied  with  AMBER   the  value  of  this  van  der  Waals-­‐radius  is  𝑟𝑟! = 1.7683  Å.  See  also  III.H.  for  further  information   on  the  term  “van  der  Waals-­‐radius”.  The  molecules  are  rendered  with  VMD  (Humphrey  et  al.  

[1996]  version  1.9.1)  and  labels  are  added  with  Inkscape  (http://inkscape.org).  

 

In  this  thesis  the  TIP3P  water  model  (see  Fig.  3.2.1.B)  Jorgensen  et  al.  (Jorgensen  et  al.  

[1983])   was   used.   The   bonds   are   rigid   and   it   contains   three   point   charges   corresponding   on   the   oxygen   and   hydrogen   atoms   respectively.   TIP3P   is   a   non-­‐

polarizable   model.   Lennard-­‐Jones   parameters   are   assigned   to   the   oxygen   atom   including  the  hydrogen  atoms  implicitly.  As  pointed  out  by  Price  and  Brooks  (Price  &  

Brooks   [2004])   the   TIP3P   water   model   was   developed   under   conditions   with   short   spherical   cut-­‐offs   for   Lennard-­‐Jones   and   electrostatic   interactions.   They   compared   thermodynamic   and   dielectric   properties   of   TIP3P   water   obtained   from   MD   simulations   using   spherical   cut-­‐offs   for   Lennard-­‐Jones   and   Coulomb   interactions   as   well   as   a   PME   treatment   of   electrostatics.   Since   in   both   cases   the   determined   properties   differed   from   experimental   values   the   authors   refined   the   TIP3P   model.  

They   employed   the   original   and   refined   TIP3P   water   models   in   MD   simulations   of   native  protein  structures  and  concluded  “[…]  that  while  three  proteins  do  not  behave   appreciably   different   from   a   previous   study,   there   is   some   subtle   reduction   in   the   hydrophilicity  of  alcohols  and  presumably  other  polar  compounds  […]”  (p.  10103).  For   example  they  observed  the  maximal  difference  between  the  Cα-­‐RMSd  values  of  protein   simulations   with   different   water   models   to   be  0.21  Å.   The   maximal   observed   SASA   difference  was  around  200  Å!.  

Here  the  original  TIP3P  water  model  was  used  for  all  MD  simulations.  This  was  solely   justified  by  the  use  of  TIP3P  by  Wang  et  al.  (Wang  et  al.  [2000])  and  Duan  et  al.  (Duan   et  al.  [2003])  to  test  the  “parm99”  force  field  and  its  revised  version  respectively.  

The  periodic  boundary  conditions  required  for  PME  put  restrictions  on  the  shape  of   the   water   box   that   contains   the   macromolecule.   It   must   be   possible   to   arrange   an   infinite  number  of  boxes  to  cover  the  whole  space  without  any  “vacuum  gaps”  between   them.   AMBER   offers   cuboid   shaped   boxes   or   truncated   octahedral   (imagine   an   octahedron  with  chopped  off  corners)  boxes.  Here  the  latter  shape  was  used  due  to  its   smaller  volume  (see  Fig.  3.2.1.A).  The  box  volume  is  chosen  in  such  a  manner  that  at   least   a   distance   of  10  Å  was   preserved   between   any   solutes   atom   and   the   box   boundary.  

 

Ion  parameters    

Since  the  PME  method  requires  charge  neutrality  inside  the  water  box  usually  counter   ions   have   to   be   added   to   account   for   a   net   charge   of   the   protein.   Additionally   the   perlucin   model   was   tested   with   a   different   number   of   associated   Ca2+   ions   (see   also   section  3.1.),  which  usually  required  charge  neutralization.  Through  the  addition  of  ion  

pairs  a  certain  ionic  strength  of  the  solvent  can  be  maintained.  Effects  of  ionic  strength   on  the  model  stability  were  not  investigated  here.  Sodium  and/or  chloride  ions  were   used  for  charge  balancing.  The  ionic  strength  was  not  equal  in  different  MD  simulation   series.   The   chloride,   sodium   and   calcium   ion   Lennard-­‐Jones   parameters   in   the  

“parm99”  force  field  are  taken  from  Smith  et  al.  (Smith  &  Dang  [1994],  chloride)  and   Åqvist   (Åqvist   [1990],   cations).   The   sodium   Lennard-­‐Jones   parameters   in   the   force   field  are  already  adjusted  for  the  TIP3P  water  model  (see  e.g.  the  discussion  in  Ross  &  

Hardin  [1994]).  The  adjustments  –  as  explained  in  the  next  paragraph  –  for  the  calcium   ion  parameters  needed  to  be  done  separately  with  a  force  field  modification  file  (see   Appendix  III.I.).  

To  explain  this  adjustment  one  need  to  know  in  the  first  place  that  the  Lennard-­‐Jones   parameters   in   the   “parm99”   force   field   are   not   given   as   the  𝐴𝐴  and  𝐵𝐵  values   from   equation   3.2.5.   Instead   the   Lennard-­‐Jones   interaction   is   formulated   terms   of   the   interaction   energy   minimum   (well   depth)  𝜖𝜖  and   position   of   this   minimum   (or   equilibrium  distance)  𝑟𝑟!  between  two   atoms  (see  Appendix  III.H.).  AMBER  calculates   the  equilibrium  distance  between  two  different  atom  types  simply  as  the  sum  of  the   individual  atomic  radii  (here  also  termed  van  der  Waals-­‐radii).  Now  one  has  to  decide   which  radii  and  well  depth  one  assigns  to  the  ions  depending  on  which  properties  the   simulated  system  has  to  have.  Additionally  Åqvist  (Åqvist  [1990])  determined  the  ion   parameters   not   within   the   TIP3P   water   model.   The   radii   of   the   cations   given   in   the  

“parm99”  force  field  are  already  calculated  in  conjunction  with  the  parameters  of  the   TIP3P   water   model   and   the   AMBER   mixing   rules.   As   stated   by   Ross   et   al.   (Ross   &  

Hardin   [1994],   p.   6074)   these   parameters   reproduce   first   peaks   of   the   radial   distribution  of  ion-­‐water  oxygen  distance  and  hydration  free  energies.  An  exemplary   calculation   for   Ca2+   can   be   found   on   the   AMBER   webpage   (http://ambermd.org/Questions/vdw.html,  last  access  02/07/2013).    

 

Thermostats  and  barostats    

Typically  biological  processes  occur  at  ambient  conditions  with  respect  to  temperature   and  pressure.  In  a  molecular  dynamics  simulation  executed  in  a  box  of  constant  volume   𝑉𝑉  and   with   a   constant   number  𝑁𝑁  of   particles   the   total   energy  𝐸𝐸  would   be   conserved   (NVE  conditions).  This  means  that  the  microstates  of  the  system  during  the  simulation   sample  the  microcanonical  ensemble.  But  conditions  with  constant  temperature  𝑇𝑇  and  

constant   pressure  𝑃𝑃  are   more   appropriate   to   simulate   a   biological   environment   or   a   typical   biochemical   laboratory   experiment.   Since   the   particle   number  𝑁𝑁  is   usually   constant   as   well   these   conditions   are   denoted   as   NPT   conditions   (an   isothermal-­‐

isobaric  ensemble  is  sampled).  

Consequently  there  is  a  need  to  include  thermostat  and  barostat  algorithms  into  the   MD  simulations.  Recently  Hünenberger  reviewed  (Hünenberger  [2005])  fundamentals   of   current   thermostat   algorithms.   The   following   introductory   remarks   about   thermostats  are  based  on  this  review  and/or  the  book  of  Allen  and  Tildesley  (Allen  &  

Tildesley  [1987])  if  not  stated  otherwise.  

The   equipartition   theorem   (see   e.g.   Reif   [1987])   states   that   if   a   system   is   in   thermodynamic   equilibrium   –   at   temperature  𝑇𝑇  –   every   degree   of   freedom   that   is   quadratic  in  one  generalised  coordinate  or  momentum  contributes  the  average  energy   of  

𝐸𝐸! = 1

2  𝑘𝑘!  𝑇𝑇   (3.2.9.)  

 

to   the   energy   of   the   whole   system   (𝑘𝑘!  is   the   Boltzmann   constant).   This   enables   to   relate  the  macroscopic  temperature  𝑇𝑇  of  a  system  with  its  the  average  kinetic  energy      

𝐸𝐸!"# = 𝜉𝜉

2  𝑘𝑘!  𝑇𝑇   (3.2.10.)  

 

when  𝜉𝜉  degrees  of  freedom  contribute  to  the  kinetic  energy.  This  leads  to  the  definition   of  a  “instantaneous  kinetic  temperature”  𝑇𝑇  at  each  time  step  during  the  simulation  as      

𝐸𝐸!"# = 1

2 𝑚𝑚!  𝑣𝑣!!

!!!

!!!

= 𝜉𝜉

2  𝑘𝑘!  𝑇𝑇   (3.2.11.)    

whose  average  corresponds  to  the  desired  macroscopic  temperature  (Allen  &  Tildesley   [1987],  p.46-­‐47).  Consequently  a  thermostat  can  be  realized  by  adjusting  the  velocity   distribution  of  the  atoms  simulated.    

The   “sander”   software   module   of   AMBER   (version   10)   offers   three   different   thermostats  (each  is  discussed  by  Hünenberger  Hünenberger  [2005]).  The  “stochastic-­‐

coupling”  scheme  by  Andersen  (Andersen  [1980])  assigns  at  intervals  new  velocities  to  

atoms   of   a   system   and   these   new   velocities   are   sampled   from   a   Maxwell-­‐Boltzmann   distribution.  Another  possibility  to  maintain  a  constant  temperature  is  the  integration   of   the   Langevin   equation   (with   appropriate   properties   of   the   stochastic   forces   and   friction   coefficients)   instead   of   the   Newton   equation   of   motion.   For   the   simulations   discussed   here   the   “weak-­‐coupling”   scheme   of   Berendsen   et   al.   (Berendsen   et   al.  

[1984])  was  used.  In  this  scheme  the  modified  equation  of  motion  for  each  particle  𝑖𝑖   reads  

 

𝑎𝑎! 𝑡𝑡 =   −∇  𝑉𝑉 𝑟𝑟! 𝑡𝑡

𝑚𝑚! + 1

2  𝜏𝜏! 𝑇𝑇

𝑇𝑇 𝑡𝑡 − 1  𝑣𝑣!(𝑡𝑡)   (3.2.12.)    

In  this  equation  the  last  summand  implies  a  velocity  scaling  through  coupling  of  the   system  to  an  external  bath  with  temperature  𝑇𝑇.  The  coupling  strength  can  be  adjusted   with   the   time   constant  𝜏𝜏!.   A   large   time   constant   simulates   a   weak   coupling   that   vanishes   in   the   limit   of   𝜏𝜏! →∞  which   corresponds   to   a   simulation   without   temperature  control.  A  time  constant  in  the  order  of  the  time  step  of  the  simulation   reflects  a  tight  coupling  to  the  heat  bath  that  does  not  allow  temperature  fluctuations   (Hünenberger  [2005]).  

Note  that  as  long  as  the  time  constant  has  a  value  between  these  two  limiting  cases  –   𝜏𝜏! ≈ 𝛥𝛥𝛥𝛥  or  𝜏𝜏! →∞  as   described   above   –   a   simulation   with   the   Berendsen   algorithm   samples   configurations   from   a   particular   “weak-­‐coupling   ensemble”   (Morishita   [2000])  and  not  from  an  expected  canonical  ensemble  (see  also  Hünenberger  [2005]).  

Another   issue   might   arise   when   using   velocity   rescaling   schemes   for   temperature   control:  the  “flying  ice  cube”  effect  (Harvey  et  al.  [1998]).  The  authors  exemplify  how   kinetic   energy   can   be   transferred   from   vibrational   motions   to   centre-­‐of-­‐mass   translations.  As  remedies  they  propose  occasional  velocity  reassignment  (similar  to  the  

“stochastic-­‐coupling”  scheme),  frequent  removal  of  the  centre-­‐of-­‐mass  translation  and   rotation  or  ideally  calculate  the  systems  temperature  as  an  appropriate  time  average   and   not   as   an   instantaneous   temperature.   Currently   the   author   of   this   thesis   cannot   comment   in   how   far   these   (or   other)   precautions   are   established   in   AMBER   10.   No   efforts  were  undertaken  to  explore  possible  issues  with  the  weak-­‐coupling  scheme.  

Despite  these  drawbacks  the  weak-­‐coupling  algorithm  is  used  for  temperature  control   since   it   can   also   be   used   for   pressure   regulation   (AMBER   10   offers   only   the   weak-­‐  

coupling   scheme   for   pressure   regulation).   Instead   of   velocity   rescaling   the   pressure  

regulation  according  to  Berendsen  et  al.  (Berendsen  et  al.  [1984])  involves  coordinate   rescaling.  For  a  simple  isotropic  and  cubic  system  the  coordinates  and  box  lengths  are   scaled  by  

 

1 −𝛽𝛽  𝛥𝛥𝛥𝛥

3  𝜏𝜏! 𝑃𝑃 − 𝑃𝑃 𝑡𝑡   (3.2.13.)  

 

where  𝛽𝛽  is   the   isothermal   compressibility.   The   magnitude   of   the   scaling   depends   on   the  difference  between  the  target  pressure  𝑃𝑃  and  actual  pressure  𝑃𝑃(𝑡𝑡)  of  the  system.  As   in  the  case  of  the  thermostat  the  coupling  strength  of  the  system  to  the  barostat  can  be   controlled  with  𝜏𝜏!.  

 

MD  simulation  parameters  in  this  thesis    

After   setting   up   the   system,   which   means   solvation   of   the   biomolecule   in   the   box   of   explicit   water,   no   temperature   could   be   assigned   to   the   system   since   there   was   no   velocity   information   present.   The   system   had   to   be   adapted   to   the   target   conditions   which   were  𝑇𝑇 = 300𝐾𝐾 ≈ 27°𝐶𝐶  and  𝑃𝑃 = 1  𝑏𝑏𝑏𝑏𝑏𝑏 = 1000  ℎ𝑃𝑃𝑃𝑃  for   every   MD   simulation   discussed  here.  So  in  a  first  step  a  simple  energy  minimization  was  performed  to  relax   the  solute  and  the  solvent  molecules.  After  this  minimization  velocities  were  assigned   randomly   to   all   atoms   in   such   a   manner   that   the   velocity   distribution   follows   a   Maxwellian  distribution  for  a  given  temperature  (25  𝐾𝐾  for  the  perlucin  model  and  1  𝐾𝐾   for   the   reference   protein   MBP-­‐A).   Afterwards   the   system   was   “coupled”   to   a   thermostat  and  a  barostat.  The  pressure  was  set  to  𝑃𝑃 = 1  𝑏𝑏𝑏𝑏𝑏𝑏  and  the  temperature  was   increased  in  several  short  MD  simulations  to  𝑇𝑇 = 300𝐾𝐾.  During  this  heating  phase  the   time   constants   were   kept   small   to   ensure   a   tight   coupling.   Harmonic   positional   restraints  were  applied  to  the  atoms  of  the  solute  to  avoid  an  unfolding  of  the  protein   due  to  fast  heating.  This  means  that  the  positions  of  the  atoms  of  the  solute  (not  the   water  molecules)  were  restrained  with  a  harmonic  potential  on  their  positions  after   the   minimization   for   the   first   MD   simulation.   For   the   following   restrained   MD   simulations  the  reference  coordinates  for  the  restrained  atoms  were  the  coordinates   obtained  from  the  first  MD  simulation.  After  the  target  temperature  of  𝑇𝑇 = 300𝐾𝐾  was   established   these   restraints   were   gradually   released.   Table   3.2.1.   summarizes   the  

important   parameters   of   the   MD   simulations   that   were   performed   subsequently   on   each  initial  configuration.  

The  minimization  and  heating  protocol  was  kindly  provided  by  Prof.  Dr.  M.  Zacharias.  

 

time  

  temperature  

  coupling  

constant   restraint  

weight   non-­‐bonded   cut-­‐off   initial  minimization  (steepest  descent,  1500  steps)  and  random  velocity  

assignment  from  a  Maxwellian  distribution  (25  𝐾𝐾  or  1  𝐾𝐾)   0  to  20  𝑝𝑝𝑝𝑝   100  𝐾𝐾   0.1  𝑝𝑝𝑝𝑝   25 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  Å!     9  Å   20  to  40  𝑝𝑝𝑝𝑝   200  𝐾𝐾   0.1  𝑝𝑝𝑝𝑝   25 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  Å!     9  Å   40  to  60  𝑝𝑝𝑝𝑝   300  𝐾𝐾   0.1  𝑝𝑝𝑝𝑝   25 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  Å!     9  Å   60  to  80  𝑝𝑝𝑝𝑝   300  𝐾𝐾   0.1  𝑝𝑝𝑝𝑝   12 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  Å!     9  Å   80  to  100  𝑝𝑝𝑝𝑝   300  𝐾𝐾   0.1  𝑝𝑝𝑝𝑝   6 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  Å!     9  Å   100  to  120  𝑝𝑝𝑝𝑝   300  𝐾𝐾   0.1  𝑝𝑝𝑝𝑝   2 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  Å!     9  Å   120  to  140  𝑝𝑝𝑝𝑝   300  𝐾𝐾   0.1  𝑝𝑝𝑝𝑝   1 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  Å!     9  Å   140  to  200  𝑝𝑝𝑝𝑝   300  𝐾𝐾   0.1  𝑝𝑝𝑝𝑝   0.5 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  Å!     9  Å  

0.2  to  2.2  𝑛𝑛𝑛𝑛   300  𝐾𝐾   2.5  𝑝𝑝𝑝𝑝   -­‐   10  Å  

2.2  to  10.2  𝑛𝑛𝑛𝑛   300  𝐾𝐾   2.5  𝑝𝑝𝑝𝑝   -­‐   10  Å  

 

Table   3.2.1.   Summary   of   the   subsequent   stages   of   the   MD   simulations   performed   for   every   initial  configuration.  The  first  column  indicates  the  time  progression  of  the  whole  simulation   and   implies   the   duration   of   each   stage.   Note   that   the   initial   energy   minimization   is   no   molecular   dynamics   simulation   and   therefore   no   time   can   be   assigned.   The   second   column   contains  the  temperature  of  the  heat  bath.  At  every  stage  the  target  pressure  is  1  𝑏𝑏𝑏𝑏𝑏𝑏.  The  next   column   highlights   the   coupling   constants   used   for   the   temperature   and   pressure   regulation.  

Note  that  the  same  values  were  chosen  for  the  thermostat  and  barostat.  In  the  column  labelled  

“restraint  weight”  the  parameter  that  indicates  the  strength  of  the  harmonic  potential  acting   on   the   restrained   atoms.   The   last   column   contains   the   cut-­‐off   value   of   the   non-­‐bonded   interactions.   Lennard-­‐Jones   interactions   are   not   calculated   between   atoms   with   a   distance   greater  than  this  value.  The  electrostatic   interactions  between  atoms  up  to  this  distance  are   calculated  in  the  direct  space  sum.  

 

After   the   system   was   heated   to   the   desired   temperature   it   was   allowed   to   evolve   unconstrained   for   a   longer   time.   Here   the   duration   of   the   unconstrained   simulation  

was  10  𝑛𝑛𝑛𝑛  in  total  (split  up  in  2  and  8  𝑛𝑛𝑛𝑛).  The  time  step  used  in  every  simulation  was   𝛥𝛥𝛥𝛥 = 2  𝑓𝑓𝑓𝑓 = 0.002  𝑝𝑝𝑝𝑝.  

The  following  simple  estimation  points  to  a  possible  problem  with  this  large  time  step   (see   also   Feenstra  et  al.   [1999]).   Consider   a   covalent   bond   between   the   oxygen   and   hydrogen   atom   of   a   hydroxyl   group.   The   force   constant   (or   spring   constant)   for   the   harmonic  potential  that  models  the  covalent  bond  is  𝑘𝑘 = 553  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚  Å!  (“parm99”  

force   field;   bond   between   atom   types   “OH”   and   “HO”).   The   position   of   the   “heavy”  

oxygen  shall  be  fixed.  Then  the  frequency  of  the  oscillating  hydrogen  atom  around  the   equilibrium  distance  can  be  estimated  to  be  𝜈𝜈! = 1 𝑇𝑇! = 1 2𝜋𝜋 𝑘𝑘 𝑚𝑚 ≈ 7.7 ⋅ 10!"  𝑠𝑠!!.   This   implies   that   the   time   step   of  𝛥𝛥𝛥𝛥 = 2  𝑓𝑓𝑓𝑓  corresponds   approximately   to  0.15 ⋅ 𝑇𝑇!.   Feenstra  et  al.  (Feenstra  et  al.  [1999])  give  several  further  examples  of  characteristic   oscillation  periods.  

These  fast  bond  stretching  movements  involving  hydrogen  atoms  were  removed  from   the  MD  simulations  with  the  SHAKE  (Ryckaert  et  al.  [1977])  and  SETTLE  (Miyamoto  &  

Kollman   [1992])   algorithms   by   imposing   distance   constraints.   The   latter   one   is   for   rigid  water  models  like  TIP3P.  This  allows  the  use  of  the  large  time  step  of  𝛥𝛥𝛥𝛥 = 2  𝑓𝑓𝑓𝑓.  

 

This  introduction  to  the  principles  of  molecular  dynamic  simulations  is  concluded  with   a   summary   of   the   characteristics   of   the   different   simulations   whose   results   will   be   presented  and  discussed  in  the  next  sections.    

 

feature   perlucin   MBP-­‐A  

identifier   run09   run21   run22   run02   run07   run10  

no.  runs   6   3   3   3   3   3  

residues   1-­‐135   1-­‐131   1-­‐131   109-­‐221   104-­‐221   104-­‐221   Ca2+   Ca-­‐1  

Ca-­‐2   Ca-­‐3   Ca-­‐4  

-­‐  

Ca-­‐2   -­‐  

Ca-­‐4  

-­‐   -­‐   Ca-­‐1  

Ca-­‐2   Ca-­‐3   -­‐  

-­‐  

Ca-­‐2   -­‐  

-­‐  

ions  (c)   7  Cl-­‐   3  Cl-­‐   1  Na+   4  Na+   4  Cl-­‐   -­‐  

ions  (a)   -­‐   -­‐   3  Na+/Cl-­‐   -­‐   -­‐   3  Na+/Cl-­‐  

no.  water   8039   4888   5799   4554   5623   7150  

restrained  

residues   1-­‐139   protein   and  Ca2+  

1-­‐131   protein   only  

1-­‐131   protein   only  

protein  

and  ions   protein  

and  ions   protein   only