• Keine Ergebnisse gefunden

Association  of  calcium  ions  to  residues  of  the  CTLD  of  perlucin  and   MBP-­‐A

3.   Results  and  Discussion

3.2. Molecular  dynamic  simulations  of  the  CTLD  of  perlucin  and   MBP-­‐A

3.2.4.   Association  of  calcium  ions  to  residues  of  the  CTLD  of  perlucin  and   MBP-­‐A

and  Gready  (Zelensky  &  Gready  [2003])  –  is  investigated  and  not  any  further  details  of   atomic/residue  positions  or  orientations.    

 

3.2.4.  Association  of  calcium  ions  to  residues  of  the  CTLD  of  perlucin  and  

 

  Fig.

 3.2.13.  Calcium  ion  positions  in  several  CTLDs.  In  every  part  of  the  figure  the  large  red  beads  are  the  calcium  ions  and  the  small  red  beads  are   oxygen  atoms  (on  amino  acids)  within  a  distance  of  3    to  a  calcium  ion.  The  residues  to  which  the  aforementioned  oxygen  atoms  belong  to  are   represented  as  well.  The  calcium  ion  positions  are  named  according  to  the  common  nomenclature  (e.g.  Zelensky  &  Gready  [2005])  for  CTLDs  Ca-­‐1,   Ca-­‐2,  Ca-­‐3  and  Ca-­‐4.  In  brackets  the  number  of  amino  acid  oxygen  atoms  within  a  distance  of  3    to  the  corresponding  calcium  ion  is  given.  The  left   image  shows  the  ASGR  (1DV8,  chain  A)  with  its  three  calcium  ions  from  the  crystal  structure.  In  the  middle  the  CTLD  of  MBP-­‐A  (1KWV,  chain  A)  is   shown  and  on  the  right  hand  side  the  perlucin  model  with  four  calcium  ions  is  shown.  The  latter  structure  was  taken  from  one  MD  simulation  series   after  the  minimization  step  (run09,  no  MD  performed).  It  has  to  be  pointed  out  that  the  oxygen  of  Asn115  of  perlucin  is  not  within  a  3    distance.  But   this  is  the  case  for  the  two  exemplary  CTLDs  shown  in  A)  (1DV8,  Asn264)  and  B)  (1KWV,  Asn205).  Since  these  Asn  residues  are  part  of  the  conserved   WND  motif  it  might  be  a  shortcoming  of  the  perlucin  model.  (Visualization  software  acknowledgements  given  in  Fig.  3.2.12.)  

In  Fig.  3.2.13.  the  number  of  oxygen  atoms  within  a  3  Å  distance  of  every  calcium  ion  is   given   as   further   information   in   brackets   after   the   ion   labels.   Note   that   the   Ca-­‐2   in   perlucin  (Fig.  3.2.13.C  is  the  CTLD  structure  of  perlucin  after  the  minimization  step  of   one  exemplary  MD  simulation)  has  indeed  six  coordinated  oxygen  atoms  but  only  from   four  residues.  The  distance  between  the  sidechain  oxygen  of  Asn115  and  Ca-­‐2  is  about   5  Å.   This   is   contrary   to   at   least   the   crystal   structures   (no   MD   or   minimization   performed)  of  ASGR  and  MBP-­‐A  shown  in  Fig.  3.2.13.A  and  3.2.13.B.  In  both  cases  the   oxygen  of  the  Asn  residue  is  within  3  Å  distance  of  Ca-­‐2.  Since  these  residues  are  part   of   the   well-­‐conserved   WND   motif   of   CTLDs   (see   e.g.   Drickamer   [1993],   Zelensky   &  

Gready  [2005])  it  is  assumed  that  in  the  case  of  perlucin  the  initial  orientation  of  Asn115   might  be  incorrect.  In  the  perlucin  model  used  for  all  MD  simulations  with  calcium  ions   the  initial  distance  between  the  oxygen  of  Asn115  and  Ca-­‐2  is  3.47  Å.  

Every  MD  simulation  containing  Ca2+  ions  was  analysed  with  “ptraj”.  For  every  protein   oxygen  or  nitrogen  (nitrogen  atoms  were  included  due  to  their  negative  partial  charge)   the  frames  were  counted  in  which  those  atoms  had  a  distance  to  a  calcium  ion  less  or   equal  to  3  Å.  This  resulted  in  occupancy  values  (relative  number  of  frames)  for  every  

“bond”  between  an  oxygen  atom  and  a  calcium  ion.  Note  that  the  sole  criterion  for  a  

“bond”   is   a   distance   between   oxygen   and   calcium   of  ≤ 3  Å.   Occupancies   (in   the   aforementioned  sense)  below  5%  were  not  reported  to  avoid  a  possible  “spillage”  of   the   “ptraj”   output.   Since   nitrogen   atoms   never   appeared   in   the   results   list   the   occupancy   of   a   nitrogen-­‐calcium   ion   distance   of  3  Å  or   less  had   to   be   below   5%.   For   every   “bond”   that   occurred   the   occupancy   values   were   averaged   over   the   MD   simulations  performed  with  the  same  initial  structure.  If  the  average  occupancy  was   greater  or  equal  to  75%  the  oxygen-­‐calcium  interaction  was  assumed  to  be  sufficiently   stable.   The   residue   that   contributes   the   oxygen   to   the   interaction   with   calcium   is   marked  in  Fig.  3.2.14.  with  the  identifier  of  the  calcium  ion  which  is  involved  in  the   interaction.   Note   that   the   time   dependency   of   the   interaction   between   the   oxygen   atoms  and  the  calcium  ions  was  not  investigated  here  explicitly.  

Fig.  3.2.14.  summarises  those  residues  –  in  perlucin  and  MBP-­‐A  –  that  have  at  least  one   oxygen   within   a   distance   of  3  Å  to   a   Ca2+   in   at   least   75%   of   the   trajectory   frames   averaged  over  the  simulations  of  one  MD  series.  

 

 

A) perlucin ------ number | 1 10 20 30 40 50 60 70 80 90 100 110 120 130 PERLUCIN | GCPLGFHQNRRSCYWFSTIKSSFAEAAGYCRYLESHLAIISNKDEDSFIRGYATRLGEAFNYWLGASDLNIEGRWLWEGQRRMNYTNWSPGQPDNAGGIEHCLELRRDLGNYLWNDYQCQKPSHFICEKER w/ 4 calcium | 4 4 1 & 21 + 2 4 w/ 2 calcium | 4 4 2 2 2 4 ------ B) MBP-A ------ number | 1 10 20 30 40 50 60 70 80 90 100 110 118 1KWV chain A | GKKSGKKFFVTNHERMPFSKVKALCSELRGTVAIPRNAEENKAIQEVAKTSAFLGITDEVTEGQFMYVTGGRLTYSNWKKDEPNDHGSGEDCVTIVDNGLWNDISCQASHTAVCEFPA

w/ 3 calcium | (1) & 2 21 +& 2 w/ 1 calcium | 2 2 2 2

--- "+" - Ca-1 and Ca-2 "&" - Ca-1 and Ca-3 Fig.  3.2.14.  Summary  of  the  residues  of  perlucin  and  the  CTLD  of  MBP-­‐A  that  have  at  least  one  oxygen  atom  with  a  distance    3    to  a  calcium  ion   in  at  least  75%  of  the  trajectory  –  averaged  over  every  simulation  of  a  MD  simulation  series.  In  both  parts  of  the  figure  the  first  line  contains  the   residue  numbering  (in  the  case  of  MBP-­‐A  this  is  not  the  PDB  numbering).  The  next  line  contains  the  amino  acid  sequence.  The  following  two  lines   contain  the  condensed  results  of  the  MD  simulation  series.  For  perlucin  this  includes  the  six  simulations  performed  with  the  structure  with  four   calcium  ions  (run09)  and  the  three  simulations  with  two  calcium  ions  (run21).  In  the  case  of  the  CTLD  of  MBP-­‐A  this  includes  three  MD   simulations  each  for  the  structure  with  three  (run07)  and  one  (run10)  calcium  ion.  The  numbers  1,  2  and  4  denote  the  calcium  ions  Ca-­‐1,  Ca-­‐2  and   Ca-­‐4.  Since  it  is  possible  that  one  oxygen  or  several  oxygens  of  one  residue  have  a  short  distance  to  two  different  calcium  ions  following  characters   are  introduced.  A  “+”  marks  a  residue  that  contributes  oxygen  atoms  to  Ca-­‐1  and  Ca-­‐2  whereas  “+”  identifies  residues  that  contributes  oxygen   atoms  to  Ca-­‐1  and  Ca-­‐3.  Concerning  the  value  in  brackets:  the  Oδ1  of  Asp58  had  on  average  only  in  73%  of  all  frames  a  distance  to  Ca-­‐1  not   exceeding  3  .  

Concerning  perlucin  Ca-­‐4  maintains  a  close  distance  to  the  Glu  residues  of  α2  (Glu45)   and  β5  (Glu128)  in  both  MD  simulation  series.  The  oxygen  of  Asn115  (in  perlucin)  does   not  return  to  a  distance  less  than  3  Å  to  Ca-­‐2  (remember  the  5%  occupancy  threshold:  

at  least  such  a  close  distance  in  maximal  250  frames  might  be  possible).  Interestingly   the   average   occupation   of   the  3  Å  distance   between   the   corresponding   Asn   (Oδ1   oxygen)  in  the  WND  motif  of  MBP-­‐A  (Asn205  [PDB  numbering]  corresponds  to  Asn102   [simulation  numbering])  and  Ca-­‐2  is  quite  low  as  well:  26%  (run10  with  one  calcium   ion)  and  53%  (run07  with  three  calcium  ions).  Nonetheless  this  is  in  accordance  with   MD  simulations  (100  𝑝𝑝𝑝𝑝  lenght)  of  MBP-­‐A  carried  out  by  Harte  and  Bajorath  (Harte  Jr.  

&   Bajorath   [1994])   who   found   that   Oδ1   of   Asn205   increased   its   distance   to   Ca-­‐2.  

Concerning  Gln92  of  perlucin  it  is  not  flagged  in  Fig.  3.2.12.  to  maintain  a  short  distance   to  Ca-­‐2.  The  occupancies  were:  68%  (run09  with  four  calcium  ions)  and  less  than  5%  

(run21  with  two  calcium  ions).  In  contrast  Glu82  of  MBP-­‐A  keeps  a  closer  distance  to   Ca-­‐2.  In  the  MD  simulation  series  of  perlucin  with  four  calcium  ions  (run09)  in  total   five  oxygen  atoms  of  the  protein  were  on  average  in  at  least  75%  of  the  simulations   frames  within  3  Å  distance  to  Ca-­‐2.  In  case  of  the  perlucin  simulations  with  two  calcium   ions  the  latter  statement  is  true  for  four  oxygen  atoms.  For  the  MD  simulations  of  the   CTLD  of  MBP-­‐A  one  could  find  six  oxygen  atoms  in  close  proximity  to  Ca-­‐2.  

Concerning  the  perlucin  MD  simulations  that  incorporated  Ca-­‐3  it  can  be  stated  that  it   remained  in  four  simulations  within  3  Å  of  Glu72  (Oε1  oxygen),  during  one  simulation  it   did  not  stay  within  3  Å  distance  to  any  of  the  proteins  oxygen  or  nitrogen  atoms  and  in   another  simulation  it  shifted  its  position  from  Glu72  to  Asp68.  Since  during  most  of  the   simulation  time  only  one  close  contact  to  an  oxygen  atom  was  maintained  Ca-­‐3  seems   not  to  be  stable  associated  to  the  molecule.  The  Ca-­‐3  in  the  MBP-­‐A  simulation  series   remained   on   average   in   at   least   75%   of   the   frames   within   a  3  Å  distance   to   three   oxygen  atoms  from  the  residues  Glu62  and  Asp91  and  therefore  seems  to  be  more  stable   bound  to  the  protein  structure.  

In  the  perlucin  simulation  series  the  Ca-­‐1  was  on  average  in  at  least  75%  of  the  frames   within  a  3  Å  distance  to  five  oxygen  atoms  from  four  residues.  For  MBP-­‐A  there  are  as   well  five  oxygen  atoms  from  four  residues  in  close  distance  to  Ca-­‐1.  

These   results   give   first   hints   that   perlucin   might   be   able   to   bind   calcium   ions   at   different  sites.  But  in  light  of  the  discussion  concerning  the  Lennard-­‐Jones  parameter   of   the   calcium   ion   (see   section   3.2.1.)   inappropriate   ion   parameters   or   simulation  

artefacts  cannot  be  ruled  out.  Ion  parameters  specifically  adjusted  to  the  interactions   with   oxygen   atoms   of   protein   structures   might   give   more   realistic   results.  

Unfortunately  Joung  and  Cheatham  optimized  only  the  parameters  of  monovalent  ions   (Joung  &  Cheatham  III.  [2008])  but  they  discussed  the  importance  of  careful  derived   ion   parameters   (see   section   “Issues   and   Artifacts   in   Simulations   with   Common   Ion   Potentials”).  Two  examples  from  this  section  are  anomalous  crystallisation  behaviour   below   experimental   saturation   salt   concentrations   and   unexpected   instability   of   certain   DNA   conformations.   Additionally   the   authors   stressed   that   the   water   model,   the   non-­‐bonded   interaction   combining   rules   and   the   Ewald   treatment   can   have   an   influence  on  the  suitability  of  the  ion  parameters.  

Nonetheless   –   as   it   will   be   discussed   in   the   next   section   –   the   calcium   ions   might   contribute  to  the  stability  of  the  long  loop  region.  

Beyond   the   scope   of   this   thesis   is   a   possible   pH   dependency   of   the   calcium   ion   association  to  the  perlucin  structure.  But  as  it  can  be  seen  from  Fig.  3.2.14.  His101  is   close   to   the   hypothetical   binding   site   of   Ca-­‐1   and   Ca-­‐3.   MBP-­‐A   has   an   Asp91   at   the   corresponding   position,   which   is   negatively   charged   in   the   physiological   pH   regime   (pKa  ≈ 3.7,  Thurlkill  et  al.  [2006]).  Since  His  has  a  pKa  value  in  the  physiological  range   (pKa  ≈ 6.5,  Thurlkill  et  al.  [2006])  one  could  speculate  about  a  pH  dependency  of  the   calcium   binding.   Note   however   that   Thurlkill   et   al.   derived   the   pKa   values   for   pentapeptides   and   that   the   actual   pH   value   of   residues   depends   on   the   local   environment  that  is  the  actual  protein  fold.  This  can  be  inferred  for  example  from  the   theory  underlying  the  computational  pKa-­‐shift  predictor  presented  by  Li  et  al.  (Li  et  al.  

[2005]).  

   

3.2.5.  Atomic  positional  fluctuations  of  residues  and  RMSd  values  of  the