• Keine Ergebnisse gefunden

Atomic  positional  fluctuations  of  residues  and  RMSd  values  of  the   CTLD  of  perlucin  and  MBP-­‐A

3.   Results  and  Discussion

3.2. Molecular  dynamic  simulations  of  the  CTLD  of  perlucin  and   MBP-­‐A

3.2.5.   Atomic  positional  fluctuations  of  residues  and  RMSd  values  of  the   CTLD  of  perlucin  and  MBP-­‐A

3.2.5.  Atomic  positional  fluctuations  of  residues  and  RMSd  values  of  the  

Fig.  3.2.15.  Average  backbone  fluctuations  per  residue  of  the  MD  simulation  series  of  perlucin.  

The   average,   mass-­‐weighted   positional   fluctuations   of   the   backbone   atoms   per   residue   are   given  in  Å  for  the  three  MD  simulation  series:  with  four  calcium  ions  (red,  crosses),  with  two   calcium   ions   (blue,   triangles)   and   without   calcium   ions   (green,   circles).   For   clarity   the   data   points   are   connected   with   dashed   lines   in   the   corresponding   colours.   The   average   general   helical   and   strand   conformation   of   the   residues   of   the   simulations   with   four   ions   (run09)   is   indicated  through  violet  or  yellow  bars  at  the  bottom  of  the  graph  (see  Fig.  3.2.5.).  Additionally   those  residues  that  have  oxygen  atoms  in  close  proximity  (see  section  3.2.4.  and  Fig.  3.2.14.)  to   calcium  ions  are  indicated  through  markers:  Ca-­‐4  is  represented  by  a  triangle  variant,  Ca-­‐3  by  a   hexagon,  Ca-­‐2  by  a  diamond  and  Ca-­‐1  by  a  circle  with  cross.  

 

Fig.  3.2.16.  Average  backbone  fluctuations  per  residue  of  the  MD  simulation  series  of  the  CTLD   of   MBP-­‐A.   The   average,   mass-­‐weighted   positional   fluctuations   of   the   backbone   atoms   per   residue   are   given   in   Å   for   the   three   MD   simulation   series:   with   three   calcium   ions   (red,   crosses),  with  one  calcium  ion  (blue,  triangles)  and  without  calcium  ions  (green,  circles).  For   clarity   the   data   points   are   connected   with   dashed   lines   in   the   corresponding   colours.   The   average  general  helical  and  strand  conformation  of  the  residues  of  the  simulations  with  three   ions   (run07)   is   indicated   through   violet   or   yellow   bars   at   the   bottom   of   the   graph   (see   Fig.  

3.2.5.).  Additionally  the  residues  that  have  oxygen  atoms  in  close  proximity  (see  section  3.2.4.  

and   Fig.   3.2.14.)   to   calcium   ions   are   indicated   through   markers:   Ca-­‐3   is   represented   by   a   hexagon,  Ca-­‐2  by  a  diamond  and  Ca-­‐1  by  a  circle  with  cross.  

 

Figs.  3.2.15.  and  3.2.16.  show  the  average  backbone  (Cα,  C,  N,  O)  positional  fluctuations   of  the  MD  simulation  series  of  perlucin  and  the  CTLD  of  MBP-­‐A.  First  of  all  the  terminal   residues  show  a  high  fluctuation  since  the  can  move  relatively  unconstrained.  This  is   the  case  for  the  C-­‐terminal  region  of  perlucin  and  for  N-­‐terminal  region  of  the  CTLD  of   MBP-­‐A.  Note  that  only  the  residues  up  to  Arg131  are  shown  for  perlucin  although  the   initial  structure  of  the  simulations  with  four  ions  (run09)  has  four  more  residues.  As  it   is   commented   in   the   preceding   sections   the   N-­‐terminal   region   of   MBP-­‐A  –   up   to   the   strand  β1  –  is  artificially  able  to  move  freely  due  to  the  missing  long  α-­‐helical  coil.  Note   that  the  initial  structure  of  the  simulation  series  without  calcium  ions  (green  circles,   run02)   has   five   residues   less   at   the   N-­‐terminus   compared   to   the   other   simulation   series.  

But   even   if   the   fluctuations   at   the   termini   are   not   considered   it   is   obvious   that   the   fluctuations   of   the   perlucin   structures   between   α2   and   β4   are   considerably   larger   compared  to  MBP-­‐A.  Up  to  the  C-­‐terminal  end  of  α2  and  after  the  N-­‐terminal  end  of  β4   the  fluctuations  are  of  similar  magnitude.  

For   the   loop   region   of   perlucin   between   α2   and   β2   high   fluctuations   up   to  3.4  Å  are   observed.  They  are  most  probably  uncorrelated  to  the  number  of  associated  ions  since   no   residue   in   this   region   has   oxygen   atoms   in   a   close   distance   to   calcium   ions.   It   is   supposed  that  the  large  fluctuations  are  caused  by  an  incorrect  modelling  of  this  region   due  to  a  lack  of  an  appropriate  template  (see  section  3.1.  and  Fig.  3.1.4.  as  well  as  Fig.  

3.2.5.).   The   loop   region   of   MBP-­‐A   between   α2   and   β2   is   considerably   shorter   an   exhibits  less  fluctuations.  

Consider   the   segments   between   β2   and   β2’’   and   the   long   loop   region   with   calcium   associated  residues  before   β3.   In   these  two  regions  with  high  fluctuations  hints  of  a   correlation   between   residue   fluctuations   associated   calcium   ions   can   be   inferred   for  

perlucin.  Between  β2  and  β2’’  the  fluctuations  are  maximal  (green,  circles)  for  perlucin   and  MBP-­‐A  when  no  calcium  ions  are  present  in  this  region  and  minimal  (red,  crosses)   when  Ca-­‐1  (circles  with  crosses)  and  Ca-­‐3  (hexagons)  are  associated  to  residues  in  this   region.   If   Ca-­‐1   and   Ca-­‐3   are   not   included   in   the   simulations   (blue,   circles)   but   Ca-­‐2   (diamonds)  –  and  Ca-­‐4  (triangle  variant)  in  the  case  of  perlucin  –  then  one  could  expect   that  the  fluctuations  arrive  at  the  same  level  as  in  the  case  of  the  simulations  without   calcium   ions.   This   happens   indeed   for   MBP-­‐A   but   for   perlucin   the   fluctuations   are   between  the  two  observed  limiting  cases.  

In   the   next   long   loop   segment   with   two   residues   associated   to   Ca-­‐2   (diamonds)   a   similar   tendency   can   be   observed   with   the   respect   to   the   fluctuations.   Without   any   calcium  ions  the  fluctuations  are  higher  for  both  perlucin  and  MBP-­‐A  compared  to  the   simulations  including  Ca-­‐2.  If  Ca-­‐1  has  a  stabilizing  effect  in  this  region  cannot  be  said   definitely.  The  fluctuations  obtained  from  the  perlucin  simulations  could  suggest  such   an  effect  but  in  MBP-­‐A  a  similar  observation  cannot  be  made.  

Concerning  Ca-­‐4  (triangle  variant)  in  the  perlucin  model  an  ion  at  this  characteristic   site  might  have  a  stabilizing  effect  of  the  N-­‐terminal  end  of  α2.  As  it  can  be  seen  in  Fig.  

3.2.15.  the  structure  without  ions  shows  higher  fluctuations  at  the  N-­‐terminal  end  of   α2.  

A   refinement   of   the   loop   region   behind   the   C-­‐terminal   end   of   α2   might   lower   the   fluctuations  in  this  region.  One  has  to  keep  in  mind  that  due  to  the  small  number  of   simulations   performed   for   each   initial   protein-­‐ion   configuration   these   results   might   not  reflect  the  ensemble  average.  Nonetheless  the  data  suggest  that  calcium  ions  could   have  a  stabilizing  effect  on  the  CTLD  fold  by  reducing  the  fluctuations.  

 

Fig.  3.2.17.   Average   backbone   RMSd   during   the   MD   simulation   series   of   perlucin.   The   RMSd   values   were   calculated   after   the   fit   of   the   structures   to   the   protein   structures   after   minimization.  For  the  fit  the  heavy  backbone  atoms  (Cα,  C,  N,  O)  were  used.  The  three  RMSd   graphs  with  the  higher  RMSd  values  were  obtained  with  the  residue  range  1  to  131  for  the  fit.  

If   certain   loop   regions   were   not   included   during   the   RMSd   fit   and   calculation   lower   RMSd   values  were  obtained.  The  RMSd  graphs  with  the  lower  values  were  obtained  when  following   regions   were   omitted:   Tyr52   to   Asn61   (run21:   Arg50   to   Asn61;   run22:   Arg50   to   Tyr62),   Asp68   to   Trp75,  Glu78  to  Asn87,  Pro90  to  His101  and  Arg106  to  Leu113.  

 

 

Fig.   3.2.18.   Average   backbone   RMSd   during   the   MD   simulation   series   of   MBP-­‐A.   The   RMSd   values   were   calculated   after   the   fit   of   the   structures   to   the   protein   structures   after   minimization.  For  the  fit  the  heavy  backbone  atoms  (Cα,  C,  N,  O)  of  the  full  sequence  were  used.  

Note  that  the  sequence  of  the  structure  used  in  the  simulation  series  without  calcium  ions  was   five  residues  shorter  than  the  structure  used  in  the  other  simulation  series.  Also  keep  in  mind   the  artificial  N-­‐terminal  conformation  of  the  simulated  CTLD  structures  due  to  the  missing  long   α-­‐helical  coil.  An  exclusion  of  this  region  during  the  fit  for  the  RMSd  calculation  could  lead  to   lower  RMSd  values.  

 

Figs.  3.2.17.  and  3.2.18.  show  the  average  backbone  RMSd  values  of  perlucin  and  the   CTLD   of   MBP-­‐A   respectively.   The   RMSd   values   of   the   perlucin   structures   calculated   over   the   sequence   length   up   to   residue   131   range   between  2.2  Å  and  2.8  Å.   There   might  be  a  tendency  that  the  RMSd  values  are  lower  with  associated  calcium  ions.  The   RMSd  values  of  the  structure  without  ions  (green)  are  higher  by  trend  than  those  of  the   structure   with   four   calcium   ions   (red).   The   values   from   the   structure   with   only   two   associated  calcium  ions  (blue)  seem  to  range  between  these  two  cases.  If  those  loop   regions  with  high  fluctuations  (see  Fig.  3.2.15.)  were  excluded  from  the  RMSd  fit  and   calculation  then  the  RMSd  graphs  with  the  lower  values  were  obtained  in  Fig.  3.2.17.  

Following  regions  were  excluded:  the  segment  between  the  N-­‐terminal  end  of  α2  and   the   beginning   of   β2   (run09:   Tyr52   to   Asn61,   run21:   Arg50   to   Asn61,   run22:   Arg50   to   Tyr62),  the  region  between  β2  and  β2’’  (Asp68  to  Trp75),  the  part  from  the  N-­‐terminal   end  of  β2’’  and  Trp88  (Glu78  to  Asn87),  Pro90  to  His101  (Ser89  is  buried  and  Cys102  is  part   of  a  disulphide  bridge)  and  the  segment  between  β3  and  β4  (Arg106  to  Leu113).  Most  of   the  residues  in  these  segments  are  not  classified  as  “buried”  as  it  can  be  seen  in  Fig.  

3.2.11.   Consult   also   Fig.   3.2.15.   for   the   fluctuations   of   the   residues   in   these   loop   regions.  The  resulting  RMSd  values  range  between  1.4  Å  and  1.8  Å  and  show  no  clear   separation  depending  on  the  number  of  associated  calcium  ions.  

The  RMSd  values  obtained  from  the  MD  simulation  series  with  MBP-­‐A  were  calculated   with  the  full  residue  range  in  every  series.  These  RMSd  values  might  be  increased  due   to  the  artificial  N-­‐terminal  conformation  of  the  simulated  CTLD  structures  due  to  the   missing   α-­‐helical   coil.   This   might   explain   why   the   RMSd   of   the   MBP-­‐A   structure   without   calcium   ions   (green)   is   lower   than   the   RMSd   values   from   the   other   MD   simulation  series  (red  and  blue):  it  has  five  N-­‐terminal  residues  less  than  the  MBP-­‐A   input   structures   from   the   remaining   simulation   series.   Therefore   the   RMSd   values   obtained  from  the  MD  simulations  of  MBP-­‐A  without  calcium  ions  should  be  regarded   as  an  upper  limit  of  the  RMSd  values  that  could  be  obtained  for  near  optimal  protein  

structures   –   when   protein   crystal   structures   are   regarded   as   the   most   stable   ones   –   with  the  MD  simulation  protocol  used  in  this  thesis.    

In   this   light   the   RMSd   values   obtained   for   all   perlucin   simulation   series   are   considerably  larger  compared  to  the  MBP-­‐A  simulation  without  calcium  ions  by  trend.  

Similar   RMSd   values   (≈ 1.6  Å,   MBP-­‐A   without   calcium   ions   after  10.2  𝑛𝑛𝑛𝑛)   can   be   obtained  for  perlucin  if  the  contribution  of  loop  regions  is  excluded.  This  shows  that   there  is  considerable  motion  of  the  residues  in  the  loop  regions  whereas  the  remaining   part  of  the  perlucin  protein  structure   has  RMSd  values  similar  to  those  obtained  for   simulated  CTLD  crystal  structures  of  MBP-­‐A  including  the  artificial  N-­‐terminal  region.  

 

Fig.  3.2.19.  Residues  1  to  131  of  a  perlucin  structure  of  one  MD  simulation  with  four  calcium   ions  after  10.2  𝑛𝑛𝑛𝑛  simulation  time  in  two  different  orientations.  In  both  images  the  segments   that   were   excluded   in   the   RMSd   calculations   in   Fig.   3.2.17.   are   shown   in   orange   and   the   remaining  segments  in  blue.  To  facilitate  the  orientation  two  calcium  ions  are  shown  as  red   spheres  and  the  disulphide  bridges  as  bonds.  Labels  of  the  secondary  structure  elements  are   given   according   to   Zelensky   and   Gready   (Zelensky   &   Gready   [2003]).   The   molecules   are   rendered  with  VMD  (Humphrey  et  al.  [1996]  version  1.9.1)  and  labels  are  added  with  Inkscape   (http://inkscape.org).  The  “New  Cartoon”  representation  of  the  protein  involves  the  STRIDE   algorithm  (Frishman  &  Argos  [1995]).  

 

Fig.  3.2.19.  visualises the  regions  that  were excluded  during  some  RMSd  calculations  of   perlucin  (see  also  Fig.  3.2.17.).  In  this  figure  one  exemplary  perlucin  structure  from  one   MD  simulation  (after  10.2  𝑛𝑛𝑛𝑛)  with  four  calcium  ions  is  shown  in  two  orientations  (only   two  calcium  ions  are  depicted  for  orientation  purposes).  The  excluded  segments  are  

shown  in  orange  and  the  remaining  ones  in  blue.  As  it  can  be  seen  in  this  exemplary   structure  the  excluded  segments  comprised  the  LLR  and  some  solvent  exposed  loops.  

Many  residues  included  in  the  RMSd  calculations  were  part  of  the  secondary  structures   of  the  CTLD  fold.  

One  might  now  speculate  that  the  RMSd  values  obtained  without  the  segments  from   the   LLR   and   other   loop   regions   represent   the   evolution   of   the   residues   forming   the  

“central  core”  of  perlucin.  This  would  indicate  that  at  least  a  reasonable  model  of  those  

“core   residues”   is   present   in   the   input   perlucin   models.   As   it   is   pointed   out   several   times  before  the  segment  between  α2  and  the  beginning  of  β2  of  perlucin  needs  to  be   examined/remodelled  in  future  studies.  

Note  that  the  total  RMSd  of  the  CTLD  of  MBP-­‐A  without  calcium  ions  (Fig.  3.2.17.  green   graph)  seems  not  to  converge  within  the  10.2  𝑛𝑛𝑛𝑛.  Since  the  N-­‐terminal  segment  of  the   CTLD  was  shorter  in  this  simulation  series  this  could  implicate  that  the  system  was  not   in  equilibrium  after  10  𝑛𝑛𝑛𝑛.  

 

3.2.6.  Backbone  dihedral  angles  (Φ,Ψ)  of  the  CTLD  of  perlucin  and  MBP-­‐A