• Keine Ergebnisse gefunden

whereB๐‘› is the ๐‘›-th Bernoulli number, and๐œŽ๐‘˜(๐‘) = โˆ‘

๐‘‘|๐‘๐‘‘๐‘˜ is a finite power sum running over the positive divisors of๐‘.

As we have mentioned in the last chapter, using the series representations (3.27) for๐ท๐‘™(๐œ) and (4.12) for the Eisenstein series one can immediately see that ๐ท2(๐œ) = ๐ธ(2, ๐œ)โˆ•16.

Let us briefly see how can we get the same result by comparing the expansion given by Theorem4.2.1and the expansion (4.13), which becomes in this case

๐ธ(2, ๐œ) = ๐‘ฆ2

45+ ๐œ(3)

๐‘ฆ + 2โˆ‘

๐‘โ‰ฅ1

(2๐‘+๐‘ฆโˆ’1)๐œŽโˆ’3(๐‘)(๐‘ž๐‘ +๐‘ž๐‘).

Using the intermediate step (4.9) in the proof of the theorem, for ๐‘š = 0 we get (1โˆ•16)(๐‘ฆ2โˆ•45), which is the leading term of the non-exponential part, for ๐‘š = 1we get zero, and for๐‘š= 2(so๐‘Ž=๐‘=๐‘= 0) we get

1 16

โˆ‘

๐‘˜โˆˆโ„คโงต{0}

๐‘›โˆˆโ„ค

๐‘’2๐œ‹๐‘–๐‘๐œ1๐‘’โˆ’2๐œ‹๐œ2(|๐‘˜|(|๐‘›1|+|๐‘›2|))

|๐‘˜|2 โˆซ

1 0

๐‘’โˆ’2๐œ‹๐œ2๐‘ฅ|๐‘˜|(sgn(โˆ’๐‘›1)+sgn(โˆ’๐‘›2))๐‘‘๐‘ฅ,

where we denote๐‘ = ๐‘˜(๐‘›1 โˆ’๐‘›2). When ๐‘ = 0, i.e. when ๐‘ž and๐‘ž have the same power in the expansion given by the theorem, then๐‘›1 = ๐‘›2, which implies that the argument of the exponential in the integral is never zero. Therefore, splitting the sum into the๐‘› โ‰ฅ 1 part and the๐‘› โ‰ค 0 part, one gets two telescoping sums, both giving as a result

โˆ‘

๐‘˜โˆˆโ„คโงต{0}

1 64|๐‘˜|3๐‘ฆ.

We conclude that the variable๐œ1does not appear only in the non-exponentially small part of๐ท2(๐œ), which is the Laurent polynomial๐‘‘2(๐‘ฆ) = (๐‘ฆ2โˆ•45 +๐œ(3)โˆ•๐‘ฆ)โˆ•16. This fits with the expansion of๐ธ(2, ๐œ).

Moreover, if๐‘ > 0one gets again telescoping sums in๐‘›, but now we sum only over finitely many๐‘˜, which are the divisors of๐‘. We leave as an exercise to the reader to verify that one gets exactly the same expansion as we get for the non-holomorphic Eisenstein series.

In general it is too messy to repeat the same game as above and explicitly get the full expansion for other๐ท๐‘™โ€™s, except maybe for๐ท3(๐œ), which is already known, as we have mentioned in eq. (3.31), to be equal to(๐ธ(3, ๐œ) +๐œ(3))โˆ•64. However, it is in principle possible to algorithmically get the coefficient of๐‘ž๐œ‡๐‘ž๐œˆfor any fixed(๐œ‡, ๐œˆ), which would allow to check conjectures on the full expansion or to numerically ap-proximate the functions very precisely (the sum (4.7) converges much faster than the sum (3.27)).

We now give the proof of Theorem1.4.1also for this case, because it helps to under-stand how to explicitly get the coefficients. Since the ideas used here are exactly the same as in the previous section, and the notation gets much heavier, we will give less details. It is however important to understand how the generalization to this case exploits the same ideas used for two particles, because in the next section we will give only a sketch of the proof in the general case, assuming that one has already understood how to take care of the missing details.

Theorem 4.3.1. For every๐‘™= (๐‘™1, ๐‘™2, ๐‘™3)we have ๐ท๐‘™(๐œ) = โˆ‘

๐œ‡,๐œˆโ‰ฅ0

๐‘‘๐‘™(๐œ‡,๐œˆ)(๐œ‹๐œ2)๐‘ž๐œ‡๐‘ž๐œˆ, where for every๐œ‡, ๐œˆ โ‰ฅ0

๐‘‘๐‘™(๐œ‡,๐œˆ)(๐‘ฅ) =

2(๐‘™1+๐‘™โˆ‘2+๐‘™3)โˆ’1 ๐‘—=0

๐‘Ž(๐œ‡,๐œˆ)๐‘— ๐‘ฅ๐‘™1+๐‘™2+๐‘™3โˆ’๐‘— is a Laurent polynomial with coefficients๐‘Ž(๐œ‡,๐œˆ)๐‘— โˆˆ๎ˆฏ.

Proof. Let us introduce the following notations: ๐‘™! โˆถ= ๐‘™1!๐‘™2!๐‘™3!, and ๐‘๐‘™ โˆถ=

๐‘๐‘™1+๐‘™2+๐‘™3. Moreover, for ๐‘˜ = (๐‘˜1, ..., ๐‘˜๐‘š) we write |๐‘˜| โˆถ= |๐‘˜1|โ‹ฏ|๐‘˜๐‘š|, and โ€–๐‘˜โ€– โˆถ=

|๐‘˜1|+โ‹ฏ+|๐‘˜๐‘š|.

With the substitutions๐‘ฅ=๐œ‰2โˆ•๐œ2and๐‘ฆ=๐œˆ2โˆ•๐œ2we get ๐ท๐‘™(๐œ) = 1

2๐‘™

โˆ‘

๐‘Ÿ+๐‘š=๐‘™

๐‘™!

๐‘Ÿ!๐‘š!

(๐œ‹๐œ2)๐‘Ÿ 2๐‘š ร—

ร—โˆซ(๎ˆฑ๐œ)2B2(๐‘ฅ)๐‘Ÿ1B2(๐‘ฆ)๐‘Ÿ2B2(๐‘ฅโˆ’๐‘ฆ)๐‘Ÿ3๐‘ƒ(๐œ‰, ๐œ)๐‘š1๐‘ƒ(๐œˆ, ๐œ)๐‘š2๐‘ƒ(๐œ‰โˆ’๐œˆ, ๐œ)๐‘š3๐‘‘๐œ‰1๐‘‘๐œˆ1๐‘‘๐‘ฅ๐‘‘๐‘ฆ.

Using (4.8) we have

โˆซ(โ„โˆ•โ„ค)2

๐‘ƒ(๐œ‰, ๐œ)๐‘š1๐‘ƒ(๐œˆ, ๐œ)๐‘š2๐‘ƒ(๐œ‰โˆ’๐œˆ, ๐œ)๐‘š3๐‘‘๐œ‰1๐‘‘๐œˆ1=

= โˆ‘

(๐‘˜,โ„Ž,๐‘ก) (๐‘›,๐‘,๐‘ž)

๐›ฟ0((๐‘˜, โ„Ž))๐›ฟ0((๐‘˜, ๐‘ก))

|๐‘˜| |โ„Ž| |๐‘ก| ๐‘’2๐œ‹๐‘–(๐‘˜โ‹…๐‘›+โ„Žโ‹…๐‘+๐‘กโ‹…๐‘ž)๐œ1

๐‘’โˆ’2๐œ‹๐œ2(โˆ‘|๐‘˜๐‘–||๐‘›๐‘–โˆ’๐‘ฅ|+โˆ‘|โ„Ž๐‘–||๐‘๐‘–โˆ’๐‘ฆ|+โˆ‘|๐‘ก๐‘–||๐‘ž๐‘–โˆ’(๐‘ฅโˆ’๐‘ฆ)|),

where the sum runs over(๐‘˜, โ„Ž, ๐‘ก) โˆˆโ„ค๐‘š01ร—โ„ค๐‘š02 ร—โ„ค๐‘š03 and(๐‘›, ๐‘, ๐‘ž) โˆˆโ„ค๐‘š1 ร—โ„ค๐‘š2 ร—โ„ค๐‘š3. Then we need to calculate, for any fixed๐‘Ÿ,๐‘š,(๐‘˜, โ„Ž, ๐‘ก)and(๐‘›, ๐‘, ๐‘ž),

โˆซ(โ„โˆ•โ„ค)2

B2(๐‘ฅ)๐‘Ÿ1B2(๐‘ฆ)๐‘Ÿ2B2(๐‘ฅโˆ’๐‘ฆ)๐‘Ÿ3๐‘’โˆ’2๐œ‹๐œ2(โˆ‘|๐‘˜๐‘–||๐‘›๐‘–โˆ’๐‘ฅ|+โˆ‘|โ„Ž๐‘–||๐‘๐‘–โˆ’๐‘ฆ|+โˆ‘|๐‘ก๐‘–||๐‘ž๐‘–โˆ’(๐‘ฅโˆ’๐‘ฆ)|)๐‘‘๐‘ฅ๐‘‘๐‘ฆ.

Sinceโˆ‘

|๐‘˜๐‘–||๐‘›๐‘–โˆ’๐‘ฅ|=โˆ‘

|๐‘˜๐‘–||๐‘›๐‘–|+๐‘ฅโˆ‘

sgn(โˆ’๐‘›๐‘–)|๐‘˜๐‘–|, this is equal to ๐‘’โˆ’2๐œ‹๐œ2(โˆ‘|๐‘˜๐‘–||๐‘›๐‘–|+โˆ‘|โ„Ž๐‘–||๐‘๐‘–|+โˆ‘|๐‘ก๐‘–||๐‘ž๐‘–|)

โˆซ[โ„โˆ•โ„ค]2B2(๐‘ฅ)๐‘Ÿ1B2(๐‘ฆ)๐‘Ÿ2B2(๐‘ฅโˆ’๐‘ฆ)๐‘Ÿ3๐‘’โˆ’๐›พ๐‘ฅ๐‘’โˆ’๐›ฟ๐‘ฆ๐‘‘๐‘ฅ๐‘‘๐‘ฆ, where ๐›พ โˆถ= 2๐œ‹๐œ2(โˆ‘

sgn(โˆ’๐‘›๐‘–)|๐‘˜๐‘–|+ โˆ‘

sgn(โˆ’๐‘ž๐‘–)|๐‘ก๐‘–|) and ๐›ฟ โˆถ= 2๐œ‹๐œ2(โˆ‘

sgn(โˆ’๐‘๐‘–)|โ„Ž๐‘–|+

โˆ‘sgn(๐‘ž๐‘–)|๐‘ก๐‘–|).

This is equal to

โˆ‘

๐‘Ž+๐‘+๐‘=๐‘Ÿ

๐‘Ÿ!

๐‘Ž!๐‘!๐‘!

(โˆ’1)๐‘

6๐‘ ๐‘’โˆ’2๐œ‹๐œ2(โˆ‘|๐‘˜๐‘–||๐‘›๐‘–|+โˆ‘|โ„Ž๐‘–||๐‘๐‘–|+โˆ‘|๐‘ก๐‘–||๐‘ž๐‘–|)ร—

ร— (

โˆซ

1 0

๐‘ฅ2๐‘Ž1+๐‘1๐‘’โˆ’๐›พ๐‘ฅ๐‘‘๐‘ฅ

โˆซ

๐‘ฅ

0

๐‘ฆ2๐‘Ž2+๐‘2(๐‘ฅโˆ’๐‘ฆ)2๐‘Ž3+๐‘3๐‘’โˆ’๐›ฟ๐‘ฆ๐‘‘๐‘ฆ +โˆซ

1 0

๐‘ฆ2๐‘Ž2+๐‘2๐‘’โˆ’๐›ฟ๐‘ฆ๐‘‘๐‘ฆ

โˆซ

๐‘ฆ

0

๐‘ฅ2๐‘Ž1+๐‘1(๐‘ฆโˆ’๐‘ฅ)2๐‘Ž3+๐‘3๐‘’โˆ’๐›พ๐‘ฅ๐‘‘๐‘ฅ )

. (4.14) Since the integral that are left to compute are completely similar, let us describe just the result of the first one. After using the binomial theorem on(๐‘ฅโˆ’๐‘ฆ)2๐‘Ž3+๐‘3, we get a โ„š-linear combination of integrals of the kind

โˆซ

1 0

๐‘ฅ๐‘€๐‘’โˆ’๐›พ๐‘ฅ๐‘‘๐‘ฅ

โˆซ

1 0

๐‘ฆ๐‘๐‘’โˆ’๐›ฟ๐‘ฆ๐‘‘๐‘ฆ.

Now, as in the two-point case, we use integration by parts and finally get a linear combination of1,๐‘’โˆ’(๐›พ+๐›ฟ) and๐‘’โˆ’๐›พ, with coefficients that are products of polynomials in๐›ฟโˆ’1and(๐›พ + ๐›ฟ)โˆ’1with rational coefficients (with some obvious modifications in case๐›พand/or๐›ฟare zero). We do not give the exact formula here, for reasons of space, except for the special case of the non-exponentially small term, which we describe in the next corollary. However, it is easy to see, going through the computation, that for any fixed(๐‘˜, โ„Ž, ๐‘ก)and(๐‘›, ๐‘, ๐‘ž)we get a term of the kind๐‘(๐‘,๐‘ž)(๐œ‹๐œ2)๐‘’2๐œ‹๐‘–๐‘๐œ1๐‘’โˆ’2๐œ‹๐‘ž๐œ2, where๐‘=โˆ‘

๐‘˜๐‘–๐‘›๐‘–+โˆ‘

โ„Ž๐‘–๐‘๐‘–+โˆ‘

๐‘ก๐‘–๐‘ž๐‘–โˆˆโ„ค,๐‘žis a non-negative integer equal toโˆ‘|๐‘˜๐‘–||๐‘›๐‘–โˆ’ 1|+โˆ‘|โ„Ž๐‘–||๐‘๐‘–โˆ’ 1|+โˆ‘|๐‘ก๐‘–||๐‘ž๐‘–โˆ’ 1|+๐œ—, with ๐œ— = 0 or โˆ‘

sgn(โˆ’๐‘›๐‘–)|๐‘˜๐‘–|+โˆ‘

sgn(โˆ’๐‘ž๐‘–)|๐‘ก๐‘–| orโˆ‘

sgn(โˆ’๐‘›๐‘–)|๐‘˜๐‘–|+โˆ‘

sgn(โˆ’โ„Ž๐‘–)|๐‘ž๐‘–|orโˆ‘

sgn(โˆ’๐‘๐‘–)|โ„Ž๐‘–|+โˆ‘

sgn(๐‘ž๐‘–)|๐‘ก๐‘–|, and๐‘(๐‘,๐‘ž)(๐œ‹๐œ2)is a Laurent polynomial with rational (explicitly determined) coefficients, whose maxi-mum power is๐‘™1+๐‘™2+๐‘™3and minimum power is1 โˆ’ (๐‘™1+๐‘™2+๐‘™3).

For all the possible๐œ—we can apply the method described in the two-point case to prove that๐‘ž โ‰ฅ|๐‘|and that๐‘โ‰ก2 ๐‘ž. Moreover, again one can prove that for any(๐œ‡, ๐œˆ) only finitely many(๐‘›, ๐‘, ๐‘ž)are allowed, and the coefficients of the Laurent polynomi-als belong to๎ˆฏ (and are very explicitly determined).

โ–ก

In particular one can deduce the following (already found in [48]):

Corollary 4.3.1.

๐‘‘๐‘™(๐‘ฅ) โˆถ= 4๐‘™๐‘‘๐‘™(0,0)(๐‘ฅ) =๐‘‘๐‘™๐ด(๐‘ฅ) +๐‘‘๐‘™๐ต(๐‘ฅ) +๐‘‘๐‘™๐ถ(๐‘ฅ) and the three contributions are defined as follows:

๐‘‘๐‘™๐ด(๐‘ฅ) = 2(2๐‘ฅ)๐‘™ โˆ‘

๐‘Ž+๐‘+๐‘=๐‘™

๐‘™!

๐‘Ž!๐‘!๐‘!

(โˆ’1)๐‘ 6๐‘

(2๐‘Ž2+๐‘2)!(2๐‘Ž3+๐‘3)!

(2(๐‘Ž2+๐‘Ž3) +๐‘2+๐‘3+ 1)!

1 ๐œ†+ 1

is the contribution for๐‘š1=๐‘š2=๐‘š3 = 0, where๐œ†โˆถ= 2(๐‘Ž1+๐‘Ž2+๐‘Ž3) +๐‘1+๐‘2+๐‘3+ 1;

๐‘‘๐‘™๐ต(๐‘ฅ) =๐‘‘๐‘™๐ต

1,๐‘™2,๐‘™3(๐‘ฅ) +๐‘‘๐‘™๐ต

2,๐‘™1,๐‘™3(๐‘ฅ) +๐‘‘๐‘™๐ต

3,๐‘™2,๐‘™1(๐‘ฅ),

with ๐‘‘๐‘™๐ต

1,๐‘™2,๐‘™3(๐‘ฅ) = โˆ‘

๐‘Ž+๐‘+๐‘+๐‘š=๐‘™ ๐‘ข+๐‘ฃ=2๐‘Ž3+๐‘3 ๐‘’+๐‘“=2๐‘Ž1+๐‘1+๐‘ข

2 ๐‘™!

๐‘Ž!๐‘!๐‘!๐‘š!

(โˆ’1)๐‘

6๐‘ (2๐‘ฅ)๐‘โˆ’๐‘Žโˆ’2ร—

ร—(โˆ’1)๐‘ฃ(2๐‘Ž3+๐‘3)!(2๐‘Ž1+๐‘1+๐‘ข)!(2๐‘Ž2+๐‘2+๐‘ฃ+๐‘“)!

๐‘ข!๐‘ฃ!๐‘“! ๐‘…(๐‘š1, ๐‘š2, ๐‘š3; 2๐‘Ž2+๐‘2+๐‘ฃ+๐‘“+1, ๐‘’+1), is the contribution when at least two of the๐‘š๐‘–โ€™s are>0, with

๐‘…(๐‘š1, ๐‘š2, ๐‘š3;๐›ผ, ๐›ฝ) โˆถ= โˆ‘

(๐‘˜,โ„Ž,๐‘ก)

๐›ฟ0((๐‘˜, โ„Ž))๐›ฟ0((๐‘˜, ๐‘ก))

|๐‘˜||โ„Ž||๐‘ก|(โ€–๐‘˜โ€–+โ€–โ„Žโ€–)๐›ผ(โ€–๐‘˜โ€–+โ€–๐‘กโ€–)๐›ฝ; ๐‘‘๐‘™๐ถ(๐‘ฅ) =๐‘‘๐‘™๐ถ

1,๐‘™2,๐‘™3(๐‘ฅ) +๐‘‘๐‘™๐ถ

2,๐‘™1,๐‘™3(๐‘ฅ) +๐‘‘๐‘™๐ถ

3,๐‘™1,๐‘™2(๐‘ฅ), with

๐‘‘๐‘™๐ถ

1,๐‘™2,๐‘™3(๐‘ฅ) = โˆ‘

๐‘Ž+๐‘+๐‘+๐‘š=๐‘™ ๐‘ข+๐‘ฃ=2๐‘Ž3+๐‘3

2 ๐‘™!

๐‘Ž!๐‘!๐‘!๐‘š!

(โˆ’1)๐‘

6๐‘ (2๐‘ฅ)๐‘โˆ’๐‘Žโˆ’2ร—

ร— (2๐‘Ž3+๐‘3)!

๐‘ข!๐‘ฃ!

(โˆ’1)๐‘ฃ

2๐‘Ž2+๐‘2+๐‘ฃ+ 1(๐œ†)!ร—

ร— [

๐‘†(๐‘š1, ๐œ†+ 1) +

โˆ‘๐œ† ๐‘—=0

(โˆ’1)๐‘—๐‘†(๐‘š1, ๐‘—+ 1)

(๐œ†โˆ’๐‘—)! (2๐œ‹๐œ2)(๐œ†โˆ’๐‘—) ]

, is the contribution when two of the๐‘š๐‘–โ€™s are zero (๐‘š2 and๐‘š3 in๐‘‘๐‘™๐ถ

1,๐‘™2,๐‘™3), where again ๐œ†โˆถ= 2(๐‘Ž1+๐‘Ž2+๐‘Ž3) +๐‘1+๐‘2+๐‘3+ 1and๐‘†(๐‘š, ๐›ผ) =๐‘…(๐‘š,0,0, ๐›ผ,0)is the sum already introduced in the previous section. In every case where at least one of the๐‘š๐‘–โ€™s in๐‘‘๐ต and๐‘‘๐ถ is zero, we assume that the other๐‘š๐‘–โ€™s areโ‰ฅ2, otherwise it is easy to see that the contribution given is zero.

Remark 4.3.1. Note that we are computing the non-exponentially small term with-out dividing it by4๐‘™, in order to have neater results afterwards. This does not change the proof, but may generate some confusion concerning the resulting expression.

Sketch of the proof.It is convenient to consider as separate cases: the case where all the๐‘š๐‘–โ€™s are= 0; the case where two of the๐‘š๐‘–โ€™s are= 0and one is> 1(it cannot be= 1); the case where one of the ๐‘š๐‘–โ€™s is= 0 and two are > 1; the case where all of them are> 0. The last case is the most complicated (and it gives the same result as the case where only one is= 0); we briefly describe how to treat it, and the same argument can be applied to the other cases.

Following the proof of the theorem above one arrives at the point (4.14), and then should take into account only the(๐‘›, ๐‘, ๐‘ž) leading to non-exponentially small terms. These are(0,0,0), (1,0,1)and(1,1,0)for the first integral, (1,1,0), (0,1,โˆ’1) and (0,0,0) for the second integral. By substituting ๐‘ฅ = 1 โˆ’ ๐‘ฅ and ๐‘ฆ = 1 โˆ’ ๐‘ฆ in the second integral one gets just two copies of the three possible cases for the first integral. We call the first one๐‘‘๐ต

๐‘™1,๐‘™2,๐‘™3(๐‘ฅ), and then one can easily notice that the other two are given by๐‘‘๐ต

๐‘™2,๐‘™1,๐‘™3(๐‘ฅ)and๐‘‘๐ต

๐‘™3,๐‘™2,๐‘™1(๐‘ฅ).

โ–ก

Let us remark that, since by definition ๐ท๐‘™ does not depend on the order of the ๐‘™๐‘–โ€™s, also๐‘‘๐‘™ does not, even though from this formula it is not clear at first sight. So, for instance, speaking of๐‘‘1,2,3is the same as speaking of๐‘‘3,1,2.

Evaluating by hand the functions๐‘…(๐‘š1, ๐‘š2, ๐‘š3;๐›ผ, ๐›ฝ)in terms of MZVs, one is able to find for the lower weights:

๐‘‘1,1,1(๐‘ฆ) = 2

945๐‘ฆ3+3 4

๐œ(5) ๐‘ฆ2 , ๐‘‘1,1,2(๐‘ฆ) = 2

14175๐‘ฆ4+ ๐œ(3) 45 ๐‘ฆ+ 5

12 ๐œ(5)

๐‘ฆ โˆ’1 4

๐œ(3)2 ๐‘ฆ2 + 9

16 ๐œ(7)

๐‘ฆ3 , ๐‘‘1,1,3(๐‘ฆ) = 2

22275๐‘ฆ5+ ๐œ(3)

45 ๐‘ฆ2+11

60๐œ(5) + 105 32

๐œ(7) ๐‘ฆ2 โˆ’ 3

2

๐œ(3)๐œ(5) ๐‘ฆ3 + 81

64 ๐œ(9)

๐‘ฆ4 , ๐‘‘1,2,2(๐‘ฆ) = 8

467775๐‘ฆ5+ 4๐œ(3)

945 ๐‘ฆ2+ 13

45๐œ(5) +7 8

๐œ(7)

๐‘ฆ2 โˆ’ ๐œ(3)๐œ(5) ๐‘ฆ3 +9

8 ๐œ(9)

๐‘ฆ4 .

These are all the possible cases up to weight five. The same result was found in [38], where the authors corrected some mistakes made in [48].

Note that up to this weight the coefficients of the Laurent polynomials are MZVs, but in the literature it is not proven yet that this will happen in any weight. More-over, let us remark that they are MZVs of a very particular kind: they are always polynomials in simple odd zeta values, just as it happens (and is proven to be so in any weight by Theorem3.3.1) in the two-point case. What we are now able to say is that, using Theorem4.3.1and Terasomaโ€™s Theorem4.1.1, they have to be cyclotomic MZVs.

For higher weights the sums๐‘…(๐‘š1, ๐‘š2, ๐‘š3;๐›ผ, ๐›ฝ) look impossible to be evaluated by hand; this is why no other๐‘‘๐‘™was known before our work.

Since we have seen that the coefficients are conical sums, one can useHyperInt if the cones and the matrices involved are simple enough. This turns out to often be the case with three strings, because of the following theorem:

Theorem 4.3.2. For all๐‘™1, ๐‘™2, ๐‘™3โˆˆโ„•the coefficients of๐‘‘๐‘™

1,๐‘™2,๐‘™3(๐‘ฆ)belong to the algebra๎ˆฎ of conical sums associated to(0,1)-matrices.

The proof of this theorem is constructive, and gives an actual formula to compute the coefficients, but the formula itself is very long and complicated. It can be found in AppendixA(see equationsA.1,...,A.9), together with the proof.

Thus one gets an algorithm which will certainly compute the coefficients of๐‘‘๐‘™in terms of MZVs for any๐‘™such that all matrices involved belong to๎ˆฟ (matrices with consecutive ones on the columns). For example, all the๐‘‘๐‘™ of weight six satisfy this condition, after some partial fraction decomposition on the conical sums, but not all the weight-seven ones: we will come back to this later. Moreover, as remarked before, the algorithm will produce an answer, either in terms of MZVs or alternating sums, for many more(0,1)-matrices than just the ones in๎ˆฟ.

We list here the new data obtained so far with this method (we set again ๐‘ฆ โˆถ=

๐œ‹๐œ2):

๐‘‘1,1,4(๐‘ฆ) = 284

18243225๐‘ฆ6+ 2

135๐œ(3)๐‘ฆ3+ 5๐œ(5) 18 ๐‘ฆ+ 1

10๐œ(3)2+ 51 20

๐œ(7) ๐‘ฆ + 11

2

๐œ(5)๐œ(3) ๐‘ฆ2 + 79๐œ(9) โˆ’ 36๐œ(3)3

24๐‘ฆ3 โˆ’ 9

4

๐œ(3)๐œ(7) ๐‘ฆ4 + 45

16 ๐œ(11)

๐‘ฆ5 , ๐‘‘2,2,2(๐‘ฆ) = 193

11609325๐‘ฆ6+ 1

315๐œ(3)๐‘ฆ3+ 59

315๐œ(5)๐‘ฆ+ 23 20

๐œ(7) ๐‘ฆ + 5

2

๐œ(3)๐œ(5) ๐‘ฆ2 โˆ’65

48 ๐œ(9)

๐‘ฆ3 + 21๐œ(5)2โˆ’ 18๐œ(3)๐œ(7)

16๐‘ฆ4 +99

64 ๐œ(11)

๐‘ฆ5 , ๐‘‘1,2,3(๐‘ฆ) = 298

42567525๐‘ฆ6+ 1

315๐œ(3)๐‘ฆ3+ 173

1260๐œ(5)๐‘ฆ+ 3

20๐œ(3)2+53 20

๐œ(7) ๐‘ฆ โˆ’ 5

2

๐œ(3)๐œ(5) ๐‘ฆ2 + 223๐œ(9) + 96๐œ(3)3

32๐‘ฆ3 โˆ’ 99๐œ(5)2+ 162๐œ(3)๐œ(7)

32๐‘ฆ4 +729

128 ๐œ(11)

๐‘ฆ5 ,

๐‘‘1,1,5(๐‘ฆ) = 62

10945935๐‘ฆ7+ 2

243๐œ(3)๐‘ฆ4+ 119

324๐œ(5)๐‘ฆ2+ 11

27๐œ(3)2๐‘ฆ+ 21 16๐œ(7) + 46

3

๐œ(3)๐œ(5)

๐‘ฆ +7115๐œ(9) โˆ’ 3600๐œ(3)3

288๐‘ฆ2 + 1245๐œ(3)๐œ(7) โˆ’ 150๐œ(5)2 16๐‘ฆ3

+288๐œ(3)๐œ(3,5) โˆ’ 288๐œ(3,5,3) โˆ’ 5040๐œ(5)๐œ(3)2โˆ’ 9573๐œ(11) 128๐‘ฆ4

+ 2475๐œ(5)๐œ(7) + 1125๐œ(9)๐œ(3)

32๐‘ฆ5 โˆ’1575

32 ๐œ(13)

๐‘ฆ6 ,

๐‘‘1,3,3(๐‘ฆ) = 34

8513505๐‘ฆ7+ 2

945๐œ(3)๐‘ฆ4+ 17

252๐œ(5)๐‘ฆ2+ 23

105๐œ(3)2๐‘ฆ+ 1391 560 ๐œ(7)

โˆ’ 3๐œ(3)๐œ(5)

๐‘ฆ + 953๐œ(9) + 144๐œ(3)3

32๐‘ฆ2 โˆ’ 1701๐œ(3)๐œ(7) + 120๐œ(5)2 32๐‘ฆ3

+324๐œ(3,5,3) โˆ’ 324๐œ(3)๐œ(3,5) + 22299๐œ(11) + 8460๐œ(5)๐œ(3)2 320๐‘ฆ4

โˆ’891๐œ(5)๐œ(7) + 702๐œ(9)๐œ(3)

16๐‘ฆ5 +7209

128 ๐œ(13)

๐‘ฆ6 ,

๐‘‘1,2,4(๐‘ฆ) = 592

383107725๐‘ฆ7+ 152

93555๐œ(3)๐‘ฆ4+ 44

567๐œ(5)๐‘ฆ2+148

945๐œ(3)2๐‘ฆ+ 277 105๐œ(7) + 62

15

๐œ(3)๐œ(5)

๐‘ฆ + 191๐œ(9) โˆ’ 36๐œ(3)3

18๐‘ฆ2 โˆ’ 69๐œ(3)๐œ(7) + 180๐œ(5)2 16๐‘ฆ3

โˆ’72๐œ(3,5,3) โˆ’ 72๐œ(3)๐œ(3,5) โˆ’ 11893๐œ(11) โˆ’ 2520๐œ(5)๐œ(3)2 320๐‘ฆ4

โˆ’477๐œ(5)๐œ(7) + 441๐œ(9)๐œ(3)

16๐‘ฆ5 +4905

128 ๐œ(13)

๐‘ฆ6 ,

๐‘‘1,1,6(๐‘ฆ) = 262

186080895๐‘ฆ8+ 1

243๐œ(3)๐‘ฆ5+113

324๐œ(5)๐‘ฆ3+25

36๐œ(3)2๐‘ฆ2+749

144๐œ(7)๐‘ฆ+331

18 ๐œ(3)๐œ(5) + 56๐œ(9) โˆ’ 207๐œ(3)3

18๐‘ฆ + 705๐œ(3)๐œ(7) + 375๐œ(5)2 2๐‘ฆ2

+2304๐œ(3,5,3) โˆ’ 2304๐œ(3)๐œ(3,5) โˆ’ 38541๐œ(11) โˆ’ 32400๐œ(5)๐œ(3)2

64๐‘ฆ3 + ๐‘Ž

๐‘ฆ4 + ๐‘

๐‘ฆ5 +179550๐œ(11)๐œ(3) + 274050๐œ(9)๐œ(5) + 155925๐œ(7)2

128๐‘ฆ6 โˆ’ 1233225

512

๐œ(15) ๐‘ฆ7 , where๐‘Žcannot be determined because of current limits10ofHyperInt, and

๐‘= 837

14 ๐œ(5)๐œ(5,3) โˆ’ 3375

4 ๐œ(3)๐œ(5)2โˆ’ 6075

8 ๐œ(7)๐œ(3)2โˆ’ 675

56 ๐œ(3,7,3) + 675

56 ๐œ(3)๐œ(7,3) + 54

7 ๐œ(5,3,5) + 135

4 ๐œ(5)๐œ(8) โˆ’134257 896 ๐œ(13).

Starting from weight 7, we can see something new and very interesting happening to the coefficients: not only polynomials in odd simple zeta values are involved. For example, the coefficient11 of๐‘ฆโˆ’4 in๐‘‘1,1,5(๐‘ฆ) contains ๐œ(3,5,3)and๐œ(3)๐œ(3,5), which are not reducible to polynomials in odd zetas. The fundamental remark is that they are still very special, because that coefficient can be written as the following linear combination of single-valued multiple zeta values:

โˆ’9

8๐œsv(3,5,3) โˆ’ 405

64 ๐œsv(5)๐œsv(3)2โˆ’ 9573

256๐œsv(11). (4.15) This actually happens to all of the coefficients in the polynomials above (products of odd zeta values are already single-valued MZVs), the most astonishing case being the coefficient of๐‘ฆโˆ’5in๐‘‘1,1,6(๐‘ฆ), that we called๐‘. Indeed, one can check that, in terms of the basis for single valued MZVs in weight 13 in [23],

๐‘= 27

7 ๐œsv(5,3,5)โˆ’675

112๐œsv(3,7,3)โˆ’4995

4 ๐œsv(3)๐œsv(5)2โˆ’7425

8 ๐œsv(7)๐œsv(3)2โˆ’134257

1792 ๐œsv(13).

This means that a multiple zeta value belonging a priori to a vector space of dimen-sion 16 actually belongs to the subspace of dimendimen-sion12 5 of single-valued MZVs, which certainly looks more than just a coincidence. Let us now draw a parallel be-tween our setting and the genus zero case for closed strings. We have seen that in genus zero the picture goes as follows: in the most trivial case (four particles) only odd zetas appear, while starting from the next case (five particles) one finds also MZVs of higher depth, which are conjectured to always belong to the algebra of sin-gle valued MZVs. Therefore we conclude that it is not too optimistic to conjecture that our coefficients are given by single valued MZVs only, even with so little evi-dence. Arguments supporting this conjecture, based on the structure of the one-loop string amplitude, have been given afterwards in the paper [37].

We conclude this section by observing that, unfortunately, the matrices appear-ing do not always belong to๎ˆฟ, even after performing standard manipulations like

10These limits have to do with the database of relations between MZVs. Panzer informed me that this database will soon be significantly enlarged.

11Here a sign mistake is noticed w.r.t. the result reported in [93]. Note that also eq. (4.15) has been corrected.

12The conjectured dimensions of spaces of single-valued MZVs are given in [23].

partial fraction decomposition, and sometimes they produce special values of poly-logarithms at higher roots of unity. This happens, for instance, in the computation of ๐‘…(3,3,1; 1,1), which is one of the sums involved in the computation of๐‘‘1,3,3. How-ever, in this case we get only alternating sums, which is good enough to let them be computed byHyperInt, and in the end all the non-MZV part of ๐‘…(3,3,1; 1,1) cancels out.

It is actually very tempting to conjecture that the numbers๐‘…(๐‘š1, ๐‘š2, ๐‘š3;๐›ผ, ๐›ฝ) them-selves always lie in๎ˆญ(but they are not single-valued), because this is what we have found so far. However, this time we do not have any other argument to support this evidence.

A very partial result in the direction of proving the conjectures above is the fol-lowing:

Theorem 4.3.3. For any๐‘› โˆˆ โ„•the coefficients of๐‘‘1,1,๐‘›(๐œ)are linear combinations of conical sums whose matrices belong to๎ˆฟ, so in particular they are (algorithmically) โ„š-linear combinations of multiple zeta values.

Proof.The proof uses the explicit formula given in AppendixAfor the numbers ๐‘…in terms of elements of ๎ˆฎ. The only ๐‘…โ€™s involved are of the kind๐‘…(1,1, ๐‘—;๐›ผ, ๐›ฝ), ๐‘…(1, ๐‘—,1;๐›ผ, ๐›ฝ)and๐‘…(๐‘—,1,1;๐›ผ, ๐›ฝ), with๐‘— โ‰ค๐‘›and some๐›ผ,๐›ฝ. Note that๐‘…(1, ๐‘—,1;๐›ผ, ๐›ฝ) = ๐‘…(1,1, ๐‘—;๐›ฝ, ๐›ผ)and๐‘…(๐‘—,1,1;๐›ผ, ๐›ฝ) =๐‘…(1,1, ๐‘—; 0, ๐›ผ+๐›ฝ), so it is enough to study๐‘…(1,1, ๐‘—;๐›ผ, ๐›ฝ).

Only the sums (A.2) and (A.5) are contributing to this๐‘…, but the sum (A.2) is eas-ily seen to be contained in๎ˆญ, so we have to study (A.5) only, which in our case is particularly simple (assume๐‘— โ‰ฅ2, otherwise (A.2) suffices):

โˆ‘

๐‘„,๐นโ‰ฅ0 ๐‘„+๐น=๐‘—โˆ’2

โˆ‘

๐‘™3+๐‘Ž>๐‘ž1>โ‹ฏ>๐‘ž๐‘„ ๐‘™3>๐‘“1>โ‹ฏ>๐‘“๐น

1

(๐‘™3+๐‘Ž)๐›ฝ+1๐‘Ž๐›ผ+2๐‘™3๐‘ž1โ‹ฏ๐‘ž๐‘„๐‘“1โ‹ฏ๐‘“๐น

Following the stuffle procedures described in AppendixAone is left with a linear combination of sums in๎ˆฎwith associated matrices of the kind

โŽ›โŽœ

โŽœโŽœ

โŽœโŽœ

โŽœโŽœ

โŽœโŽœ

โŽ 1

โ‹ฎ โ‹ฑ

1 โ‹ฏ 1

1

๐ด โ‹ฎ โ‹ฑ

1 โ‹ฏ 1

1 โ‹ฏ 1 0 โ‹ฏ 0 1

1 โ‹ฏ 1 1 โ‹ฏ 1 1

โŽžโŽŸ

โŽŸโŽŸ

โŽŸโŽŸ

โŽŸโŽŸ

โŽŸโŽŸ

โŽ 

where๐ดis a matrix with rows given either by consecutive ones or by consecutive zeros (this comes from the stuffle). Since interchanging the rows does not change the

conical sum, we can rewrite the matrix as

โŽ›โŽœ

โŽœโŽœ

โŽœโŽœ

โŽœโŽœ

โŽœโŽœ

โŽœโŽœ

โŽœโŽœ

โŽ 1

โ‹ฎ โ‹ฑ

1 โ‹ฏ 1

1 โ‹ฏ 1 0

โ‹ฎ โ‹ฎ ๐ต โ‹ฎ

1 โ‹ฏ 1 0

1 โ‹ฏ 1 1 โ‹ฏ 1 1

1 โ‹ฏ 1 0 โ‹ฏ 0 1

0 โ‹ฏ 0 0

โ‹ฎ โ‹ฎ ๐ถ โ‹ฎ

0 โ‹ฏ 0 0

โŽžโŽŸ

โŽŸโŽŸ

โŽŸโŽŸ

โŽŸโŽŸ

โŽŸโŽŸ

โŽŸโŽŸ

โŽŸโŽŸ

โŽ 

where๐ต and๐ถ are matrices with, from left to right, a string of ones followed by a string of zeros in every row, such that the length of the string of ones increases in ๐ตwith the increase of the rowโ€™s index and decreases in ๐ถ. At this point we almost have a matrix belonging to๎ˆฟ, the only problem being the row in the middle of the form๐‘Ÿ= 1,โ€ฆ,1,0,โ€ฆ,0,1.

Note now that a partial fraction operation on the sum of the kind 1

๐‘™๐‘–(๐‘ฅ)๐‘™๐‘—(๐‘ฅ) = 1

๐‘™๐‘–(๐‘ฅ) (๐‘™๐‘–+๐‘™๐‘—)(๐‘ฅ) + 1 ๐‘™๐‘—(๐‘ฅ) (๐‘™๐‘–+๐‘™๐‘—)(๐‘ฅ)

is reflected on the matrix just by substituting the๐‘–-th or the๐‘—-th row by the sum of the 2. Hence if we do this sum operation on๐‘Ÿtogether with the row immediately below we get the sum of 2 matrices, one belonging to๎ˆฟ (when๐‘Ÿis deleted) and one such that the sub-matrix below๐‘Ÿis strictly smaller (after interchanging ๐‘Ÿwith the new row obtained as a sum). Iterating this process one finally gets that๐‘Ÿis the last row in the matrix, and in this case the matrix belongs to๎ˆฟand we are done.

โ–ก