• Keine Ergebnisse gefunden

5.5 Depth one

5.5.1 Explicit formulae

It is convenient to introduce some special notation: we will write ๐ด๐‘›,๐‘Ÿ(๐œ) โˆถ=๐ด(๐‘›,0,โ€ฆ,0

โŸโŸโŸ

๐‘Ÿโˆ’1

;๐œ) =

โˆซ

1 0

(2๐œ‹๐‘–๐‘ก)๐‘Ÿโˆ’1

(๐‘Ÿโˆ’ 1)! ๐‘“๐‘›(๐‘ก, ๐œ)๐‘‘๐‘ก, and

๎ˆญ(๐‘‹, ๐‘Œ;๐œ) โˆถ=โˆ‘

๐‘›โ‰ฅ0 ๐‘Ÿโ‰ฅ1

๐ด๐‘›,๐‘Ÿ(๐œ)

(2๐œ‹๐‘–)๐‘Ÿโˆ’1๐‘‹๐‘›โˆ’1๐‘Œ๐‘Ÿโˆ’1 = โˆ‘

๐‘Ÿโ‰ฅ1โˆซ

1 0

(๐‘ก๐‘Œ)๐‘Ÿโˆ’1 (๐‘Ÿโˆ’ 1)!๐น

( ๐‘ก, ๐‘‹

2๐œ‹๐‘–;๐œ )

๐‘‘๐‘ก

= โˆซ

1 0

๐‘’๐‘ก๐‘Œ๐น (

๐‘ก, ๐‘‹ 2๐œ‹๐‘–;๐œ

) ๐‘‘๐‘ก,

where we mention, once for all, that byโˆซ01we mean theregularized integraldescribed in the definition of elliptic MZVs.

First of all, note that one can reduce all depth one elliptic MZVs to the๐ด๐‘›,๐‘Ÿโ€™s:

๐ด(0,โ€ฆ,0

โŸโŸโŸ

๐‘ 

, ๐‘›,0,โ€ฆ,0

โŸโŸโŸ

๐‘Ÿ

;๐œ) =

= (2๐œ‹๐‘–)๐‘Ÿ+๐‘ 

โˆซ

1 0

๐‘ก๐‘Ÿ(1 โˆ’๐‘ก)๐‘ 

๐‘Ÿ!๐‘ ! ๐‘“๐‘›(๐‘ก, ๐œ) =

โˆ‘๐‘  ๐‘–=0

(2๐œ‹๐‘–)๐‘ โˆ’๐‘–(โˆ’1)๐‘– (๐‘ โˆ’๐‘–)!

(๐‘Ÿ+๐‘– ๐‘Ÿ

)

๐ด๐‘›,๐‘Ÿ+๐‘–+1(๐œ). (5.87) Let us now see what is the analogue of Proposition5.3.1for the depth 1 case.

Lemma 5.5.1.

๐œ•

๐œ•๐œ๎ˆญ(๐‘‹, ๐‘Œ;๐œ) = (1 โˆ’๐‘’๐‘Œ)๎ˆณ(๐‘‹, ๐œ) โˆ’๐‘Œ ๐œ•

๐œ•๐‘‹๎ˆญ(๐‘‹, ๐‘Œ;๐œ) (5.88) Proof. Using the mixed heat equation, the substitution๐‘‹ฬ‚ = ๐‘‹โˆ•2๐œ‹๐‘–and Lemma 5.3.1we get17

๐œ•

๐œ•๐œ โˆซ

1 0

๐‘’๐‘ก๐‘Œ๐น (

๐‘ก, ๐‘‹ 2๐œ‹๐‘–;๐œ

)

๐‘‘๐‘ก= 1 2๐œ‹๐‘–โˆซ

1 0

๐‘’๐‘ก๐‘Œ ๐œ•

๐œ•๐‘ก๐œ• ฬ‚๐‘‹

๐น(๐‘ก, ฬ‚๐‘‹;๐œ)๐‘‘๐‘ก

= 1 2๐œ‹๐‘–

( ๐‘’๐‘Œ ๐œ•

๐œ• ฬ‚๐‘‹

๐น(1, ฬ‚๐‘‹;๐œ) โˆ’ ๐œ•

๐œ• ฬ‚๐‘‹

๐น(0, ฬ‚๐‘‹;๐œ) )

โˆ’ ๐‘Œ 2๐œ‹๐‘–โˆซ

1 0

๐‘’๐‘ก๐‘Œ ๐œ•

๐œ• ฬ‚๐‘‹

๐น(๐‘ก, ฬ‚๐‘‹;๐œ)๐‘‘๐‘ก

= (1 โˆ’๐‘’๐‘Œ)๎ˆณ(๐‘‹, ๐œ) โˆ’๐‘Œ ๐œ•

๐œ•๐‘‹๎ˆญ(๐‘‹, ๐‘Œ;๐œ). (5.89)

โ–ก

We want to make more precise in this setting the remark that elliptic MZVs can be written as iterated integrals of Eisenstein series. As always, we write๐ด๐‘›,๐‘Ÿ(๐œ) = ๐ดโˆž๐‘›,๐‘Ÿ+๐ด0๐‘›,๐‘Ÿ(๐œ), as well as๎ˆญ(๐‘‹, ๐‘Œ;๐œ) =๎ˆญโˆž(๐‘‹, ๐‘Œ) +๎ˆญ0(๐‘‹, ๐‘Œ;๐œ)at the level of generating

17As in the proof of Enriquezโ€™s Proposition5.3.1, we omit the proof that the basic properties of iterated integrals are still valid for the regularized ones. All details can be found in [44].

functions. Note that, by (5.37), we have that for all๐‘›โ‰ 1 ๐ดโˆž๐‘›,๐‘Ÿ= (2๐œ‹๐‘–)๐‘ŸB๐‘›

๐‘Ÿ!๐‘›! , (5.90)

and that, by Corollary5.2.1and (5.22),

๐ดโˆž1,๐‘Ÿ= (2๐œ‹๐‘–)๐‘Ÿโˆ’1( ๐‘–๐œ‹ 2(๐‘Ÿโˆ’ 1)! โˆ’

โŒŠ๐‘Ÿ2โŒ‹โˆ’1

โˆ‘

๐‘˜=1

๐œ(2๐‘˜+ 1) (๐‘Ÿโˆ’ 2๐‘˜โˆ’ 1)!(2๐œ‹๐‘–)2๐‘˜

)

. (5.91)

We will denote the generating series of the exponentially small part๐”พ0๐‘˜ of the Eisen-stein series๐”พ๐‘˜ by

๎ˆณ0(๐‘‹, ๐œ) โˆถ=โˆ‘

๐‘›โ‰ฅ1

๐‘›๐”พ0๐‘›+1๐‘‹๐‘›โˆ’1. (5.92)

Moreover, we denote18

ฮ“๐ฟ๐‘›,๐‘˜(๐œ) โˆถ= ฮ“(0,โ€ฆ,0

โŸโŸโŸ

๐‘˜โˆ’1

, ๐‘›;๐œ) =

โˆซ[๐œ,โƒ—1โˆž]

๐”พ๐‘›๐”พ0โ‹ฏ๐”พ0

โŸโžโŸโžโŸ

๐‘˜โˆ’1

and

ฮ“๐‘…๐‘›,๐‘˜(๐œ) โˆถ= ฮ“(๐‘›,0,โ€ฆ,0

โŸโŸโŸ

๐‘˜โˆ’1

;๐œ) =

โˆซ[๐œ,โƒ—1โˆž]

๐”พ0โ‹ฏ๐”พ0

โŸโžโŸโžโŸ

๐‘˜โˆ’1

๐”พ๐‘›

Again, we write

ฮ“๐ฟ๐‘›,๐‘˜(๐œ) = ฮ“๐ฟ,โˆž๐‘›,๐‘˜ (๐œ) + ฮ“๐ฟ,0๐‘›,๐‘˜(๐œ), ฮ“๐‘…๐‘›,๐‘˜(๐œ) = ฮ“๐‘…,โˆž๐‘›,๐‘˜ (๐œ) + ฮ“๐‘…,0๐‘›,๐‘˜(๐œ).

It is obvious that

ฮ“๐ฟ,0๐‘›,๐‘˜(๐œ) =

โˆซ[๐œ,๐‘–โˆž]๐”พ0๐‘›๐”พ0โ‹ฏ๐”พ0

โŸโžโŸโžโŸ

๐‘˜โˆ’1

(5.93)

and that

ฮ“๐ฟ,โˆž๐‘›,๐‘˜ (๐œ) = B๐‘›(2๐œ‹๐‘–๐œ)๐‘˜

๐‘›!๐‘˜! . (5.94)

Moreover, one can easily check that ฮ“๐‘…,0๐‘›,๐‘˜(๐œ) = (2๐œ‹๐‘–)๐‘˜โˆ’1

(๐‘˜โˆ’ 1)! โˆซ

๐‘–โˆž

๐œ

๐‘ง๐‘˜โˆ’1๐”พ0๐‘›(๐‘ง)๐‘‘๐‘ง (5.95) and that

ฮ“๐‘…,โˆž๐‘›,๐‘˜ (๐œ) = ฮ“๐ฟ,โˆž๐‘›,๐‘˜ (๐œ) = B๐‘›(2๐œ‹๐‘–๐œ)๐‘˜

๐‘›!๐‘˜! . (5.96)

It is important to keep in mind thatฮ“๐ฟ๐‘›,๐‘˜(๐œ)andฮ“๐‘…๐‘›,๐‘˜(๐œ)vanish identically whenever๐‘› is odd. Moreover, we want to stress the fact that one can compute the๐‘ž-expansion of anyฮ“0(๐‘›1,โ€ฆ, ๐‘›๐‘Ÿ;๐œ), and this is the simplest way to get the๐‘ž-expansion of A-elliptic MZVs, as already noticed in [16]. In depth one the๐‘ž-expansion (5.85) just reads

ฮ“๐ฟ,0๐‘›,๐‘˜(๐œ) = โˆ’ 2 (๐‘›โˆ’ 1)!

โˆ‘

๐‘š,๐‘โ‰ฅ1

๐‘š๐‘›โˆ’๐‘˜โˆ’1

๐‘๐‘˜ ๐‘ž๐‘š๐‘. (5.97)

18As we have already done in the previous section, here byโˆซ ๐”พ๐‘˜we meanโˆซ ๐”พ๐‘˜(๐‘ง)๐‘‘๐‘ง.

Let us now introduce the generating functions

๎ˆฑ(๐‘‹, ๐‘Œ;๐œ) โˆถ= โˆ‘

๐‘›,๐‘˜โ‰ฅ1

(โˆ’1)๐‘›โˆ’1 (2๐œ‹๐‘–)๐‘˜โˆ’1

(๐‘›+๐‘˜โˆ’ 1)!

(๐‘›โˆ’ 1)! ฮ“๐ฟ๐‘›+๐‘˜,๐‘˜(๐œ)๐‘‹๐‘›โˆ’1๐‘Œ๐‘˜โˆ’1, (5.98)

๎ˆฒ(๐‘‹, ๐‘Œ;๐œ) โˆถ= โˆ‘

๐‘›,๐‘˜โ‰ฅ1

1 (2๐œ‹๐‘–)๐‘˜โˆ’1

(๐‘›+๐‘˜โˆ’ 1)!

(๐‘›โˆ’ 1)! ฮ“๐‘…๐‘›+๐‘˜,๐‘˜(๐œ)๐‘‹๐‘›โˆ’1๐‘Œ๐‘˜โˆ’1. (5.99) As before, we write

๎ˆฑ0(๐‘‹, ๐‘Œ;๐œ) = โˆ‘

๐‘›,๐‘˜โ‰ฅ1

(โˆ’1)๐‘›โˆ’1 (2๐œ‹๐‘–)๐‘˜โˆ’1

(๐‘›+๐‘˜โˆ’ 1)!

(๐‘›โˆ’ 1)! ฮ“๐ฟ,0๐‘›+๐‘˜,๐‘˜(๐œ)๐‘‹๐‘›โˆ’1๐‘Œ๐‘˜โˆ’1 and

๎ˆฒ0(๐‘‹, ๐‘Œ;๐œ) = โˆ‘

๐‘›,๐‘˜โ‰ฅ1

1 (2๐œ‹๐‘–)๐‘˜โˆ’1

(๐‘›+๐‘˜โˆ’ 1)!

(๐‘›โˆ’ 1)! ฮ“๐‘…,0๐‘›+๐‘˜,๐‘˜(๐œ)๐‘‹๐‘›โˆ’1๐‘Œ๐‘˜โˆ’1.

The main consequence of the lemma above (this consequence, stated in a different way, is already contained in [66]) is the following:

Proposition 5.5.1.

๎ˆญ0(๐‘‹, ๐‘Œ;๐œ) = (๐‘’๐‘Œ โˆ’ 1)๎ˆฑ0(๐‘‹, ๐‘Œ;๐œ) (5.100) Proof.Iterating the statement of the proposition, and noting that, for every๐‘˜โ‰ฅ1,

โˆซ[๐œ,โƒ—1โˆž]

๐ดโˆž๐‘›,๐‘Ÿ๐‘‘๐‘ง1๐‘‘๐‘ง2โ‹ฏ๐‘‘๐‘ง๐‘˜ =๐‘‚(๐‘ž), we deduce that

๎ˆญ0(๐‘‹, ๐‘Œ;๐œ) = (๐‘’๐‘Œ โˆ’ 1)โˆ‘

๐‘˜โ‰ฅ1

๐‘Œ๐‘˜โˆ’1 (2๐œ‹๐‘–)๐‘˜โˆ’1

๐œ•๐‘˜โˆ’1

๐œ•๐‘‹๐‘˜โˆ’1โˆซ[๐œ,๐‘–โˆž]๎ˆณ0(๐‘‹, ๐‘ง1)๐‘‘๐‘ง1๐”พ0๐‘‘๐‘ง2โ‹ฏ๐”พ0๐‘‘๐‘ง๐‘˜. (5.101) Expanding the generating series๎ˆณ0, we get

๎ˆญ0(๐‘‹, ๐‘Œ;๐œ) = (๐‘’๐‘Œ โˆ’ 1) โˆ‘

๐‘˜,๐‘šโ‰ฅ1

(โˆ’1)๐‘˜โˆ’1๐‘š!

(๐‘šโˆ’๐‘˜)!(2๐œ‹๐‘–)๐‘˜โˆ’1ฮ“๐ฟ,0๐‘š+1,๐‘˜(๐œ)๐‘‹๐‘šโˆ’๐‘˜๐‘Œ๐‘˜โˆ’1

= (๐‘’๐‘Œ โˆ’ 1) โˆ‘

๐‘˜,๐‘›โ‰ฅ1

(โˆ’1)๐‘›โˆ’1(๐‘›+๐‘˜โˆ’ 1)!

(๐‘›โˆ’ 1)!(2๐œ‹๐‘–)๐‘˜โˆ’1 ฮ“๐ฟ,0๐‘›+๐‘˜,๐‘˜(๐œ)๐‘‹๐‘›โˆ’1๐‘Œ๐‘˜โˆ’1,

where to get(โˆ’1)๐‘›โˆ’1 in the second equality we have used that๐‘›+๐‘˜must be even.

This concludes the proof.

โ–ก

Corollary 5.5.1. For any๐‘›โ‰ฅ1and any๐‘Ÿโ‰ฅ1we have ๐ด๐‘›,๐‘Ÿ(๐œ) =๐ดโˆž๐‘›,๐‘Ÿ+(โˆ’1)๐‘›โˆ’1

(๐‘›โˆ’ 1)!

โˆ‘๐‘Ÿโˆ’1 ๐‘—=1

(2๐œ‹๐‘–)๐‘Ÿโˆ’๐‘—(๐‘›+๐‘—โˆ’ 1)!

(๐‘Ÿโˆ’๐‘—)! ฮ“๐ฟ,0๐‘›+๐‘—,๐‘—(๐œ). (5.102) Proof. It is a straightforward comparison term by term of the left hand side of the proposition with the right hand side.

โ–ก

Remark 5.5.2. This corollary, together with (5.97), the formulae for the constant term ๐ดโˆž๐‘›,๐‘Ÿ and formula (5.87), lead to completely explicit formulae for the ๐‘ž-expansion of

all A-elliptic MZVs of depth one, which allow to approximate them numerically to high precision19. We have used this to check numerically all results given in the rest of this section.

Remark 5.5.3. By formula (5.102) we deduce that all A-elliptic MZVs of the form ๐ด1,๐‘Ÿ(๐œ)includeฮ“(2, ๐œ) = โˆ’2 log(๐œ‚(๐œ))as part of their Fourier expansion, and therefore all๐ต1,๐‘Ÿ(๐œ) โˆถ= ๐ต(1,0,โ€ฆ,0

โŸโŸโŸ

๐‘Ÿโˆ’1

;๐œ) will include log(๐œ) in the asymptotic expansion. Note that for the modified

๐ดฬ‚1,๐‘Ÿ(๐œ) โˆถ=๐ด1,๐‘Ÿ(๐œ) โˆ’(2๐œ‹๐‘–)๐‘Ÿโˆ’2

(๐‘Ÿโˆ’ 1)!๐ด1,2(๐œ) (5.103) the termฮ“(2, ๐œ)disappears.

Another consequence of the proposition above is that we can easily invert the rรดle of A-elliptic MZVs and iterated integrals of Eisenstein series:

Corollary 5.5.2. For any๐‘›โ‰ฅ1and any1โ‰ค๐‘˜โ‰ค๐‘›โˆ’ 1we have ฮ“๐ฟ,0๐‘›,๐‘˜(๐œ) = (โˆ’1)๐‘›โˆ’๐‘˜โˆ’1(๐‘›โˆ’๐‘˜โˆ’ 1)!

(๐‘›โˆ’ 1)!

๐‘˜+1โˆ‘

๐‘–=2

B๐‘˜+1โˆ’๐‘–(2๐œ‹๐‘–)๐‘›โˆ’๐‘˜โˆ’๐‘–

(๐‘˜+ 1 โˆ’๐‘–)! ๐ด0๐‘›โˆ’๐‘˜,๐‘–(๐œ). (5.104) Proof. Note that๐‘’๐‘Œ โˆ’ 1 = ๐‘Œ +๐‘Œ2โˆ•2 + โ€ฆ, and this corresponds to the fact that length one elliptic MZVs are constant. This means that, if we want to invert equation (5.100), we need to rescale both sides, i.e. to multiply both sides by๐‘Œ. This yields

๐‘Œ

๐‘’๐‘Œ โˆ’ 1๎ˆญ0(๐‘‹, ๐‘Œ;๐œ) =๎ˆฑ0(๐‘‹, ๐‘Œ;๐œ), (5.105) and comparing term by term this equation we are done.

โ–ก

Now we want to deduce explicit formulae for B-elliptic MZVs of depth one. To do this, we need to know the behaviour ofฮ“๐ฟ๐‘›,๐‘˜(๐œ)under๐œ โ†ฆโˆ’1โˆ•๐œ. Let us introduce another piece of notation. For any operator ฮ› acting on a space of formal power series, we setฮ›(๐‘˜) โˆถ= ฮ›โ—ฆ โ‹ฏ โ—ฆฮ›

โŸโžโŸโžโŸ

๐‘˜

, and exp(ฮ›) โˆถ= โˆ‘

๐‘˜โ‰ฅ0ฮ›(๐‘˜)โˆ•๐‘˜!. Then we have the fol-lowing two lemmas.

Lemma 5.5.4.

๎ˆฒ0(๐‘‹, ๐‘Œ;๐œ) =๎ˆฑ0(๐‘‹+๐œ๐‘Œ , ๐‘Œ;๐œ) (5.106) Proof.By equation (5.95), we can write

๎ˆฒ0(๐‘‹, ๐‘Œ;๐œ) =โˆ‘

๐‘˜โ‰ฅ1

๐‘Œ๐‘˜โˆ’1 (๐‘˜โˆ’ 1)!

๐œ•๐‘˜โˆ’1

๐œ•๐‘‹๐‘˜โˆ’1โˆซ

๐‘–โˆž

๐œ

๐‘ง๐‘˜โˆ’1๎ˆณ0(๐‘‹, ๐‘ง)๐‘‘๐‘ง (5.107)

19One can easily get500digits in less than a second with PARI GP.

Since๐‘‘โˆซ[๐œ,๐‘–โˆž]๐”พ0๐‘˜(๐‘ง)๐‘‘๐‘ง= โˆ’๐”พ0๐‘˜(๐œ), repeatedly integrating by parts gives

โˆ‘

๐‘˜โ‰ฅ1

๐‘Œ๐‘˜โˆ’1 (๐‘˜โˆ’ 1)!

๐œ•๐‘˜โˆ’1

๐œ•๐‘‹๐‘˜โˆ’1 โˆซ

๐‘–โˆž

๐œ

๐‘ง๐‘˜โˆ’1๎ˆณ0(๐‘‹, ๐‘ง)๐‘‘๐‘ง=

= exp( ๐œ๐‘Œ ๐œ•

๐œ•๐‘‹ ) โˆ‘

๐‘˜โ‰ฅ1

๐‘Œ๐‘˜โˆ’1 (2๐œ‹๐‘–)๐‘˜โˆ’1

๐œ•๐‘˜โˆ’1

๐œ•๐‘‹๐‘˜โˆ’1 โˆซ[๐œ,๐‘–โˆž]๎ˆณ0(๐‘‹, ๐‘ง1)๐‘‘๐‘ง1๐”พ0๐‘‘๐‘ง2โ‹ฏ๐”พ0๐‘‘๐‘ง๐‘˜, (5.108) and this, as we have already seen in the proof of Proposition5.5.1, leads to the iden-tity

๎ˆฒ0(๐‘‹, ๐‘Œ;๐œ) = exp( ๐œ๐‘Œ ๐œ•

๐œ•๐‘‹ )

๎ˆฑ0(๐‘‹, ๐‘Œ;๐œ).

By Taylorโ€™s theoremexp( ๐‘Žd

dx

)๐‘“(๐‘ฅ) =๐‘“(๐‘ฅ+๐‘Ž). This concludes the proof.

โ–ก

By an abuse of notation, we denote by ๎ˆฒ0(๐‘‹, ๐‘Œ; โˆ’1โˆ•๐œ) the exponentially small (with respect to๐œ โ†’ ๐‘–โˆž) part of the function๎ˆฒ0(๐‘‹, ๐‘Œ; โˆ’1โˆ•๐œ).20 This will not create any confusion in what follows.

Lemma 5.5.5.

๎ˆฒ0(๐‘‹, ๐‘Œ; โˆ’1โˆ•๐œ) =๎ˆฒ0(๐‘Œ ,โˆ’๐‘‹;๐œ) (5.109) Proof.We have already seen that we can write

๎ˆฒ0(๐‘‹, ๐‘Œ;๐œ) =โˆ‘

๐‘˜โ‰ฅ1

๐‘Œ๐‘˜โˆ’1 (๐‘˜โˆ’ 1)!

๐œ•๐‘˜โˆ’1

๐œ•๐‘‹๐‘˜โˆ’1โˆซ

๐‘–โˆž

๐œ

๐‘ง๐‘˜โˆ’1๎ˆณ0(๐‘‹, ๐‘ง)๐‘‘๐‘ง.

Therefore, using the transformation properties of๎ˆณ, we find that the exponentially small part of๎ˆฒ0(๐‘‹, ๐‘Œ; โˆ’1โˆ•๐œ)is equal to

โˆ‘

๐‘˜โ‰ฅ1

(โˆ’1)๐‘˜โˆ’1๐‘Œ๐‘˜โˆ’1 (๐‘˜โˆ’ 1)!

๐œ•๐‘˜โˆ’1

๐œ•๐‘‹๐‘˜โˆ’1โˆซ

๐‘–โˆž

๐œ

๐‘ง1โˆ’๐‘˜๎ˆณ0(๐‘ง๐‘‹, ๐‘ง)๐‘‘๐‘ง.

Expanding this expression with respect to๐‘‹, and using that๐‘›+๐‘˜must be even, we

find โˆ‘

๐‘˜,๐‘›โ‰ฅ1

(โˆ’1)๐‘›โˆ’1(๐‘›+๐‘˜โˆ’ 1)!

(๐‘›โˆ’ 1)!(๐‘˜โˆ’ 1)! โˆซ

๐‘–โˆž

๐œ

๐‘ง๐‘›โˆ’1๐”พ0๐‘›+๐‘˜(๐‘ง)๐‘‘๐‘ง ๐‘Œ๐‘˜โˆ’1๐‘‹๐‘›โˆ’1. Comparing this expression with the definition of๎ˆฒconcludes the proof.

โ–ก

Comparing the coefficients of the identity in Lemma5.5.4gives Corollary 5.5.3. For each๐‘›, ๐‘— โ‰ฅ1we have

ฮ“๐‘…,0๐‘›+๐‘—,๐‘—(๐œ) =

โˆ‘๐‘—โˆ’1 ๐‘–=0

(โˆ’1)๐‘›+๐‘–โˆ’1(2๐œ‹๐‘–๐œ)๐‘–

๐‘–! ฮ“๐ฟ,0๐‘›+๐‘—,๐‘—โˆ’๐‘–(๐œ), (5.110)

ฮ“๐ฟ,0๐‘›+๐‘—,๐‘—(๐œ) =

โˆ‘๐‘—โˆ’1 ๐‘–=0

(โˆ’1)๐‘›+๐‘–โˆ’1(2๐œ‹๐‘–๐œ)๐‘–

๐‘–! ฮ“๐‘…,0๐‘›+๐‘—,๐‘—โˆ’๐‘–(๐œ). (5.111)

Moreover, Lemma5.5.5implies

20In general the latter yields some non-exponentially small term, as we will see later.

Corollary 5.5.4. For๐‘›, ๐‘— โ‰ฅ1,

ฮ“๐‘…,0๐‘›+๐‘—,๐‘—(โˆ’1โˆ•๐œ) = (โˆ’1)๐‘›โˆ’1(2๐œ‹๐‘–)๐‘—โˆ’๐‘›(๐‘›โˆ’ 1)!

(๐‘—โˆ’ 1)! ฮ“๐‘…,0๐‘›+๐‘—,๐‘›(๐œ) (5.112) These two facts together lead to

Corollary 5.5.5. Let๐‘›โ‰ฅ1and1โ‰ค๐‘— โ‰ค๐‘›โˆ’ 1. Then ฮ“๐‘…,0๐‘›,๐‘—(โˆ’1โˆ•๐œ) = (2๐œ‹๐‘–)๐‘—โˆ’1(๐‘›โˆ’ 1 โˆ’๐‘—)!

(๐‘—โˆ’ 1)!

โˆ‘๐‘›โˆ’๐‘— ๐‘–=1

(โˆ’1)๐‘–+๐‘—๐œ๐‘›โˆ’๐‘—โˆ’๐‘–

(๐‘›โˆ’๐‘—โˆ’๐‘–)!(2๐œ‹๐‘–)๐‘–โˆ’1ฮ“๐ฟ,0๐‘›,๐‘– (๐œ) (5.113) and

ฮ“๐ฟ,0๐‘›,๐‘—(โˆ’1โˆ•๐œ) = (2๐œ‹๐‘–)๐‘—โˆ’1

โˆ‘๐‘—โˆ’1 ๐‘–=0

(๐‘›โˆ’๐‘—+๐‘–โˆ’ 1)!

๐‘–!(๐‘—โˆ’๐‘–โˆ’ 1)!

๐‘›โˆ’๐‘—+๐‘–โˆ‘

๐‘˜=1

(โˆ’1)๐‘˜โˆ’1๐œ๐‘›โˆ’๐‘—โˆ’๐‘˜

(๐‘›โˆ’๐‘—+๐‘–โˆ’๐‘˜)!(2๐œ‹๐‘–)๐‘˜โˆ’1ฮ“๐ฟ,0๐‘›,๐‘˜(๐œ) (5.114) We are now ready to put all the pieces together. Let us consider

๐ต๐‘›,๐‘Ÿ(๐œ) =๐ต(๐‘›,0,โ€ฆ,0

โŸโŸโŸ

๐‘Ÿโˆ’1

;๐œ).

We write

๐ต๐‘›,๐‘Ÿ(๐œ) =๐ต๐‘›,๐‘Ÿโˆž(๐œ) +๐ต0๐‘›,๐‘Ÿ(๐œ),

meaning as always that๐ต๐‘›,๐‘Ÿโˆž(๐œ)denotes the first Laurent polynomials in the asymp-totic expansion of๐ต๐‘›,๐‘Ÿ(๐œ)(plus a logarithmic term, in case๐‘›= 1, cf. Remark5.5.3) and ๐ต๐‘›,๐‘Ÿ0 (๐œ)denotes the exponentially small part. Let us consider the generating function

๎ˆฎ0(๐‘‹, ๐‘Œ;๐œ) โˆถ= โˆ‘

๐‘›,๐‘Ÿโ‰ฅ1

๐ต0๐‘›,๐‘Ÿ(๐œ)

(2๐œ‹๐‘–)๐‘Ÿโˆ’1๐‘‹๐‘›โˆ’1๐‘Œ๐‘Ÿโˆ’1. Then we have

Theorem 5.5.6.

๎ˆฎ0(๐‘‹, ๐‘Œ;๐œ) = (๐‘’๐‘Œ โˆ’ 1)๎ˆฑ0(

โˆ’๐œ๐‘‹,โˆ’๐‘‹โˆ’ ๐‘Œ ๐œ;๐œ

)

. (5.115)

Proof.By Proposition5.5.1and Lemma5.5.4we have

๎ˆญ0(๐‘‹, ๐‘Œ; โˆ’1โˆ•๐œ) = (๐‘’๐‘Œ โˆ’ 1)๎ˆฑ0(๐‘‹, ๐‘Œ; โˆ’1โˆ•๐œ) = (๐‘’๐‘Œ โˆ’ 1)๎ˆฒ0( ๐‘‹+ ๐‘Œ

๐œ, ๐‘Œ; โˆ’1โˆ•๐œ )

, where in this case๎ˆฒ0(๐‘‹, ๐‘Œ; โˆ’1โˆ•๐œ)really means that we consider๎ˆฒ0(๐‘‹, ๐‘Œ;๐œ)and then we invert๐œ. Using Lemma5.5.5and again Lemma5.5.4we conclude that

๎ˆฎ0(๐‘‹, ๐‘Œ;๐œ) = (๐‘’๐‘Œ โˆ’ 1)๎ˆฒ0(

๐‘Œ ,โˆ’๐‘‹โˆ’๐‘Œ ๐œ;๐œ

)

= (๐‘’๐‘Œ โˆ’ 1)๎ˆฑ0(

โˆ’๐œ๐‘‹,โˆ’๐‘‹โˆ’๐‘Œ ๐œ;๐œ

) , where in this case๎ˆฒ0(๐‘‹, ๐‘Œ; โˆ’1โˆ•๐œ) was meant to be the exponentially small part of

๎ˆฒ0(๐‘‹, ๐‘Œ; โˆ’1โˆ•๐œ).

โ–ก

The consequence of this theorem is that we are now able to express B-elliptic MZVs of depth one in terms of iterated integrals of Eisenstein series, and therefore in terms of A-elliptic MZVs:

Corollary 5.5.6. For๐‘›, ๐‘Ÿโ‰ฅ1we have ๐ต๐‘›,๐‘Ÿ(๐œ) =๐ต๐‘›,๐‘Ÿโˆž(๐œ)+

(2๐œ‹๐‘–)๐‘Ÿโˆ’1 (๐‘›โˆ’ 1)!

โˆ‘๐‘Ÿโˆ’1 ๐‘—=1

(๐‘›+๐‘—โˆ’ 1)!

(๐‘Ÿโˆ’๐‘—)!

โˆ‘๐‘—โˆ’1 ๐‘–=0

(โˆ’1)๐‘—โˆ’๐‘–โˆ’1(๐‘›+๐‘–โˆ’ 1)!

๐‘–!(๐‘—โˆ’๐‘–โˆ’ 1)!

โˆ‘๐‘›+๐‘– ๐‘˜=1

(โˆ’1)๐‘˜โˆ’1๐œ๐‘›โˆ’๐‘˜

(2๐œ‹๐‘–)๐‘˜โˆ’1(๐‘›+๐‘–โˆ’๐‘˜)!ฮ“๐ฟ,0๐‘›+๐‘—,๐‘˜(๐œ), (5.116) and thus

๐ต๐‘›,๐‘Ÿ(๐œ) =๐ต๐‘›,๐‘Ÿโˆž(๐œ) + (โˆ’1)๐‘›โˆ’1(2๐œ‹๐‘–)๐‘Ÿโˆ’1 (๐‘›โˆ’ 1)!

โˆ‘๐‘Ÿโˆ’1 ๐‘—=1

1 (๐‘Ÿโˆ’๐‘—)!

โˆ‘๐‘—โˆ’1 ๐‘–=0

(โˆ’1)๐‘–(๐‘›+๐‘–โˆ’ 1)!

๐‘–!(๐‘—โˆ’๐‘–โˆ’ 1)! ร—

ร—

โˆ‘๐‘›+๐‘– ๐‘˜=1

(๐‘›+๐‘—โˆ’๐‘˜โˆ’ 1)!๐œ๐‘›โˆ’๐‘˜ (๐‘›+๐‘–โˆ’๐‘˜)!

๐‘˜+1โˆ‘

๐‘™=2

B๐‘˜+1โˆ’๐‘™

(๐‘˜+ 1 โˆ’๐‘™)!(2๐œ‹๐‘–)๐‘™โˆ’1๐ด0๐‘›+๐‘—โˆ’๐‘˜,๐‘™(๐œ). (5.117) Proof. One can prove the first statement either by comparing term by term the equation of Theorem5.5.6, or by using the corollaries of Proposition5.5.1, Lemma5.5.4 and Lemma5.5.5. The second statement follows from the first plus Corollary5.5.2.

โ–ก

In particular, one can see that the range of powers of ๐œ agrees with the range predicted by Theorem5.3.3. It is useful to write down the formulae given in the corollary, together with the explicit formula for the constant term, for the simplest case of length 2:

๐ต๐‘›,2(๐œ) = ๐ต๐‘›,2โˆž(๐œ) +

โˆ‘๐‘› ๐‘˜=1

(โˆ’1)๐‘˜โˆ’1๐‘›!๐œ๐‘›โˆ’๐‘˜

(๐‘›โˆ’๐‘˜)!(2๐œ‹๐‘–)๐‘˜โˆ’2ฮ“๐ฟ,0๐‘›+1,๐‘˜(๐œ)

= ๐ต๐‘›,2โˆž(๐œ) + (โˆ’1)๐‘›โˆ’1๐‘›!

โˆ‘๐‘› ๐‘˜=1

๐œ๐‘›โˆ’๐‘˜

โˆ‘๐‘˜+1 ๐‘™=2

B๐‘˜+1โˆ’๐‘™

(๐‘˜+ 1 โˆ’๐‘™)!(2๐œ‹๐‘–)๐‘™โˆ’2๐ด0๐‘›+1โˆ’๐‘˜,๐‘™(๐œ) The first non-trivial examples of B-elliptic MZVs (recall that in order to have interesting examples we need๐‘›+๐‘Ÿodd, and we prefer to avoid B-elliptic MZVs with log(๐œ)in the expansion) given by our construction are

๐ต3,2(๐œ) = โˆ’(2๐œ‹๐‘–)2

720 ๐œ3โˆ’ ๐œ(3)

2๐œ‹๐‘– โˆ’ 6๐œ(4) (2๐œ‹๐‘–)2

1

๐œ + 6๐œ‹๐‘–๐œ2ฮ“๐ฟ,04,1(๐œ) โˆ’ 6๐œฮ“๐ฟ,04,2(๐œ) + 3

๐œ‹๐‘–ฮ“๐ฟ,04,3(๐œ), ๐ต2,3(๐œ) = (2๐œ‹๐‘–)3

720 ๐œ2โˆ’๐œ‹๐‘–

2 ๐œ(2) โˆ’ 2๐œ(3)

๐œ โˆ’3๐œ(4) ๐œ‹๐‘–

1

๐œ2 โˆ’ 48๐œ‹2ฮ“๐ฟ,04,1(๐œ) โˆ’ 36๐œ‹๐‘–ฮ“๐ฟ,04,2(๐œ) +12

๐œ ฮ“๐ฟ,04,3(๐œ),

๐ต5,2(๐œ) = (2๐œ‹๐‘–)2

30240๐œ5โˆ’ ๐œ(5)

(2๐œ‹๐‘–)3 โˆ’ 10๐œ(6)

(2๐œ‹๐‘–)4๐œ + 10๐œ‹๐‘–๐œ4ฮ“๐ฟ,06,1(๐œ)

โˆ’ 20๐œ3ฮ“๐ฟ,06,2(๐œ) + 30

๐œ‹๐‘–๐œ2ฮ“๐ฟ,06,3(๐œ) โˆ’ 120๐œ

(2๐œ‹๐‘–)2ฮ“๐ฟ,06,4(๐œ) + 120

(2๐œ‹๐‘–)3ฮ“๐ฟ,06,5(๐œ),

๐ต4,3(๐œ) = โˆ’(2๐œ‹๐‘–)3 30240๐œ4โˆ’1

2 ๐œ(4)

2๐œ‹๐‘– โˆ’ 4๐œ(5)

(2๐œ‹๐‘–)2๐œ โˆ’ 20๐œ(6) (2๐œ‹๐‘–)3๐œ2

โˆ’ 40๐œ‹๐‘–๐œ2ฮ“๐ฟ,06,2(๐œ) + 120๐œฮ“๐ฟ,06,3(๐œ) โˆ’ 180

๐œ‹๐‘– ฮ“๐ฟ,06,4(๐œ) + 480

(2๐œ‹๐‘–)2๐œฮ“๐ฟ,06,5(๐œ),

๐ต3,4(๐œ) = โˆ’(2๐œ‹๐‘–)4

5040 ๐œ3โˆ’๐œ‹๐‘– ๐œ(3)

6 โˆ’ 3๐œ(4)

2๐œ โˆ’ 3๐œ(5)

๐œ‹๐‘–๐œ2 โˆ’ 20๐œ(6)

(2๐œ‹๐‘–)2๐œ3 +(2๐œ‹๐‘–)3๐œ2 2 ฮ“๐ฟ,04,1(๐œ)

โˆ’ (2๐œ‹๐‘–)2๐œฮ“๐ฟ,04,2(๐œ) + 2๐œ‹๐‘–ฮ“๐ฟ,04,3(๐œ) + 120๐œ‹๐‘–ฮ“๐ฟ,06,3(๐œ) โˆ’ 360

๐œ ฮ“๐ฟ,06,4(๐œ) + 360

๐œ‹๐‘–๐œ2ฮ“๐ฟ,06,5(๐œ),

๐ต2,5(๐œ) = (2๐œ‹๐‘–)5

5040 ๐œ2โˆ’ (2๐œ‹๐‘–)3๐œ(2)

24 โˆ’ (2๐œ‹๐‘–)2๐œ(3)

3๐œ โˆ’3๐œ‹๐‘– ๐œ(4)

๐œ2 โˆ’4๐œ(5)

๐œ3 โˆ’ 5๐œ(6) ๐œ‹๐‘–๐œ4

โˆ’ (2๐œ‹๐‘–)3ฮ“๐ฟ,04,2(๐œ) + 2(2๐œ‹๐‘–)2

๐œ ฮ“๐ฟ,04,3(๐œ) โˆ’ 240๐œ‹๐‘–

๐œ2 ฮ“๐ฟ,06,4(๐œ) + 480

๐œ3 ฮ“๐ฟ,06,5(๐œ).