• Keine Ergebnisse gefunden

N = { 1, 2, . . . }

naturalnumbers

N 0 = { 0, 1, 2, . . . }

naturalnumberswithzero

K, L

elds

K

algebrailosureof

K

K sep

separablelosureof

K

in

K

G K = Gal(K sep /K)

absoluteGaloisgroupof

K

Σ K

setofniteplaesof

K

K v

ompletionof

K

at

v

k v

residueeldof

K

at

v

C v = ˆ K v

theompletionofthealgebrailosureof

K v

I w

inertiagroupat

w ∈ Σ L \ { 0 }

foraeldExtension

L/K I K tame := π 1 tame (G m,K )

tameinertia groupasin Denition2.2.4

K v nr

maximalunramiedextension

A K , I K

adeleringof

K

andidelegroupof

K

primenumber

χ

onedimensional

-adiGaloisrepresentation

χ ℓ

ylotomiharater

1, −1

trivialandquadratirankonerepresentation

L χ

Kummersheafassoiatedto

χ

L

middleextensionsheafon

A 1 K

MC χ

middleonvolutionfuntorasin Denition3.1.2

MT L

middletensorprodutasin Denition3.1.6

T (K)

ategoryofspeial

Q

-sheavesasin Denition3.1.3

i : U  // A 1 K

inlusionofanopendensesubsetoftheaneline

R

ommutativeringwith

1

M (m × n, R) m

times

n

matriesoverthering

R

GL(V )

groupofinvertibleendomorphismsofthevetorspae

V A n K , G a,K , G m,K , GL n (K), SL n (K)

algebraigroups

O

n (K)

orthogonalgroup

SO n (K)

speialorthogonalgroup

Ω n (K)

derivedgroupof

SO n (K)

Sp n (K)

sympletigroup

G 2 (K)

asporadigroup

J n (λ)

uppertriangularJordanblokoflength

n

andeigenvalue

λ ι x

speialization mapto

x

(f. Setion 2.2)

H m,ℓ

speial

Q ℓ

-sheafonstrutedin Setion3.3

ρ m,ℓ : G K −→ GL m+1 (Q ) ℓ

-adiGaloisrepresentationonstrutedinSetion7.2

d

ρ m,ℓ : π 1 ´ et (A 1 Q \ { 0, 1 } ) −→ SO m+1 (F ℓ )

weight

0

representationof

π ´ et 1 (A 1 Q \ { 0, 1 } )

(seeSetion6.4)

oneptsandtheoremsloselyrelatedto Galoisrepresentations.

2.1 Galois Representations

Let

K

beaeldanddenoteanalgebrailosureby

K

. If

L/K

isaGaloisextension(notneessarily

nite), we getthe Galois group

Gal(L/K) := Aut K (L)

. The group is equipped with anatural

topology,theKrulltopology. Thisistheasebeause

Gal(L/K)

isatopologialgroupasprojetive

limitofthedisreteniteGaloisgroupsoftheniteGaloissubextensions. Thereforetheabsolute

Galoisgroup

G K := Gal(K sep /K)

isapronitegroup,where

K sep

denotestheseparablelosure

of

K

in

K

. We will regardall ourring algebraiextensions of

K

as subeldsof

K

. If

K

is a

perfeteld,thealgebraiandtheseparablelosureoinide.

For axed prime number

, wehavethe

-adiintegers

Z ℓ := lim

←− Z/ℓ n Z

and the eld of

-adi

rationalnumbers

Q ℓ := Quot(Z ℓ ) = Z ℓ [ 1 ]

,whihistheompletionof

Q

withrespettothe

-adi

disreteabsolute value. Thisvaluation extends uniquelyto thealgebrailosure

Q

. The

-adi

distanegivenbythisvaluationinduesfor

n ∈ N

atopologyon

M (n × n, Q )

. BesidetheZariski

topologyon

GL n (Q ℓ )

wegettherebyanotherstrutureastopologialgroup,whihwewillusein

thefollowingdenition. Thisyieldsanaturalontinuousationofthistopologial groupon

Q n

equipped with any norm, espeially the

-adi one. This onstrution of the

-adi topologyis

suitableforanynitedimensional

Q

-vetorspae

V

.

Forfurtherdetails onthefollowingdenitionssee[Ser68℄.

Denition2.1.1

Foraeld

K

an

-adiGaloisrepresentationisahomomorphism

ρ : G K −→ GL(V )

of topologial groups from the absolute Galois group of

K

to the general linear group of anite

dimensional

Q ℓ

-vetor spae

V

equipped with the

-adi topology. The dimension of

V

is alled

the rank of

ρ

.

This is the same as a

Q

-vetor spae

V

equipped with the

-adi topology and a ontinuous

G K

-operation. Tworepresentations

ρ, ρ : G K −→ GL(V )

areequivalent, if there exists alinear map

φ ∈ GL(V )

suhthat

φ −1 ◦ ρ(g) ◦ φ = ρ (g)

forall

g ∈ G K

.

An important example of an

-adi Galois representation of

G Q

of rank one is the ylotomi

harater

χ ℓ : G Q −→ GL 1 (Q ) = Q ×

. Morepreisely, itmapsto

Z ×

in thefollowingway: For

eah

n ∈ N

,wehavealookattheylotomiextension

Q(ζ ℓ n )

foraprimitive

n

-th root ofunity

ζ ℓ n

. Then

Gal(Q(ζ ℓ n )/Q) ∼ = (Z/ℓ n Z) ×

, whih anbehosenin suh away that it ts together

with theisomorphismfor smaller

n

. Independent of thehoies, weget aompatible systemof ontinuousgrouphomomorphismswhihgivesrisetotheharater.

Thisonstrutionanbegeneralizedtoaeld

K

withharateristiunequalto

.

One of the main properties of the Galois representations

ρ H m,ℓ

onstruted in Setion 3.3 and

Setion7.2istheexisteneofalongunipotentelementinitsimage.

Denition2.1.2

Wesay that arepresentation

ρ : G −→ GL(V )

for agroup

G

andan

n

-dimensional vetorspae

V

over a eld

K

has a longunipotent element, if there exists an element

g ∈ G

suh that the

Jordan normalform of

ρ(g)

is

J n (1)

over

K

,where

J n (1)

denotes a Jordanblokof length

n

to

the eigenvalue

1

.

For agood introdution to the oneptsof algebrainumber theory, have alook at [Neu99℄. If

K

is anumbereld,i.e. anite extension of

Q

, then

Σ K

denotes theset of nite plaes, whih

isthe set ofnormalizednon-arhimedeanvaluations of

K

. Weidentify

Σ K \ { 0 }

withthe setof

non-trivialprimeidealsof

O K

. For

v ∈ Σ K \ { 0 }

wehavetwoelds: theniteeld

k v := O K /v

ofharateristi

p v

andtheompletionviatheinduedmetri

K v := Quot(lim

←− ( O K /v n ))

,aseah

plaeorrespondstoanormalizeddisretevaluation.

Theadelering

A K

of

K

isdened as

where

A K,∞

is the produt of the ompletions of

K

aording to the valuation given by the

Arhimedean plaes and

Q ′

is the restritedprodut, i.e. almost all entries are in the ringsof

integers

O K v

. Theidelegroup

I K

isthegroupofunits

A × K

oftheadele ring.

For a nite Galois extension

L/K

and

w ∈ Σ L \ { 0 }

suh that

w | v

, i.e.

w ⊇ v O L

,

we obtain two anonial subgroups of the Galois group

Gal(L/K)

, the deomposition group

D w := { σ ∈ Gal(L/K) | σw = w }

and a normal subgroup of

D w

the inertia group

I w := { σ ∈ D w | σ(x) − x ∈ w ∀ x ∈ O L }

. Fixing anembedding of

K

in

K v

, we get anatural

embedding of

G K v

in

G K

, whih orrespondsto hoosinganite plae

w

in

K

extending

v

and

thereforexing

G K v

asaspeideompositiongroup

D w

. Setting

l w := O L /w

,wehaveashort

exatsequeneofnite groups

1 −→ I w −→ D w −→ Gal(l w /k v ) −→ 1.

Foraniteplae

w 6 = 0

of

L

thereisauniqueniteplae

v

of

K

,suhthat

w | v

. Theextension

L/K

isalledunramiedat

w

if

[L : K] = [l w : k v ]

. Inthisasewehave

I w = 1

. Foraniteplae

v 6 = 0

of

K

multiple nite plaes

w

of

L

mayexist,suh that

w | v

. Theeld extension

L/K

is

alledunramiedat

v

if

[L : K] = [l w : k v ]

foreahofthem(equivalentlyoneofthem,aswehave aGalois extension). Otherwisethe nite plaes are alled ramiedand for eah suh extension

thereisonlyanite numberofthem.

For a general eld

K

and

L

an algebrai extension,

L/K

is unramied at a non-arhimedean valuation

v

of

K

,if foreahnite eld extension

L /K

inside

L/K

and eah valuation

w

of

L

extending

v

,

l w | k v

isseparableand

[L : K] = [l w : k v ]

,otherwise

L/K

isalledramiedat

v

.

In the number eld ase,

Gal(l w /k v )

is a nite yli group generated by the Frobenius. If

w ∈ Σ L \ { 0 }

is unramied, wehave

D w ∼ = Gal(l w /k v )

and weantalk of a Frobenius element

in the deomposition group as well. For

v ∈ Σ K \ { 0 }

unramied and

w, w ∈ Σ L \ { 0 }

suh

that

w, w | v

, there is an element

σ ∈ Gal(L/K)

mapping one to the other, i.e.

σw = w

.

Thereforetheorrespondingdeomposition groupsare onjugated, i.e.

σD w σ −1 = D w

,aswell

astheFrobenius elements. Theotherwayaround,foronjugatesofFrobeniuselementswehave

orrespondingplaesof

L

.

If we generalize to an arbitrary algebraiGalois extension

L/K

, the set of nite plaes

Σ L

is

the projetive limit of the system of nite plaes of the nite subextensions of

L/K

. This is

denedviathefollowingonnetionmorphisms: wheneverwehaveasubextension

L/L 1 /L 2 /K

,

wemap

w 1 ∈ Σ L 1

to

w 2 ∈ Σ L 2

,where

w 2

is theuniqueplaesuhthat

w 1 | w 2

. Theinertiaand

deompositiongroupanbedened asprojetivelimitsin thesameway.

Denition2.1.3

For an

-adi Galois representation

ρ

of a number eld

K

, we say that

ρ

is unramied at

v ∈ Σ K \ { 0 }

,if

ρ(I w ) = 1

for anyvaluation

w

of

K sep

extending

v

.

Let

ρ

be unramied at

v ∈ Σ K \ { 0 }

, then the Frobenius element

Frob v,ρ

in the representation

ρ

at

v

is the onjugay lass in

GL(V )

of the images of the Frobenius element in

D w

for any

w ∈ Σ K sep \ { 0 }

extending

v

:

AstheFrobenius element

Frob v,ρ

isaonjugaylass,itsharateristipolynomial

f v,ρ (x) := det(1 · x − Frob v,ρ ) ∈ Q ℓ [x]

is well-dened. An

-adiGalois representationis rational (respetivelyintegral) ifat almost all nite plaes

v

itis unramied,i.e.

f v,ρ (x)

exists, andtheharateristipolynomialhasrational (respetivelyintegral)oeients.

We will keep to the language of Rihard Taylor(f. [BLGGT10℄), for systemsof

-adi Galois

representations.

Denition2.1.4

a) Let

ℓ, ℓ

be prime numbers. A rational

-adiGalois representation

ρ

andarational

-adi

Galois representation

ρ

of the same number eld

K

are ompatible at

v ∈ Σ K \ { 0 }

if

they are both unramied at

v

and the harateristi polynomials

f v,ρ (x) = f v,ρ (x) ∈ Q[x]

oinide.

b) A weakly ompatible system

(ρ ℓ ) ℓ

prime of Galois representations of a number eld

K

onsistsof afamily of rational, semi-simple

-adi Galois representations

ρ ℓ

of

K

for eah

prime number

andanite set

S ⊂ Σ K

,suhthat the following holds:

1. For

v ∈ Σ K \ S

and prime numbers

ℓ, ℓ

unequal to the harateristi of

k v

, the

representations

ρ ℓ , ρ ℓ

areompatibleat

v

.

2. For

v ∈ Σ K

and

equaltotheharateristi

p v

of

k v

,therepresentation

ρ ℓ

isdeRham

in

v

andrystallinein

v

if

v 6∈ S

(f. Denition2.4.8).

3. Foreahembedding

τ: K  // Q

the

τ

-Hodge-Tate numbersof

ρ ℓ

areindependentof

(f. Denition 2.4.9).

) A weakly ompatible system

(ρ ℓ ) ℓ

prime is alled irreduible if there is a set

P

of prime

numbers ofDirihlet density

1

,i.e.

s→1+ lim | log(s − 1) | −1 X

ℓ∈P

−s = 1,

suhthat for all

ℓ ∈ P

therepresentation

ρ ℓ

isirreduible.

It is also possibleto extend this denition by hoosing anumber eld

M

insteadof

Q

. Inthis

asethe familyis indexed bythe set ofnite plaes of

M

andharateristipolynomialsin the ring

M [x]

areallowed. Asthisis notneessaryforthiswork,weomitthis andrefertothemore

general[BLGGT10℄,Denition 1.1.

If

ρ = (ρ ℓ ) ℓ

primeisaweaklyompatiblesystemand

S ⊂ Σ K

theniteexeptionalset. Foranite

plaes

v ∈ Σ K \ S

theharateristipolynomials

f v,ρ ℓ (x)

oftheFrobeniuselementsoinidein

Q[x]

foralmostall

,whihwillbealled

f v,ρ (x)

. ThiswillbethekeyingredientinSetion7.1todene

an

L

-funtion foraspeialkindofweaklyompatible systemsof

-adiGaloisrepresentations.