• Keine Ergebnisse gefunden

Irreduibility of the mod- ℓ Representation

6.4 Irreduibility of the mod-

Representation

In this setion we have

K = Q

,

m ∈ N 0

even and

a prime number. Then we get the

lisse

Q ℓ

-sheaf

i H m,ℓ

of rank

m + 1

for

i : A 1 Q \ { 0, 1 }  // A 1 Q

and

H m,ℓ

like in Setion3.3.

By xing an

s ∈ A 1 Q \ { 0, 1 }

this orresponds to a ontinuous representation of rank

m + 1 ρ i H m,ℓ : π ´ 1 et (A 1 K \ { 0, 1 } ) −→ GL(( H m,ℓ ) s )

, whih fatorsthrough

Z ℓ

and respetsa symmetri

bilinearform. This representationanbetensoredwiththedeterminantasin Theorem3.3.2,to

obtainaontinuousrepresentation

ρ i H m,ℓ ⊗ det(ρ i H m,ℓ ) : π ´ et 1 (A 1 Q \ { 0, 1 } ) −→ GL(( H m,ℓ ) s ),

fatoring over

SL

and respeting a symmetri bilinear form. This representation is of weight

m

by Delignes' work (f. Theorem2.3.4), i.e. maps

Frob q

to

q m 2

. Then we get a weight

0

representationbytensoringwiththe

m

2

thpoweroftheylotomiharater

χ ℓ

. Nowwewillshow

thattheredutionmod

ℓ d

ρ m,ℓ := ρ i H m,ℓ ⊗ det(ρ i H m,ℓ )

⊗ χ m 2 : π 1 ´ et (A 1 Q \ { 0, 1 } ) −→ SO m+1 (F ℓ )

isirreduible foralmostall

. Thiswill leadusin Setion7.2 tothe fatthat

ρ m,ℓ

is irreduible

asaweaklyompatiblesystemofGaloisrepresentationsof

Q

. Forany

x ∈ A 1 Q \ { 0, 1 }

,wegetthe

speializationmap

ι x : π 1 ´ et ( { x } ) ∼ = G Q  // π ´ et 1 (A 1 Q \ { 0, 1 } )

asdened inSetion2.2.

Theorem6.4.1

Let

x ∈ A 1 Q \ { 0, 1 }

, suh that there exist odd prime numbers

p, q 6 = ℓ

satisfying

ν p (x) < 0

but

ℓ ∤ ν p (x)

and

ν q (x − 1) > 0

but

ℓ ∤ ν q (x − 1)

. Then the followingholds:

If

m ∈ N 0

evenand

m ≥ 12

then

Ω m+1 (F ℓ ) ⊆ im ( ρ d m,ℓ ◦ ι x )

foralmostallprimenumbers

,where

d

ρ m,ℓ ◦ ι x : G Q −→ SO m+1 (F ℓ )

isthe speialization at

x

.

If

m = 6

thenfor almostall

,wehave

im ( ρ d m,ℓ ◦ ι x ) = G 2 (F ℓ )

Proof: Wex

m ∈ N 0

,

x ∈ A 1 Q \ { 0, 1 }

asaboveanddene

H ℓ := im ( ρ d m,ℓ ◦ ι x )

.

Claim 1: Thegroup

H ℓ

ontains alongunipotent element and aunipotent element of dierent

non-trivialJordannormalform.

Let

g = (g 0 , g 1 , g ∞ )

betheimagesunder

ρ d m,ℓ

ofstandardgenerators

γ 0 , γ 1 , γ ∞ ∈ π top 1 (C \ { 0, 1 } )

satisfying

γ 0 γ 1 γ ∞ = 1

. Therepresentation

ρ d m,ℓ

isrepresentedbyaramiedétaleover

X Q −→ P 1 Q

with good redution outside

2

and

. It is ramied over

0, 1, ∞

with loal monodromy given

by

g 0 , g 1 , g ∞

respetively. Then by [Be91℄, Theorem1.2.

( ρ d m,ℓ ◦ ι x )(I p )

is generated (up to

onjugation)by

g νp (x)

and

( ρ d m,ℓ ◦ ι x )(I q )

by

g 1 ν q (x−1)

.

Bytheassumptions

ℓ ∤ ν p (x)

and

ℓ ∤ ν q (x − 1)

,weobtainin

H ℓ

elementsofJordannormalform

J 1 (1) ⊕ J 2 ( − 1) m 2 for m ≡ 0 mod 4, J 1 (1) m−1 2 ⊕ J 2 ( − 1) ⊕ J 1 ( − 1) m−1 2 for m ≡ 1 mod 4, J 3 (1) ⊕ J 2 (1) m 2 −1 for m ≡ 2 mod 4, J 2 (1) ⊕ J 1 (1) m−3 2 ⊕ J 1 ( − 1) m+1 2 for m ≡ 3 mod 4,

and

J m+1 (1).

For

ℓ 6 = 2

thesquareoftherstelementisunipotentandneitherlongunipotentnortrivial.

We want to show rst that

H ℓ

is irreduible for almost all prime numbers

and assume the

ontrary. Let

L

beaninniteset ofprimenumberssuh that

H ℓ

isreduible. Theontradition willbebyaonsequeneofClaim2-5.

Claim 2: Without loss of generality

H ℓ

xes the subspae

V ℓ = h e 1 , . . . , e n i ⊆ F m+1

for

n ∈ { 1, . . . , m }

,whihisindependentof

.

Weanassume

H ℓ

leavesapropernon-trivialsubspaeinvariant for

ℓ ∈ L

. Byonjugating the

longunipotentelementintoJordannormalform,thissubspaeisgeneratedbytherst

n

standard

basevetors

e 1 , . . . , e n

dependingon

. Weanassumebypossiblyshrinking

L

to asmaller,but

stillinniteset,that

n

isindependentof

.

Therefore

G Q

atsbytherepresentation

ρ d m,ℓ ◦ ι x

on

V ℓ

andtheompositionwiththedeterminant yieldforeahprimenumber

aonedimensional representation

θ ℓ : G Q −→ GL(V ℓ ) −→ det F ×

.

Claim 3: There exists a number eld

K

, suh that for an innite set

L

the one dimensional representation

θ ℓ | G K : G K −→ F ×

isunramiedoutsidetheset ofprimenumbersof

K

,whih lie

above

andmoreover

(θ ℓ | I ℓ ) ss

fatorsoverthetameinertiasubgroup

I Q tame

andisgivenby

Ψ i ℓ−1

,

where

i ∈ Z

isindependentof

.

Therestritionof

ρ d m,ℓ ◦ ι x

totheinertia group

I ℓ

and

V ℓ

fatorsbyProposition2.5.1a)through

where

dim W j

is the dimension of a simple subquotient

W j

and the indies

− i β α

run through

M = { d 1 , . . . , d s }

, theset ofindies where therystalline ltrationjumps. Theset

M

oinides

withthesetofindies,wheretheHodgeltrationoftheunderlyingmotivejumps[KW03℄. Hene

bytheequationaboveandbypossiblyshrinking

L

againtoasmaller,butstillinniteset, wean

assumethat

o

aswellasthe

i β α

isindependentof

.

Takingdeterminants,byCorollary2.5.2, weseethat thereisan

i ∈ Z

independentof

suhthat

det ◦ φ ss = θ ℓ | I tame Q

ℓ = Ψ i ℓ−1 .

By the motivi interpretation of

ρ d m,ℓ ◦ ι x

and by de Jong's and Rapoport-Zink's work (f. [Wor02℄,Proposition28), there exists a nite Galois extension

K/Q

, suh that

ρ d m,ℓ ◦ ι x

is

semistableforall

largeenough,i.e. theinertiasubgroups

I w ≤ G K

,

w ∤ ℓ

atunipotent. Hene,

θ ℓ : G K −→ F ×

isunramiedoutsidethesetofniteplaes of

O K

above

.

Claim4: Thefamily

(θ ℓ : G Q −→ F × ) ℓ∈L

istheredutionoftheprodutofaniteharaterand

somepoweroftheylotomiharater.

Let

m

bethemodulus of

K

whosesupport isthe emptyset. Asonlynitely manyniteplaes

areramiedintheniteextension

K/Q

,theimageof

U m |K ≤ I K

in

I Q

underthenormontains asubgroup

U m = U m|Q

, where

m

issomemodulusof

Q

.

Sine

θ ℓ | G K

isunramiedoutsidethesetofniteplaesof

K

above

,allomponentsof

U m

outside

aremappedto

1

under

θ ℓ ◦ cf −1

,where

cf : G ab Q −→ I Q /Q ×

isthelass eldisomorphism(this followsfromlasseld theory,asgivenin[Neu99℄,ChapterVandVI).

Thus itfollowsfrom

θ ℓ | I Q tame

ℓ = Ψ i ℓ−1

and

θ ℓ (cf −1 [a]) ≡ a −j mod ℓ

for all

a ∈ U m

. Moreoverby

Corollary6.2.3,there existsanumbereld

E

,aniteharater

ǫ : G Q −→ E ×

andan integer

k

suhthat

θ ℓ = ǫ · χ k .

Claim5: Thisisaontraditiontotheweight

0

ondition.

Let

r

beaprimenumberforwhihtherepresentations

ρ d m,ℓ ◦ ι x

for

ℓ ∈ L

,areunramied(wean

assumethat suhaprime numberexistsbydeleting

r

from

L

ifneessary). Byshrinking

L

toa

stillinniteset,wehave

The Frobenius

Frob p

normalizes the inertia group

I p

, whih is generated by

J m+1 (1)

, and by

[GR05℄,Corollaire5.3,XIIIwehave:

F (p) · J m+1 (1) · F(p) −1 = J m+1 (1) p

whihhenehastobeof theform

F(p) =

(f. Remark5.4.4). Therestritionto

V ℓ

oftheredutionmodulo

hashenedeterminant

λ 1 (p) · λ 2 (p) · . . . · λ n (p) = p m 2 · p m 2 −1 · . . . · p m 2 −n+1 = p j

for

j ∈ N

forall

. Sine

L

is innitethisfores for

r = p

theontradition

p j = ζ

. Thereforefor

almostall

,

ρ d m,ℓ ◦ ι x

isirreduible.

Claim6: For

m ≥ 12

eventhegroup

H ℓ

ontainsthegroup

Ω m+1 (F ℓ )

WeonludebyClaim1andbytheontraditionin Claim5that

H ℓ

isanirreduible subgroup

of

SO m+1 (F ℓ )

, whih by assumption has a longunipotent element and a unipotent element of

dierent non-trivialJordananonial form. Welaim thatthis implies that foralmost all

,we

have

Ω m+1 (F ℓ ) ⊆ H ℓ

. Forthis,weusethelassiationofnitesimplegroups.

If

H ℓ

is ontainedin amaximal subgroup

H

of

Ω m+1 (F ℓ )

. Then

H

is either anelementof

C

or

an element of

S

, both dened in Setion 6.3. Subgroups in the olletion

C

an be exluded

by the irreduibility and presene of the long unipotent element, sine we remark, that the

tensorprodutof twonon-trivialunipotentelementsis neverlongunipotent,if

islargeenough

(f.[MV04℄,Theorem 1).

Henewehave

H ∈ S

and,bythedenitionof

S

,thegroup

H

ontainsasimplenormalsubgroup

N

atingabsolutelyirreduible. If

islargeenough,sporadiandalternatinggroupsannotour,

duetothepreseneoflongunipotentof order

. Itisknownthattheouterautomorphismgroup ofagroupofLietypeis theompositionof adiagonalautomorphism, agraphautomorphismof

theDynkin diagram and aFrobenius automorphism (f. [Car85℄). Hene if

is largeompared

to

n

thenweanassume,that theorderofthegroupisprimeto

. Therefore

N

ontainsalong

unipotent element, as well as another non-trivial unipotent element of dierent Jordan normal

form. Thereforewehavearepresentationof groupsofLietype. Thefollowingasesanour:

a)

ℓ ∤ | N |

: in thisase,again thepreseneofthe unipotentelement impliesthatthe

N

isnot

ofthis typeif

islargeenough.

b) ross harateristi, i.e.

ℓ | | N |

but is not the dening harateristi: the main result [LS74℄,Theorem,givesalowerboundonthedegreeofaprojetiveirreduiblerepresentation

overaeldofharateristidierentfromthedeningone. Asthisboundgrowsinallases

with

,if

islargeenoughthisyieldaontradition.

)

H

isasimplegroupofLie typeofdening harateristi

: WeonludebyLemma 6.3.5.

Claim7: For

m = 6

thegroup

H ℓ

ontainsthegroup

G 2 (F ℓ )

Same arguments as in Claim 1-5 apply and we derive irreduibility mod

for almost all prime

numbers

. We havethe following lassiation of maximal subgroups of

G 2 (F ℓ n )

for

ℓ 6 = 2, 3

[Kle88℄,TheoremA:

type onditions

P a

paraboli

P b

paraboli

C G 2 (F ℓn ) (s 2 )

involutionentralizer

I n = 1

K +

reduible

K −

reduible

C G 2 (F ℓn ) (φ α ) ℓ n = q α 0

,

α

prime

PGL 2 (F ℓ n ) ℓ ≥ 7, ℓ n ≥ 11

PSL 2 (F 8 ) ℓ ≥ 5

,

F = F ℓ [ω], ω 3 − 3ω + 1 = 0 PSL 2 (F 13 ) ℓ 6 = 13

,

F = F ℓ [ √

13]

G 2 (F 2 ) ℓ n = ℓ ≥ 5

J 1 ℓ n = 11

Table6.2:Themaximalsubgroupsof

G 2 (F ℓ n )

for

ℓ 6 = 2, 3

In the notation of Kleidman, we have

I

a non-split group extension of

F 3 2

with

PSL 3 (F 2 )

and

K + , K − , P a , P b

asis Setion 1.5 and 2 of [Kle88℄. Using the samearguments asabove, werule

outthemaximalsubgroupslistedinTable6.2 andonludethat

H ℓ = G 2 (F ℓ )

.

7.1 Langlands Correspondene

In this hapter we prove that ertain speializations of the sheaves under onsideration are

potentiallyautomorphi. WeskeththemainideasbehindautomorphyofGaloisrepresentations.

Fordetailsonthefollowingonstrutionssee[Bum97℄,Chapter3.

Let

K

beanumbereldand

A K

asbeforetheadeleringof

K

. Thespaeofuspidalautomorphi

funtionsonsists ofomplexvaluedfuntionson

GL n ( A K ) = GL n

whihare notinduedfrom paraboli subgroups (i.e. integralsof theform

R

U(K)\U(A K )

f (ug)

d

u

vanish for all unipotent radials

U

of all proper paraboli subgroups) and satisfy ertain

growth onditions ([JL70℄,Denition10.2). This spae beomes a

GL n ( A K )

-

H n (K)

bialgebra, where

H n (K)

denotes the Heke algebra onsisting of funtions with ompat

support ating via onvolution. Both ations indue one omplex representation and

both are losely related in the following manner. Any irreduible subrepresentation

π = Q

v|∞

π v × Q

v∈Σ v \{0}

π v

of

GL n ( A K )

orrespondsto anirreduible subrepresentation of

H n (K)

(see[Bum97℄, Proposition3.4.4and[Bum97℄, Proposition3.4.8).

Here

π

is alled unramiedin

v ∈ Σ K \ { 0 }

or

π v

is alled unramiedif

π v (GL n ( O K v ))

xes a

onedimensional omplexsubspae. Foreah

v 6∈ S

, where

S

is aertainnite setof non-trivial nite plaes of

K

, the Satake orrespondene is a bijetion between the lasses of equivalent unramied irreduible representations

π v

and semi-simple onjugay lasses

A π v

in

GL n v (C)

([Gro98℄,Proposition 6.4). Therefore

π v

is uniquely determined by the eigenvalues of

A π v

, a

setofomplexnumbers

{ α 1,v , . . . , α n v ,v }

,alledtheSatake

v

-parameters. Therestritedanalyti

where

p v

istheharateristioftheresidueeld

k v

asbefore. For

v ∈ S

thedenitionof

L v (π, s)

isnotsostraightforward,butanbeobtainedbytheloalLanglandsorrespondene[HT01℄and

[Hen00℄. Itisknownthattheseanalyti

L

-funtionssatisfyfavorablepropertieslikemeromorphi

(mostlyevenholomorphi)ontinuationtothewholeomplexplaneandfulllfuntionalequations

et..

On the other hand, for any irreduible, weakly ompatible system

ρ = (ρ ℓ ) ℓ

prime of Galois

representations

ρ ℓ : G K −→ GL(V ℓ )

(see Denition2.1.4), we an also dene the restrited

L

-funtionof

ρ

by

where

n

istherankfortherepresentationand

f v,ρ ℓ (x) ∈ Q[x] ⊂ Q [x]

theharateristipolynomial oftheFrobenius(see page22)for

v | ℓ

. Stritlyspeaking

Frob v,ρ ℓ

isnotwell-dened andshould

beseenassymbolfortheverylastprodutontheright.

Inthease

v ∈ S

,wehaveapreimageoftheFrobeniusinthedeompositiongroupforeahelement of the inertia group

I v := lim

Let

ρ = (ρ ℓ ) ℓ

prime be an irreduible, weakly ompatible system of

-adi representations of a number eld

K

, then

ρ

is alled automorphi, if there exists an irreduible omplex subrepresentation

π

of

GL n ( A K )

,suhthat

L(ρ, s) = L(π, s).

Inthis ase, wesay

L(ρ, s)

isautomorphias well.

Ifthere isanite Galoisextension

L | K

suhthat therestrition

(ρ ℓ | G L ) ℓ

prime isautomorphi,

ρ

isalledpotentiallyautomorphi.

An important onjeture whih is apart ofthe famous Langlandsprogram [Lan79℄, statesthat

anyirreduibleuspidalsystemofGaloisrepresentationsisautomorphi.