• Keine Ergebnisse gefunden

[1] Gerd Herold und Mitarbeiter „ Innere Medizin 2012“, Herold- Verlag 2011, ISBN-13: 978-3981466010.

[2] Dignass A et al. „Aktualisierte Leitlinie zur Diagnostik und Therapie der Colitis ulcerosa 2011– Ergebnisse einer Evidenzbasierten Konsensuskonferenz“,

AWMF-Registriernummer: 021/009, Z Gastroenterol 2011 49:1276–1341.

[3] Dmitry V. Ostanin, Jianxiong Bao, Iurii Koboziev, Laura Gray, Sherry A. Robinson - Jackson, Melissa Kosloski-Davidson, V. Hugh Price and Matthew B. Grisham „T- cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade”, Am J Physiol Gastrointest Liver Physiol 2008 296:G135-G146.

[4] Laura P. Hale, Paula K. Greer „A Novel Murine Model of Inflammatory Bowel Disease and Inflammation-Associated Colon Cancer with Ulcerative Colitis-Like Features”, PLoS ONE 2012 7:e41797.

[5] Arthur Kaser, Sebastian Zeissig, Richard S. Blumberg „ Inflammatory Bowel Disease”, Annu. Rev. Immunol 2010 28:573-621.

[6] Kucharzik T1, Maaser C, Lügering A, Kagnoff M, Mayer L, Targan S, Domschke W.

„Recent understanding of IBD pathogenesis: implications for future therapies”, Inflam Bowel Dis 2006 12:1068-1083.

[7] Michael Scharl, Gerhard Rogler „ Inflammatory bowel disease pathogenesis: what is new?”, Curr Opin Gastroenterol 2012 28:301-309.

[8] Carles Ubeda, Eric G. Pamer „ Antibiotics, microbiota, and immune defense“, Trends in Immunol 2012 33:459-466.

[9] Kenneth M. Murphy, Paul Travers, Mark Walport „Janeway´s Immunobiology”, Taylor

& Francis Ltd 2008, ISBN: 978-0815341239.

[10] Weiping Zou & Nicholas P. Restifo „Th17- cells in tumor immunity and immunotherapy“, Nature Reviews Immunology 2010 10:248-256.

[11] Thomas Korn, Estelle Bettelli, Mohamed Oukka, Vijay K. Kuchroo „ IL-17 and Th17 Cells”, Annu. Rev. Immunol. 2009 27:485-517

[12] Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA, Sobel RA, Regev A, Kuchroo „ Induction and molecular signature of pathogenic Th17 cells”, Nature Immunology 2012 13:991-999

[13]Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S.

„Phenotypic and functional features of human Th17 cells”, J Exp Med 2007 204:1849-1861.

Seite 65 [14]Stassen M, Fondel S, Bopp T, Richter C, Müller C, Kubach J, Becker C, Knop J, Enk AH,

Schmitt S, Schmitt E, Jonuleit H. „Human CD25+ regulatory T cells: two subsets defined by the integrins alpha 4 beta 7 or alpha 4 beta 1 confer distinct suppressive properties upon CD4+ T helper cells”, Eur J Immunol. 2004 34:1303-1311

[15] Leppkes M1, Becker C, Ivanov II, Hirth S, Wirtz S, Neufert C, Pouly S, Murphy AJ, Valenzuela DM, Yancopoulos GD, Becher B, Littman DR, Neurath MF. „ RORγ-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F”, Gastroenterol. 2009 136:257-267

[16] Abraham C, Cho JH. „ IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease”, Annu Rev Med. 2009 60:97-110.

[17] Veldhoen M1, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. „ TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells”, Immunity 2006 24:179-189.

[18] Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK

„Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells”, Nature 2006 441:235-238.

[19] Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT „ Transforming growth factor-beta induces

development of the TH17 lineage”, Nature 2006 441:231-234.

[20] Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. „ Interleukins 1β and 6 but not transforming growth factor-beta are essential for the differentiation of

interleukin 17-producing human T helper cells”, Nat Immunol 2007 8:942-949.

[21] Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal Malefyt R. „ Development, cytokine profile and function of human

interleukin 17-producing helper T cells”, Nat Immunol 2007 8:950-957.

[22] McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, McClanahan TK, O'Shea JJ, Cua DJ. „The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo”, Nat Immunol 2009 10:314-324.

[23]Peters A, Lee Y, Kuchroo VK. „ The many faces of Th17 cells”, Curr Opin Immunol 2011 23:702-706.

[24]Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, Powrie F. „ Interleukin-23 drives intestinal inflammation through direct activity on T cells”, Immunity 2010 33:279-288.

[25]McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ. „ TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology”, J Immunol 2008 181:8559-8567.

Seite 66 [26] Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC,

Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. „ Induction of intestinal Th17 cells by segmented filamentous bacteria”,Cell 2009 139:485-498.

[27]Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N. „ The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses”, Immunity 2009 31:677-689.

[28]Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR.

„The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells”, Cell 2006 126:1121-1133.

[29]Kanai T, Mikami Y, Sujino T, Hisamatsu T, Hibi T. „ RORγt-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation“, Nat Rev 20125:240-247.

[30]Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y. „ IL-17 plays an important role in the development of experimental autoimmune

encephalomyelitis”, J Immunol 2006 177:566-573.

[31]Hofstetter HH, Ibrahim SM, Koczan D, Kruse N, Weishaupt A, Toyka KV, Gold R.

„Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis”, Cell Immunol 2005 237:123-130.

[32]Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y. „ Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice”, Clin Immunol 2004 110:55-62.

[33]Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z, Dong C. „ Regulation of inflammatory responses by IL-17F”, J Exp Med 2008 205:1063-1075.

[34]Maxwell JR, Zhang Y, Brown WA, Smith CL, Byrne FR, Fiorino M, Stevens E, Bigler J, Davis JA, Rottman JB, Budelsky AL, Symons A, Towne JE. ,,Differential Roles for Interleukin-23 and Interleukin-17 in Intestinal Immunoregulation”, Immunity 2015 43:739-750.

[35]Jacob S. Lee, Cristina M. Tato, Barbara Joyce-Shaikh, Muhammet F. Gulen, Corinne Cayatte, Yi Chen, Wendy M. Blumenschein, Michael Judo, Gulesi Ayanoglu, Terrill K.

McClanahan, Xiaoxia Li, and Daniel J. Cua. ,, Interleukin-23-Independent IL-17

Production Regulates Intestinal Epithelial Permeability”, Immunity 2015 43: 727–738.

[36] Natasha Whibley and Sarah L. Gaffen. ,,Gut-Busters: IL-17 Ain’t Afraid of No IL-23”, Immunity 2015 43.

[37] Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. „Natural and induced CD4+CD25+

cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10”, J Immunol 2004 172:5213-5221.

Seite 67 [38]Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS,

Wunderlich FT, Brüning JC, Müller W, Rudensky AY. „Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation”, Immunity 2011 34:566-578.

[39]Hong K, Zhang Y, Guo Y, Xie J, Wang J, He X, Lu N, Bai A. „ All-trans retinoic acid attenuates experimental colitis through inhibition of NF-κB signaling”, Immunol Lett 2014 162:34-40.

[40]Reichenbach H, Hofle, G. „Biologically active secondary metabolites from myxobacteria", Biotechnol Adv 1993 11:219-277.

[41]Gerth K, Bedorf N, Irschik H, Höfle G, Reichenbach H.The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1 alpha: fermentation, isolation, biological properties”, J Antibiot 1994 47:23-31.

[42]Lampky JR. „Distribution of Sorangium cellulosum”,Appl Microbiol 1971 22:937-938.

[43]Pradella S, Hans A, Spröer C, Reichenbach H, Gerth K, Beyer S.„Characterization, genome size and genetic manipulation of the myxobacerium Sorangium cellulosum So ce56", Arch Microbiol 2002 178: 484–494.

[44]Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, Sandouk A, Hesse C, Castro CN, Bähre H, Tschirner SK, Gorinski N, Gohmert M, Mayer CT, Huehn J, Ponimaskin E, Abraham WR, Müller R, Lochner M, Sparwasser T. „ De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells”,Nat Med 2014 20:1327-1333.

[45]Jump DB, Torres-Gonzalez M, Olson LK. „ Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation”, Biochem Pharmacol 2011 81:649-660.

[46]Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, Swinnen JV. „ Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells”, Cancer Res 2007 67:8180-8187.

[47]Mizoguchi A, Mizoguchi E. „ Animal models of IBD: linkage to human disease”, Curr Opin Pharmacol 2010 10:578-587.

[48]Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. „ RAG-1-deficient mice have no mature B and T lymphocytes”, Cell 1992 68:869-77.

[49] Ostanin DV, Bao J, Koboziev I, Gray L, Robinson-Jackson SA, Kosloski-Davidson M, Price VH, Grisham MB. „ T cell transfer model of chronic colitis: concepts,

considerations, and tricks of the trade”, Am J Physiol Gastrointest Liver Physiol 2009 296:G135-46.

[50]Martin B, Banz A, Bienvenu B, Cordier C, Dautigny N, Bécourt C, Lucas B. „ Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo”, J Immunol 2004 172:3391-3398.

Seite 68 [51]Round JL1, Mazmanian SK. „ The gut microbiota shapes intestinal immune responses

during health and disease”, Nat Rev Immunol 2009 9:313-23.

[52]Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. „ A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice”, Gastroenterology 1990 98:694-702.

[53]Ni J, Chen SF, Hollander D. „Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes”, Gut 1996 39:234-241.

[54]Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. „ Dextran sulfate sodium (DSS)-induced colitis in mice”, Curr Protoc Immunol 2014 104: Unit-15.25.

[55]Van Praet JT, Donovan E, Vanassche I, Drennan MB, Windels F, Dendooven A, Allais L, Cuvelier CA, van de Loo F, Norris PS, Kruglov AA, Nedospasov SA, Rabot S, Tito R, Raes J, Gaboriau-Routhiau V, Cerf-Bensussan N, Van de Wiele T, Eberl G, Ware CF, Elewaut D. „Commensal microbiota influence systemic autoimmune responses”, EMBO J 2015 34:466-474.

[56] Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe L, Roers A, Henderson WR Jr, Muller W, Rudensky AY. ,, Regulatory T cell-derived

interleukin-10 limits inflammation at environmental interfaces”, Immunity 2008 28:546-558.

[57]Astier AL1, Meiffren G, Freeman S, Hafler DA. ,,Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis”, J Clin Invest. 2006 116:3252-3257.

[58]McGovern JL, Nguyen DX, Notley CA ,, Th17 cells are restrained by Treg cells via the inhibition of interleukin-6 in patients with rheumatoid arthritis responding to anti-tumor necrosis factor antibody therapy”, Arthritis Rheum 2012 64:3129-3138.

[59] Gibaldi M, Boyes RN, Feldman S. ,,Influence of first-pass effect on availability of drugs on oral administration”, J Pharm Sci. 1971 60:1338-1340.

[60] Olsen AM1, Eisenberg BL, Kuemmerle NB, Flanagan AJ, Morganelli PM, Lombardo PS, Swinnen JV, Kinlaw WB. ,, Fatty acid synthesis is a therapeutic target in human

liposarcoma”, Int J Oncol. 2010 36:1309-1314.

[61]Cris S Constantinescu, Nasr Farooqi, Kate O'Brien, and Bruno Gran ,, Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS)”, Br J Pharmacol. 2011 164: 1079–1106.

[62]Ben-Nun A, Mendel I, Bakimer R, Fridkis-Hareli M, Teitelbaum D, Arnon R, Sela M, Kerlero de Rosbo N. ,, The autoimmune reactivity to myelin oligodendrocyte

glycoprotein (MOG) in multiple sclerosis is potentially pathogenic: effect of copolymer 1 on MOG-induced disease, J Neurol. 1996 243:14-22.

[63] Kos CH. ,,Cre/loxP system for generating tissue-specific knockout mouse models”, Nutr Rev 2004 62:243-246.

Seite 69 [64] Siegal ML, Hartl DL. ,, Transgene Coplacement and high efficiency site-specific

recombination with the Cre/loxP system in Drosophila”, Genetics 1996 144:715-726.

[65]Abu-Elheiga L1, Matzuk MM, Kordari P, Oh W, Shaikenov T, Gu Z, Wakil SJ. ,, Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal”, PNAS 2005 102:12011-12016.

[66]Mao J1, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikenov TE, Kordari P, Chirala SS, Heird WC, Wakil SJ. ,, Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis”, Proc Natl Acad Sci U S A 2006 May 103:8552-8557.

[67] Mao J1, Yang T, Gu Z, Heird WC, Finegold MJ, Lee B, Wakil SJ. ,, aP2-Cre-mediated inactivation of acetyl-CoAcarboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues”,PNAS 2009 106:17576-17581.

Seite 70