• Keine Ergebnisse gefunden

Referenzen

1. Rall TW, Sutherland EW. Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem. 1958;232(2):1065-76.

2. Seifert R, Schneider E, Bähre H. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther. 2015;148:154-84.

3. Berman H, Ten Eyck L, Goodsell D, Haste N, Kornev A, Taylor S. The cAMP binding domain:

an ancient signaling module. Proc Natl Acad Sci U S A. 2005;102(1):45-50.

4. Sadana R, Dessauer C. Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals. 2009;17(1):5-22.

5. Hacker BM, Tomlinson JE, Wayman GA, Sultana R, Chan G, Villacres E, et al. Cloning, chromosomal mapping, and regulatory properties of the human type 9 adenylyl cyclase (ADCY9). Genomics. 1998;50(1):97-104.

6. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, et al. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science. 2000;289(5479):625-8.

7. Beste K, Burhenne H, Kaever V, Stasch J, Seifert R. Nucleotidyl cyclase activity of soluble guanylyl cyclase a1ß1. Biochemistry. 2012;51(1):194-204.

8. Brostrom CO, Corbin JD, King CA, Krebs EG. Interaction of the subunits of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of muscle. Proc Natl Acad Sci U S A.

1971;68(10):2444-7.

9. Wolter S, Golombek M, Seifert R. Differential activation of cAMP- and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem Biophys Res Commun.

2011;415(4):563-6.

10. VanSchouwen B, Selvaratnam R, Giri R, Lorenz R, Herberg F, Kim C, et al. Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG). J Biol Chem. 2015;290(48):28631-41.

11. Gloerich M, Bos J. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 2010;50:355-75.

12. Roscioni S, Elzinga CRS, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4-6):345-57.

13. Ulens C, Siegelbaum S. Regulation of hyperpolarization-activated HCN channels by cAMP through a gating switch in binding domain symmetry. Neuron. 2003;40(5):959-70.

14. Biel M. Cyclic nucleotide-regulated cation channels. J Biol Chem. 2009;284(14):9017-21.

15. Kannan N, Wu J, Anand G, Yooseph S, Neuwald A, Venter JC, et al. Evolution of allostery in the cyclic nucleotide binding module. Genome Biol. 2007;8(12):R264.

74 16. Bender A, Beavo J. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58(3):488-520.

17. Wielinga P, van der Heijden I, Reid G, Beijnen J, Wijnholds J, Borst P. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J Biol Chem.

2003;278(20):17664-71.

18. Guo Y, Kotova E, Chen Z, Lee K, Hopper Borge E, Belinsky M, et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2',3'-dideoxycytidine and 9'-(2'-phosphonylmethoxyethyl)adenine. J Biol Chem. 2003;278(32):29509-14.

19. Jackson E, Raghvendra D. The extracellular cyclic AMP-adenosine pathway in renal physiology. Annu Rev Physiol. 2004;66:571-99.

20. Gancedo J. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc. 2013;88(3):645-68.

21. Hewer R, Sala Newby G, Wu Y, Newby A, Bond M. PKA and Epac synergistically inhibit smooth muscle cell proliferation. J Mol Cell Cardiol. 2011;50(1):87-98.

22. DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature. 1991;351(6322):145-7.

23. Osajima A, Okazaki M, Kato H, Anai H, Tsuda Y, Segawa K, et al. Clinical significance of natriuretic peptides and cyclic GMP in hemodialysis patients with coronary artery disease. Am J Nephrol. 2001;21(2):112-9.

24. Huang CL, Ives HE, Cogan MG. In vivo evidence that cGMP is the second messenger for atrial natriuretic factor. Proc Natl Acad Sci U S A. 1986;83(20):8015-8.

25. Kuhn M. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res. 2003;93(8):700-9.

26. Gao Y. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling. J Cardiovasc Pharmacol. 2016;67(5):367-72.

27. Cary SPL, Winger J, Derbyshire E, Marletta M. Nitric oxide signaling: no longer simply on or off. Trends Biochem Sci. 2006;31(4):231-9.

28. Chen C, Watson G, Zhao L. Cyclic guanosine monophosphate signalling pathway in pulmonary arterial hypertension. Vascul Pharmacol. 2013;58(3):211-8.

29. Potter L. Guanylyl cyclase structure, function and regulation. Cell Signal.

2011;23(12):1921-6.

30. Hasan A, Danker K, Wolter S, Bähre H, Kaever V, Seifert R. Soluble adenylyl cyclase accounts for high basal cCMP and cUMP concentrations in HEK293 and B103 cells. Biochem Biophys Res Commun. 2014;448(2):236-40.

31. Vaandrager AB, de Jonge HR. Signalling by cGMP-dependent protein kinases. Mol Cell Biochem. 1996;157(1-2):23-30.

75 32. Hofmann F. The biology of cyclic GMP-dependent protein kinases. J Biol Chem.

2005;280(1):1-4.

33. Miyazawa T, Ogawa Y, Chusho H, Yasoda A, Tamura N, Komatsu Y, et al. Cyclic GMP-dependent protein kinase II plays a critical role in C-type natriuretic peptide-mediated endochondral ossification. Endocrinology. 2002;143(9):3604-10.

34. Cropp C, Komori T, Shima J, Urban T, Yee S, More S, et al. Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP. Mol Pharmacol. 2008;73(4):1151-8.

35. Ghofrani H, Galiè N, Grimminger F, Grünig E, Humbert M, Jing Z, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(4):330-40.

36. Ghofrani H, Humbert M, Langleben D, Schermuly R, Stasch J, Wilkins M, et al. Riociguat:

Mode of action and clinical development in pulmonary hypertension. Chest. 2016;0012-3692(16):49111-7.

37. Salloum F, Das A, Samidurai A, Hoke N, Chau V, Ockaili R, et al. Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide. Am J Physiol Heart Circ Physiol. 2012;302(6):H1347-54.

38. Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A. Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci U S A. 2007;104(30):12312-7.

39. Newton RP, Salih SG, Salvage BJ, Kingston EE. Extraction, purification and identification of cytidine 3',5'-cyclic monophosphate from rat tissues. Biochem J. 1984;221(3):665-73.

40. Newton RP, Kingston EE, Hakeem NA, Salih SG, Beynon JH, Moyse CD. Extraction, purification, identification and metabolism of 3',5'-cyclic UMP, 3',5'-cyclic IMP and 3',5'-cyclic dTMP from rat tissues. Biochem J. 1986;236(2):431-9.

41. Beste K, Spangler C, Burhenne H, Koch K, Shen Y, Tang W, et al. Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor. PLoS ONE. 2013;8(7):e70223.

42. Bähre H, Danker K, Stasch J, Kaever V, Seifert R. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells. Biochem Biophys Res Commun. 2014;443(4):1195-9.

43. Bähre H, Hartwig C, Munder A, Wolter S, Stelzer T, Schirmer B, et al. cCMP and cUMP occur in vivo. Biochem Biophys Res Commun. 2015;460(4):909-14.

44. Bloch A, Dutschman G, Maue R. Cytidine 3',5'-monophosphate (cyclic CMP). II. Initiation of leukemia L-1210 cell growth in vitro. Biochem Biophys Res Commun. 1974;59(3):955-9.

45. Bloch A. Cytidine 3',5'-monophosphate (cyclic CMP). I. Isolation from extracts of leukemia L-1210 Cells. Biochem Biophys Res Commun. 1974;58(3):652-9.

46. Bitterman J, Ramos Espiritu L, Diaz A, Levin L, Buck J. Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J Pharmacol Exp Ther.

2013;347(3):589-98.

76 47. Beavo JA, Rogers NL, Crofford OB, Baird CE, Hardman JG, Sutherland EW, et al. Effects of phosphodiesterase inhibitors on cyclic AMP levels and on lipolysis. Ann N Y Acad Sci.

1971;185:129-36.

48. Becker EM, Wunder F, Kast R, Robyr C, Hoenicka M, Gerzer R, et al. Generation and characterization of a stable soluble guanylate cyclase-overexpressing CHO cell line. Nitric Oxide. 1999;3(1):55-66.

49. Göttle M, Dove S, Kees F, Schlossmann J, Geduhn J, König B, et al. Cytidylyl and uridylyl cyclase activity of bacillus anthracis edema factor and Bordetella pertussis CyaA.

Biochemistry. 2010;49(26):5494-503.

50. Desch M, Schinner E, Kees F, Hofmann F, Seifert R, Schlossmann J. Cyclic cytidine 3',5'-monophosphate (cCMP) signals via cGMP kinase I. FEBS Lett. 2010;584(18):3979-84.

51. Wolter S, Dove S, Golombek M, Schwede F, Seifert R. N4-monobutyryl-cCMP activates PKA RIa and PKA RIIa more potently and with higher efficacy than PKG Ia in vitro but not in vivo. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(12):1163-75.

52. Schultz C, Vajanaphanich M, Genieser HG, Jastorff B, Barrett KE, Tsien RY. Membrane-permeant derivatives of cyclic AMP optimized for high potency, prolonged activity, or rapid reversibility. Mol Pharmacol. 1994;46(4):702-8.

53. Beckert U, Grundmann M, Wolter S, Schwede F, Rehmann H, Kaever V, et al. cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem Biophys Res Commun.

2014;451(4):497-502.

54. Hammerschmidt A, Chatterji B, Zeiser J, Schröder A, Genieser H, Pich A, et al. Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose. PLoS ONE. 2012;7(7):e39848.

55. Schneider E, Seifert R. Report on the Third Symposium "cCMP and cUMP as New Second Messengers". Naunyn Schmiedebergs Arch Pharmacol. 2015;388(1):1-3.

56. Wolter S, Hagedorn T, Neumann M, Schwede F, Seifert R. Identification of cCMP- and cUMP signaling proteins with biotin-cCMP and biotin-cUMP. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(1):057.

57. Zong X, Krause S, Chen C, Krüger J, Gruner C, Cao Ehlker X, et al. Regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity by cCMP. J Biol Chem. 2012;287(32):26506-12.

58. Nakamura T, Gold GH. A cyclic nucleotide-gated conductance in olfactory receptor cilia.

Nature. 1987;325(6103):442-4.

59. Monzel M, Kuhn M, Bähre H, Seifert R, Schneider E. PDE7A1 hydrolyzes cCMP. FEBS Lett. 2014;588(18):3469-74.

60. Laue S, Winterhoff M, Kaever V, van den Heuvel, Jeroen J, Russel F, Seifert R. cCMP is a substrate for MRP5. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(9):893-5.

61. Wolter S, Kloth C, Golombek M, Dittmar F, Försterling L, Seifert R. cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharmacol. 2015;98(1):119-31.

77 62. Orellana SA, McKnight GS. The S49 Kin- cell line transcribes and translates a functional mRNA coding for the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem.

1990;265(6):3048-53.

63. Dittmar F, Wolter S, Seifert R. Regulation of apoptosis by cyclic nucleotides in human erythroleukemia (HEL) cells and human myelogenous leukemia (K-562) cells. Biochem Pharmacol. 2016;112:13-23.

64. Beckert U, Wolter S, Hartwig C, Bähre H, Kaever V, Ladant D, et al. ExoY from Pseudomonas aeruginosa is a nucleotidyl cyclase with preference for cGMP and cUMP formation. Biochem Biophys Res Commun. 2014;450(1):870-4.

65. Hardman JG, Sutherland EW. A cyclic 3',5'-nucleotide phosphodiesterase from heart with specificity for uridine 3',5'-phosphate. J Biol Chem. 1965;240(9):3704-5.

66. Reinecke D, Burhenne H, Sandner P, Kaever V, Seifert R. Human cyclic nucleotide phosphodiesterases possess a much broader substrate-specificity than previously appreciated. FEBS Lett. 2011;585(20):3259-62.

67. Ostermeyer J, Golly F, Kaever V, Dove S, Seifert R, Schneider EH. cUMP hydrolysis by PDE3B. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(9):891-905.

68. Berrisch S, Ostermeyer J, Kaever V, Kälble S, Hilfiker Kleiner D, Seifert R, et al. cUMP hydrolysis by PDE3A. Naunyn Schmiedebergs Arch Pharmacol. 2017;390(3):269-80.

69. Neumann M, Schwede F, Pich A, Wolter S, Seifert R. Identifying of cUMP-binding proteins.

Naunyn Schmiedebergs Arch Pharmacol. 2014;387(1):283.

70. Hochstenbach F, David V, Watkins S, Brenner MB. Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc Natl Acad Sci U S A.

1992;89(10):4734-8.

71. Degen E, Williams DB. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J Cell Biol. 1991;112(6):1099-115.

72. Galvin K, Krishna S, Ponchel F, Frohlich M, Cummings DE, Carlson R, et al. The major histocompatibility complex class I antigen-binding protein p88 is the product of the calnexin gene. Proc Natl Acad Sci U S A. 1992;89(18):8452-6.

73. Ahluwalia N, Bergeron JJ, Wada I, Degen E, Williams DB. The p88 molecular chaperone is identical to the endoplasmic reticulum membrane protein, calnexin. J Biol Chem.

1992;267(15):10914-8.

74. Ou W, Cameron PH, Thomas DY, Bergeron JJM. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 1993 08/26;364(6440):771-6.

75. Pind S, Riordan JR, Williams DB. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1994;269(17):12784-8.

76. Bergeron JJ, Brenner MB, Thomas DY, Williams DB. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci. 1994;19(3):124-8.

78 77. Ou WJ, Bergeron JJ, Li Y, Kang CY, Thomas DY. Conformational changes induced in the endoplasmic reticulum luminal domain of calnexin by Mg-ATP and Ca2+. J Biol Chem.

1995;270(30):18051-9.

78. Leach M, Cohen Doyle M, Thomas D, Williams D. Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J Biol Chem. 2002;277(33):29686-97.

79. Groenendyk J, Dabrowska M, Michalak M. Mutational analysis of calnexin. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2011 6;1808(6):1435-40.

80. Baksh S, Michalak M. Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem. 1991;266(32):21458-65.

81. Wada I, Rindress D, Cameron PH, Ou WJ, Doherty JJ, Louvard D, et al. SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem. 1991;266(29):19599-610.

82. Oliver JD, Roderick HL, Llewellyn DH, High S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell. 1999;10(8):2573-82.

83. Wang Q, Groenendyk J, Michalak M. Glycoprotein Quality Control and Endoplasmic Reticulum Stress. Molecules. 2015;20(8):13689-704.

84. Okazaki Y, Ohno H, Takase K, Ochiai T, Saito T. Cell surface expression of calnexin, a molecular chaperone in the endoplasmic reticulum. J Biol Chem. 2000;275(46):35751-8.

85. Denzel A, Molinari M, Trigueros C, Martin J, Velmurgan S, Brown S, et al. Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol Cell Biol.

2002;22(21):7398-404.

86. Takizawa T, Tatematsu C, Watanabe K, Kato K, Nakanishi Y. Cleavage of calnexin caused by apoptotic stimuli: Implication for the regulation of apoptosis. J Biochem. 2004;136(3):399-405.

87. Delom F, Fessart D, Chevet E. Regulation of calnexin sub-cellular localization modulates endoplasmic reticulum stress-induced apoptosis in MCF-7 cells. Apoptosis. 2007;12(2):293-305.

88. Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, et al. p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol.

1997;139(2):327-38.

89. Verde I, Pahlke G, Salanova M, Zhang G, Wang S, Coletti D, et al. Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem. 2001;276(14):11189-98.

90. Wang Z, Zhang C, Qi R. A newly identified myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport. J Cell Sci. 2014;127(22):4904-17.

79 91. Uys G, Ramburan A, Loos B, Kinnear C, Korkie L, Mouton J, et al. Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C. BMC Cell Biol. 2011;12:18.

92. Roubin R, Acquaviva C, Chevrier V, Sedjaï F, Zyss D, Birnbaum D, et al. Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules. Biol Open.

2013;2(2):238-50.

93. Wang Z, Wu T, Shi L, Zhang L, Zheng W, Qu J, et al. Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J Biol Chem.

2010;285(29):22658-65.

94. Choi Y, Liu P, Sze S, Dai C, Qi R. CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex. J Cell Biol. 2010;191(6):1089-95.

95. Faul C, Dhume A, Schecter A, Mundel P. Protein kinase A, Ca2+/calmodulin-dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes. Mol Cell Biol. 2007;27(23):8215-27.

96. Newlon MG, Roy M, Morikis D, Carr DW, Westphal R, Scott JD, et al. A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J.

2001;20(7):1651-62.

97. Tröger J, Moutty M, Skroblin P, Klussmann E. A-kinase anchoring proteins as potential drug targets. Br J Pharmacol. 2012;166(2):420-33.

98. Kritzer M, Li J, Dodge Kafka K, Kapiloff M. AKAPs: the architectural underpinnings of local cAMP signaling. J Mol Cell Cardiol. 2012;52(2):351-8.

99. Welch E, Jones B, Scott J. Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv. 2010;10(2):86-97.

100. Theurkauf WE, Vallee RB. Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol Chem. 1982;257(6):3284-90.

101. Wong W, Scott J. AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol. 2004;5(12):959-70.

102. Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M. Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci. 1998;18(6):2017-27.

103. Newlon MG, Roy M, Morikis D, Hausken ZE, Coghlan V, Scott JD, et al. The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Biol. 1999;6(3):222-7.

104. Carr DW, Hausken ZE, Fraser ID, Stofko Hahn RE, Scott JD. Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem. 1992;267(19):13376-82.

105. Burgers P, Ma Y, Margarucci L, Mackey M, van der Heyden, Marcel A G, Ellisman M, et al. A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase

80 A-regulatory subunit I (PKA-RI) to the plasma membrane. J Biol Chem. 2012;287(52):43789-97.

106. Means C, Lygren B, Langeberg L, Jain A, Dixon R, Vega A, et al. An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. Proc Natl Acad Sci U S A. 2011;108(48):E1227-35.

107. Piggott L, Bauman A, Scott J, Dessauer C. The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain. Proc Natl Acad Sci U S A. 2008;105(37):13835-40.

108. Marx S, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks A, et al. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002;295(5554):496-9.

109. Terrenoire C, Houslay M, Baillie G, Kass R. The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem.

2009;284(14):9140-6.

110. Tu H, Tang T, Wang Z, Bezprozvanny I. Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J Biol Chem. 2004;279(18):19375-82.

111. Dessauer C. Adenylyl cyclase--A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol. 2009;76(5):935-41.

112. Chen L, Marquardt M, Tester D, Sampson K, Ackerman M, Kass R. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci USA.

2007;104(52):20990-5.

113. Aye T, Soni S, van Veen, Toon A B, van der Heyden, Marcel A G, Cappadona S, Varro A, et al. Reorganized PKA-AKAP associations in the failing human heart. J Mol Cell Cardiol.

2012;52(2):511-8.

114. Kollewe C, Mackensen A, Neumann D, Knop J, Cao P, Li S, et al. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem. 2004;279(7):5227-36.

115. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-∆∆C(T)) Method. Methods. 2001;25(4):402-8.

116. Schneider E, Seifert R. Report on the Third Symposium "cCMP and cUMP as New Second Messengers". Naunyn Schmiedebergs Arch Pharmacol. 2015;388(1):1-3.

117. Gundlach J, Dickmanns A, Schröder Tittmann K, Neumann P, Kaesler J, Kampf J, et al.

Identification, characterization, and structure analysis of the cyclic di-AMP-binding PII-like signal transduction protein DarA. J Biol Chem. 2015;290(5):3069-80.

118. Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, et al. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science.

1999;285(5424):93-6.

81