• Keine Ergebnisse gefunden

Belge, G., Kazmierczak, B., Meyer-Bolte, K., Bartnitzke, S., Bullerdiek, J. (1992).

Expression of SV40 T-antigen in lipoma cells with a chromosomal translocation t(3;12) is not sufficient for direct immortalization. Cell Biol. Int. Rep. 16: 339-347.

Berner, J. M., Meza-Zepeda, L. A., Kools, P. F., Forus, A., Schoenmakers, E. F., Van de Ven, W. J., Fodstad, O., Myklebost, O. (1997). HMGIC, the gene for an architectural transcription factor, is amplified and rearranged in a subset of human sarcomas. Oncogene 14: 2935-2941.

Birdsal, S. H., MacLennan, K. A., Gusterson, B.A. (1992). t(6;12)(q23;q13) and t(10;16)(q22;p11) in a phyllodes tumor of the breast. Cancer Genet. Cytogenet. 60:

74-77.

Bol, S., Wanschura, S., Thode, B., Deichert, U., Van de Ven, W. J., Bartnitzke, S., Bullerdiek, J. (1996). An endometrial polyp with a rearrangement of HMGI-C

underlying a complex cytogenetic rearrangement involving chromosomes 2 and 12.

Cancer Genet. Cytogenet. 90: 88-90.

Borrmann, L., Seebeck, B., Rogalla, P., Bullerdiek, J. (2003). Human HMGA2 promoter is coregulated by polymorphic dinucleotide (TC)-repeat. Oncogene 22:756-760.

Bridge J. A., Persons, D. L., Neff, J. R., Bhatia, P. (1992). Clonal karyotypic aberration in enchondroma. Cancer Detection and Prevention. 16: 215-219.

Bullerdiek, J., Bartnitzke, S., Weinberg, M., Chilla, R. Haubrich, J., Schloot, W.

(1987). Rearrangements of chromosome region 12q13-q15 in pleomorphic

adenomas of the human salivary gland (PSA). Cytogenet. Cell Genet. 45: 187-90.

Bussemakers, M. J., van de Ven, W. J., Debruyne, F. M., Schalken, J. A. (1991).

Identification of high mobility group protein I(Y) as potential progression marker for prostate cancer by differential hybridization analysis. Cancer Res. 51: 606-611.

Bustin, M. (1999). Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell Biol. 19: 5237-5246.

Bustin, M. und Reeves, R. (1996). High-mobility-group chromosomal proteins:

architectural components that facilitate chromatin function. Prog. Nucleic Acid Res.

Mol. Biol. 54: 35-100.

Chau, K. Y., Patel, U. A., Lee, K. L., Lam, H. Y., Crane-Robinson, C. (1995). The gene for the human architectural transcription factor HMGI-C consists of five exons each coding for a distinct functional element. Nucleic Acids Res. 23: 4262-4266.

Chau K.-Y., Munshi N., Keane-Myers, A., Cheung-Chau, K. W., Tai, A. K., Manfioletti, G., Dorey, C. K., Thanos, D., Zack, D. J., Ono S. J. (2000). The architectural transcription factor high mobility group I (Y) participates in

photoreceptor-specific gene expression. J. Neurosci. 20: 7317-7324.

Chiappetta, G., Bandiera, A., Berlingieri, M. T., Visconti, R., Manfioletti, G., Battista, S., Martinez-Tello, F. J., Santoro, M., Giancotti, V., Fusco, A. (1995).

The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. Oncogene 10: 1307-14.

Chiappetta, G., Avantaggiato, V., Visconti, R., Fedele, M., Battista, S., Trapasso, F., Merciai, B. M., Fidanza, V., Giancotti, V. (1996). High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13: 2439-2446.

Chiappetta, G., Tallini, G., De Biasio, M. C., Manfioletti, G., Martinez-Tello, F. J., Pentimalli, F., de Nigris, F., Mastro, A., Botti, G. (1998). Detection of high mobility group I HMGI(Y) protein in the diagnosis of thyroid tumors: HMGI(Y) expression represents a potential diagnostic indicator of carcinoma. Cancer Res. 58: 4193-4198.

Chin, M. T., Pellacani, A., Hsieh, C. M., Lin, S. S., Jain, M. K., Patel, A., Huggins, G. S., Reeves, R., Perrella, M. A. (1999). Induction of high mobility group I

architectural transcription factors in proliferating vascular smooth muscle in vivo and in vitro. J.Mol.Cell Cardiol. 31: 2199-2205.

Daheron, L., Veinstein, A., Brizard, F., Drabkin, H., Lacotte, L., Guilhot, F., Larsen, C.J., Brizard, A., Roche, J. (2001). Human LPP gene is fused to MLL in a secondary acute leukemia with a t(3;11)(q28;q23). Genes Chromosomes Cancer 31:382-389.

Dal Cin, P., Kools, P., De Jonge, I., Moerman, Ph. B., van de Ven, W. J. M., Van den Berghe, H. (1993). Rearrangement of 12q14-15 in pulmonary chondroid

hamartoma. Genes Chromosomes Cancer 8:131-133.

Dal Cin, P., Vanni, R., Marras, S., Kools, P., Andria, M., Valdes, E., Deprest J., van de Ven, W. J. M., Van den Berghe, H. (1995). Four cytogenetic subgroups can be identified in endometrial polyps. Cancer Res. 55: 1565-1568.

Diana, F., Sgarra, R., Manfioletti, G., Rustighi, A., Poletto, D., Sciortino, M. T., Mastino, A., Giancotti, V. (2001). A link between apoptosis and degree of

phosphorylation of high mobility group A1a protein in leukemic cells. J. Biol. Chem.

276: 11354-61.

Elton, T. S., Nissen, M. S., Reeves, R. (1987). Specific AT DNA sequence binding of RP-HPLC purified HMG-I. Biochem. Biophys. Res. Commun. 143: 260-265.

Fedele, M., Bandiera, A., Chiappetta, G., Battista, S., Viglietto, G., Manfioletti, G., Casamassimi, A., Santoro, M., Giancotti, V., Fusco, A. (1996). Human colorectal carcinomas express high levels of high mobility group HMGI(Y) proteins.

Cancer Res. 56: 1896-1901.

Fedele, M., Berlingieri, M. T., Scala, S., Chiariotti, L., Viglietto, G., Rippel, V., Bullerdiek, J., Santoro, M., Fusco, A. (1998). Truncated and chimeric HMGI-C genes induce neoplastic transformation of NIH3T3 murine fibroblasts. Oncogene 17:413-418.

Fedele, M., Pierantoni, G. M., Berlingieri, M. T., Battista, S., Baldassarre, G., Munshi, N., Dentice, M., Thanos, D., Santoro, M., Viglietto, G., Fusco, A. (2001).

Overexpression of proteins HMGA1 induces cell cycle deregulation and apoptosis in normal rat thyroid cells. Cancer Res. 61: 4583-4590.

Fletcher, A. J., Pinkus, G. S., Weidner, N., Morton, C. C. (1991). Lineage restricted clonality in biphasie tumors. Am. J. Pathol. 138: 1199-1207.

Foster, L. C., Arkonac, B. M., Sibinga, N. E., Shi, C., Perrella, M. A., Haber, E.

(1998). Regulation of CD44 gene expression by the proinflammatory cytokine interleukin-1beta in vascular smooth muscle cells. J. Biol. Chem. 273: 20341-20346.

Friedmann M., Holth, L. T., Zoghbi, H. Y., Reeves, R. (1993). Organization, inducible-expression and chromosome localization of the human HMGI(Y) nonhistone protein gene. Nucleic Acids Res. 21: 4259- 4267.

Gattas G. J., Quade, B. J., Nowak, R. A., Morgon, C. C. (1999). HMGIC expression in human adult and fetal tissues and in uterine leiomyomate. Genes Chromosomes Cancer 25: 316-322.

Geurts J. M., Schoenmarkers, E. F., van de Ven, W. J. (1997). Molecular

characterization of a complex chromosomal rearrangemant in a pleomorphic salivary Gland adenoma involving the 3`-UTR of HMGIC. Cancer Genet. Cytogenet. 95: 198-205

Giancotti, V., Pani, B., D'Andrea, P., Berlingieri, M. T., Di Fiore, P. P., Fusco, A., Vecchio, G., Crane-Robinson, C., Goodwin, G. H. (1987). Histone and nonhistone proteins from normal and virus-transformed rat thyroid epithelial cells. Basic Appl.

Histochem. 31: 229-238.

Goodwin, G. H., Sanders, C., Johns, E. W. (1973). A new group of

chromatinassociated proteins with a high content of acidic and basic amino acids.

Eur. J. Biochem. 38: 14-19.

Goodwin, G. H., Cockerill, P. N., Kellam, S., Wright, C. A. (1985). Fractionation by high-performance liquid chromatography of the low- molecular-mass high-mobility-group (HMG) chromosomal proteins present in proliferating rat cells and an

investigation of the HMG proteins present in virus transformed cells. Eur. J. Biochem.

149: 47-51.

Hauke, S., Rippe, V., Bullerdiek, J. (2001). Chromosomal rearrangements leading to abnormal splicing within intron 4 of HMGIC? Genes Chromosomes Cancer 30:

302-304.

Hauke S., Flohr, A., Rogalla, P. Bullerdiek J. (2002). Sequencing of intron 3 of HMGA2 Uncovers the Existence of a Novel Intron. Genes Chromosomes Cancer 34:

17-23.

Heim, S., Mandahl, N., Kristoffersson, U., Mitelman, F., Rooser, B., Rydholm, A., Willen, H. (1986). Reciprocal translocation t(3;12)(q27-q13) in lipoma. Cancer Genet.

Cytogenet. 23: 301-304.

Heim, S., Nilbert, M., Vanni, R., Floderus, U. M., Mandahl, N., Liedgren, S., Lecca, U., Mitelman, F. (1988). A specific translocation, t(12;14)(q14-15;q23-24), characterizes a subgroup of uterine leiomyomas. Cancer Genet. Cytogenet. 32: 13-17.

Hill, D.A., Reeves, R. (1997). Competition between HMG-I(Y), HMG-1 and histone H1 on four-way junction DNA. Nucleic Acids Res. 25:3523-3531.

Hirning-Folz, U., Wilda, M., Rippe, V., Bullerdiek, J., Hameister, H. (1998). The expression pattern of the HMGIC gene during development. Genes Chromosomes Cancer 23: 350-357.

Inoue, H., Nojima, H., Okayama, H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28.

Ishwad, C. S., Shriver, M. D., Lassige, D. M., Ferrell, R. E. (1997). The high mobility group I-C gene (HMGI-C): polymorphism and genetic localization. Hum.

Genet. 99:103-105.

Jenkins, R. B., Kimmell, D. W., Moertel, C. A., Schultz, C. A., Menezes, R. M., Scheihauer, B., Kelly, P. J., Dewald, G. W. (1989). Recurrent cytogenetic abnormalities in 80 gliomas. Cancer Genet. Cytogenet. 51: 1019.

John, S., Reeves, R. B., Lin, J. X., Child, R., Leiden, J. M., Thompson, C. B., Leonard, W. J. (1995). Regulation of cell-type-specific interleukin-2 receptor alpha-chain gene expression: potential role of physical interactions between Elf-1, HMG-I(Y), and NF-kappa B family proteins. Mol. Cell Biol. 15: 1786-96.

Kazmierczak, B., Wanschura, S., Rosigkeit, J., Meyer-Bolte, K., Uschinsky, K., Haupt, R., Schoenmakers, E. F., Bartnitzke, S., Van de Ven, W. J., Bullerdiek, J.

(1995). Molecular characterization of 12q14-15 rearrangements in three pulmonary chondroid hamartomas. Cancer Res. 55: 2497-9.

Kazmierczak B., Pohnke, Y., Bullerdiek, J. (1996a). Fusion transcripts between the HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without

cytogenetic aberrations. Genomics 38: 223-226.

Kazmierczak, B., Rosigkeit, J., Wanschura, S., Meyer-Bolte, K., Van de Ven, W.

J., Kayser, K., Krieghoff, B., Kastendiek, H., Bartnitzke, S. Bullerdiek, J. (1996b).

HMGI-C rearrangements as the molecular basis for the majority of pulmonary chondroid hamartomas: a survey of 30 tumors. Oncogene 12: 515-521.

Kazmierczak, B., Dal Cin, P., Wanschura, S., Borrmann, L., Fusco, A., Van den Berghe, H., Bullerdiek, J. (1998a). HMGIY is the target of 6p21.3 rearrangements in various benign mesenchymal tumors. Genes Chromosomes Cancer 23: 279-285.

Kazmierczak, B., Bullerdiek, J., Pham, K. H., Bartnitzke, S., Wiesner, H. (1998b).

Intron 3 of HMGIC is the most frequent target of chromosomal aberrations in human tumors and has been conserved basically for at least 30 million years. Cancer Genet.

Cytogenet. 103: 175-177.

Kazmierczak, B., Meyer-Bolte, K., Tran, K., H. Wockel, W., Breightman, I., Rosigkeit, J., Bartnitzke, S., Bullerdiek, J. (1999a). A high frequency of tumors with rearrangements of genes of the HMGI(Y) family in a series of 191 pulmonary chondroid hamartomas. Genes Chromosomes Cancer 26: 125-133.

Kazmierczak, B., Kayser, K., Meyer-Bolte, K., Thode, E., Bullerdiek, J. (1999b).

Results of cytogenetic analyses on 317 pulmonary chondroid hamartomas point to their pathogenesis. Electronic Journal of Pathology 5.4.

Kievits, T., Dauwerse, J. G., Wiegant, J., Devilee, P., Breuning, M. H., Cornelisse, C., J., van Ommen, G. J., Pearson, P. L. (1990). Rapid

subchromosomal localization of cosmids by nonradioactive in situ hybridization.

Cytogenet. Cell Genet. 53: 134-136.

Lahiri, D. K. und Nurnberger, J. I., Jr. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 19: 5444.

Lemke, I., Rogalla, P., Bullerdiek, J. (2001a). Large deletion of part of the HMGIC locus accompanying a t(3;12)(q27 approximately q28;q14 approximately q15) in a lipoma. Cancer Genet. Cytogent. 129: 161-164.

Lemke, I., Rogalla, P., Bullerdiek, J. (2001b). A novel LPP fusion gene indicates the crucial role of truncated LPP proteins in lipomas and pulmonary chondroid hamartomas. Cytogent. Cell Genet. 95: 153-6.

Lemke, I., Rogalla, P., Grundmann, F., Kunze, W. R., Haupt, R., Bullerdiek, J., (2002). Expression of the HMGA2-LPP fusion transcript in only one of 61

karyotypically normal pulmonary chondroid hamartomas suggests the primary nature of chromosomal aberrations in those tumors with chromosomal rearrangements.

Cancer Genetics and Cytogenetics 138: 160-164.

Ligon, A.H., Moore, S.D.P., Parisi, M.A., Mealiffe, M.E., Harris, D.J., Ferguson, H.L., Quade, B.J., Morton, C.C. (2005). Constitutional rearrangement of the architectural factor HMGA2: A novel human phenotype including overgrowth and lipomas. Am. J. Hum. Genet. 76:000-000.

Lovell-Badge R. (1995). Developmental genetics. Living with a bad architecture.

Nature 376: 725-726

Mandahl, N., Heim, S., Johansson, B., Bennet, K., Mertens, F., Olsson, G., Rooser, B., Rydholm, A., Willen, H., Mitelman, F. (1987). Lipomas have

characteristic structural chromosomal rearrangements of 12q13-q14. Int. J. Cancer 39: 685-688.

Mandahl, N., Heim, S., Arheden, K., Rydholm, A., Willen, H., Mitelman, F. (1989).

Chromosomal rearrangements in chondromatous tumors. Cancer 65: 242-248.

Mandahl, N., Orndal, C., Willen, H., Rydholm, A., Bauer, H. C. F., Mitelman, F.

(1993). Aberrations of chromosome segment 12q13-15 characterize a subgroup of hemangiopericytomas. Cancer 71: 3009-3013.

Mandahl, N. (1994). Lipoma Cytogenetics. In: chromosome 12 aberrations in human solid tumors. Bullerdiek, J., Bartnitzke, S. (eds), Springer Verlag, Berlin, pp: 26-38.

Manfioletti, G., Giancotti, V., Bandiera, A., Buratti, E., Sautiere, P., Cary, P., Crane-Robinson, C., Coles, B., Goodwin, G. H. (1991). cDNA cloning of the HMGI-C phosphoprotein, a nuclear protein associated with neoplastic and undifferentiated phenotypes. Nucleic. Acids. Res. 19: 6793-6797.

Mark, J., Dahlenfors, R., Ekedahl, C., Stenman, G. (1980). The mixed salivary gland tumor: a normally human neoplasm frequently showing specific chromosomal abnormalities. Cancer Genet. Cytogenet. 2: 231-241.

Mark, J., Dahlenfors, R. (1986). Cytogenetical observations in 100 human benign pleomorphic adenomas: specifity of the chromosomal aberrations and their

relationship to sites of localized oncogenes. Anticancer Res. 6: 299-308.

Mashal, R.D., Fejzo, M.L., Friedman, A.J., Mitchner, N., Nowak, R.A., Rein, M.S., Morton, C.C., Sklar, J. (1994). Analysis of androgen receptor DNA reveals the independent clonal origins of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata. Genes Chromosomes Cancer 11: 1-6.

Melillo R. M., Pierantoni, G. M., Scala, S., Battista, S., Fedele, M., Stella, A., De Biasio, M. C., Chiapetta, G., Fidanza, V., Condorelli, G., Santoro, M., Croce, C.

M., Viglietto, G., Fusco, A. (2001). Critical role of the HMG(Y) proteins in adipocytic cell growth and differentiation. Mol. Cell. Biol. 21: 2485-2495.

Nissen, M. S. und Reeves, R. (1995). Changes in superhelicity are introduced into closed circular DNA by binding of high mobility group protein I/Y. J.Biol.Chem. 270:

4355-4360.

Noguera, R., Llombart-Bosch, A., Lopez-Gines, C., Carda, C., Fernandez, C. I.

(1989). Giant-cell tumor of the bone, stages II, displaying translocation t(12;19)(q13;q13). Virchows Archiv. A. Pathological Anatomy 415: 377-382.

Norris, H. J., Zaloudek, C. J. (1982). Mesenchymal tumor of the uterus. In:

Pathology of femal genital tract, 2nd Edition, Blaustein A. (ed.), Springer Verlag, Berlin.

Petit M.M. R., Mols, E., Schoenmarkers, E. F., Mandahl, N., Van de Ven, W. J.

(1996). LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 36: 118-129.

Petit, M. M., Schoenmakers, E. F., Huysmans, C., Geurts, J. M., Mandahl, N., Van de Ven, W. J. (1999). LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 57: 438-441.

Popenoe, D.W., Schaefer-Rego, K., Mears, J.G., Bank, A., Leibowitz, D. (1986).

Frequent and extensive deletion during the 9;22 translocation in CML. Blood 68(5):1123-1128.

Ram, T. G., Reeves, R., Hosick, H. (1993). Elevated high mobility group-I(Y) gene expression is associated with progressive transformation of mouse mammary epithelial cells. Cancer Res. 53: 2655-60.

Reeck, G. R., Isackson, P. J., Teller, D. C. (1982). Domain structure in high

molecular weight high mobility group nonhistone chromatin proteins. Nature 300: 76-78.

Reeves, R., Beckerbauer, L. (2001). HMGI/Y proteins: flexible regulators oftranscription and chromatin structure. Biochim. Biophys. Acta 1519: 13-29.

Reeves, R., Nissen, M. S. (1990). The AT-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J. Biol. Chem. 265: 8573-8582.

Reeves, R., Nissen, M. S. (1993). Interaction of the high mobility group – I(Y) nonhistone proteins with nucleosome core particles. J. Biol. Chem. 268: 21137-21146.

Reeves, R., Wolffe, A. P. (1996). Substrate structure influences binding of the nonhistone protein HMG-I(Y) to free and nucleosomal DNA. Biochemistry 35: 5063-5074.

Rogalla, P., Drechsler, K., Frey, G., Hennig, Y., Helmke, B., Bonk, U., Bullerdiek, J. (1996). HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am. J. Pathol. 149: 775-779.

Rogalla P., Drechsler, K., Kazmierczak, B., Rippe, V., Bonk, U., Bullerdiek, J.

(1997). Expression of HMGI-C, a member of the high mobility group protein family, in

a subset of breast cancer: relationship to histologic grade. Mol. Carcinog. 19: 153-156.

Rogalla, P., Drechsler, K., Schroder-Babo, W., Eberhardt, K., Bullerdiek, J.

(1998a). HMGIC expression patterns in non-small lung cancer and surrounding tissue. Anticancer Res. 18: 3327-30.

Rogalla, P., Kazmierczak, B., Meyer-Bolte, K., Tran, K. H., Bullerdiek, J. (1998b).

The t(3;12)(q27;q14-q15) with underlying HMGIC-LPP fusion is not determining an adipocytic phenotype. Genes Chromosomes Cancer 22: 100-104.

Rogalla, P., Lemke, I., Kazmierczak, B., Bullerdiek, J. (2000). An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Genes Chromosomes Cancer 29: 363-6.

Rogalla, P., Lemke, I., Bullerdiek, J. (2002). Absence of HMGIC-LHFP fusion in pulmonary chondroid hamartomas with aberrations involving chromosomal regions 12q13-q15 and 13q12-q14. Cancer Genet. Cytogenet. 133: 90-93.

Rohen, C., Caselitz, J., Stern, C., Wanschura, S., Schoenmakers, E. F., Van de Ven, W. J., Bartnitzke, S., Bullerdiek, J. (1995). A hamartoma of the breast with an aberration of 12q mapped to the MAR region by fluorescence in situ hybridization.

Cancer Genet. Cytogenet. 84: 82-84.

Rommel, B., Rogalla, P., Jox, A., Kalle, C. V. Kazmierczak, B., Wolf, J.,

Bullerdiek, J. (1997). HMGIC a member of the high mobility group family of proteins, is expressed in hematopoietic stem cells and in leukemic cells. Leuk. Lymphoma 26:

603-607.

Sambrook, F., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. 2nd Version, Cold Spring Harbor Laboratory Press.

Sano, K., Hayakawa, A., Piao, J. H., Kosaka, Y., Nakamura, H. (2000). Novel SH3 protein encoded by the AF3p21 gene is fused to the mixed lineage leukemia protein in a therapy-related leukemia with t(3;11)(p21;q23). Blood 95: 1066-1068.

Schoenmakers, E. F., Wanschura, S., Mols, R., Bullerdiek, J., Van den Berghe, H., Van de Ven, W. J. (1995). Recurrent rearrangements in the high mobility group protein gene, HMGI- C, in benign mesenchymal tumours. Nat. Genet. 10: 436-44.

Schoenmakers, E. F., Huysmans, C., Van de Ven, W. J. (1999). Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res. 59: 19-23.

Seabright, M. (1971). A rapid banding technique for human chromosomes. Lancet II:

971-972.

Sgarra, R., Diana, F., Bellarosa, C., Dekleva, V., Rustighi, A., Toller, M., Manfioletti, G., Giancotti, V. (2003). During apoptosis of tumor cells HMGA1a protein undergoes methylation: identification of the modification site by mass spectrometry. Biochemistry 42: 3575-3585.

Shick, V. V., Belyavsky, A. V., Mirzabekov A. D. (1985). Primary organization of nucleosomes. Interaction of non-histone mobility group proteins 14 and 17 with nucleosomes, we revealed by DNA-protein crosslinking and immunoaffinity isolation.

J. Mol. Biol. 185: 329-339.

Snieder, H., MacGregor, A.J., Spector, T.D. (1998). Genes control the cessation of a woman's reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab 83: 1875-1880.

Solomon, M. J., Strauss, F., Varshavsky, A. (1986). A mammalian high mobility group protein recognizes any stretch of six A.T base pairs in duplex DNA. Proc. Natl.

Acad. Sci. U.S.A 83: 1276-1280.

Sreekantaiah, C., Leong, S. P., Karakousis, C. P., McGee, D. L., Rappaport, W.

D., Villar, H. V., Neal, D., Fleming, S., Wankel, A., Herrington, P. N., et al. (1991).

Cytogenetic profile of 109 lipomas. Cancer Res. 51: 422-33.

Staats B., Bonk, U., Wanschura, S. Hanisch, P., Schoenmarkers, E. F., Van de Ven, W. J., Bartnitzke, S., Bullerdiek, J. (1996). A fibroadenoma with a t(4;12) (q27;q15) affecting the HMGI-C gene, a member of the high mobility group protein gene family. Breast Cancer Res. Treat. 38: 299-303.

Tamimi, Y., van der Poel, H. G., Denyn, M. M., Umbas, R., Karthaus, H. F., Debruyne, F. M., Schalken, J. A. (1993). Increased expression of high mobility group protein I(Y) in high grade prostatic cancer determined by in situ hybridization.

Cancer Res. 53: 5512-6.

Thanos, D., Maniatis, T. (1992). The high mobility group protein HMG I(Y) is

required for NF-kappa B- dependent virus induction of the human IFN-beta gene. Cell 71: 777-789.

Thanos, D., Maniatis, T. (1995). Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83: 1091-1100.

Trieschmann, L., Alfonso, P. J., Crippa, M. P., Wolffe A. P. Bustin M. (1995).

Incorporation of chromosomal proteins HMG-14/HMG-17 into nascent Nucleosomes induces an extended chromatin conformation and enhances the utilization of active transcription complexes. EMBO Journal 14: 1478-1489.

Turc-Carel, C., Dal Cin, P., Rao, U., Karakousis., C, Sandberg, A. A. (1986).

Cytogenetic studies of adipose tissue tumors. I. A benign lipoma with reciprocal translocation t(3;12)(q28;q14). Cancer Genet. Cytogenet. 23: 283-289.

Turc-Carel, C., Dal Cin, P., Boghosian, J., Terk-Zakarian, J., Sandberg, A. A.

(1988). Consistent breakpoints in region 14q22-q24 in uterine leiomyoma. Cancer Genet. Cytogenet. 32: 25-31.

Vanni, R., Lecca, U. (1988). Involvement of the long arm of chromosome 12 in chromosome rearrangement of uterine leiomyoma. Cancer Genet. Cytogenet. 32: 33-34.

Vanni, R., Dal Cin, P., Marras, S., Moerman, P., Andria, M., Valdes, E., Deprest, J., Van den Berghe, H. (1993). Endometrial polyp: Another benign tumor

characterized by 12q13-15 changes. Cancer Genet. Cytogenet. 68: 32-33.

Vikhlyaeva, E. M., Khodzhaeva, Z. S., Fantschenko, N. D. (1995). Familial predisposition to uterine leiomyomas. Int. J. Gynaecol. Obstet. 51: 127-31.

von Ahsen, I., Rogalla, P., Bullerdiek, J. (2005a). Expression pattern of the LPP-HMGA2 fusion transcript in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Cancer Genetics and Cytogenetics 163: 68-70.

von Ahsen, I., Rogalla, P., Bullerdiek, J. (2005b). Mutations of the human high mobility group protein gene HMGA2 do not account for a majority of uterine leiomyomas. Molecular Human Reproduction (Eingereicht).

Walter, T. A., Xuan Fan, S., Medchill, M. T., Berger, C. S., Decker, H.-J. H., Sandberg, A. A. (1989). Inv(12)(p11.2;q13) in an endometrial polyp. Cancer Genet.

Cytogenet. 41: 99-103.

Wolffe, A. P. (1994). Architectural transcription factors. Science 264: 1100-1101.

Wood, L. J., Mukherjee, M., Dolde, C. E., Xu, Y., Maher, J. F., Bunton, T. E., Williams, J. B., Resar, L. M. (2000). HMG-I/Y, a new c-Myc target gene and potential oncogene. Mol. Cell Biol. 20: 5490-502.

Xing, Y.P., Powell, W.L., Morton, C.C. (1997). The del(7q) subgroup in uterine leiomyomata: genetic and biologic characteristics. Further evidence for the secondary nature of cytogenetic abnormalities in the pathobiology of uterine leiomyomata.

Cancer Genet. Cytogenet. 98: 69-74.

Zelenetz, A.D., Clearly, M.L., Levy, R. (1993). A submicroscopic interstitial deletion of chromosome 14 frequently occurs adjacent to the t(14;18) translocation breakpoint in human follicular lymphoma. Genes Chromosomes Cancer 6:140-150.

Zhou X., Benson, K. F., Ashar, H. R., Chada, K. (1995). Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376: 771-774.

Zhou X., Benson, K. F., Przybysz, K., Liu, J. Hou, Y., Cherath, L., Chada, K.

(1996). Genomic structure and expression of the murine HMGIC gene. Nucleic. Acids Res. 24: 4071-4077.

Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., Hedrick, M. H. (2001). Multilineage cells from human adipose tissue:

implications for cell- based therapies. Tissue Eng. 7:211-228

Zvaifler, N. J., Marinova-Mutafchieva, L., Adams, G., Edwards, C. J., Moss, J., Burger, J. A., Maini, R. N. (2000). Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2:477-488.

DANKSAGUNG

Mein besonderer Dank gilt Herrn Prof. Dr. J. Bullerdiek für die wissenschaftliche Betreuung meiner Arbeit und für die Übernahme des Referates.

Herrn Prof. Dr. H. Wenk danke ich herzlich für die Übernahme des Koreferates.

Für seinen wissenschaftlichen und technischen Rat und seiner ständigen Diskussionsbereitschaft danke ich Herrn Dr. Piere Rogalla.

Darüber hinaus danke ich allen Mitarbeitern des Zentrums für Humangenetik.

Besonders danke ich Herrn Dr. Gazanfer Belge, Frau Dr. Cornelia Blank, Herrn Dr.

Lars Borrmann, Herrn Norbert Drieschner, Herrn Dr. Sven Hauke, Frau Dr. Maren Meiboom, Frau Heike Munzinger, Herrn Dr. Hugo Murua Escobar, Herrn Dr. Volkard Rippe und Frau Dr. Corina Rohen-Bullerdiek für ihre freundschaftliche und

technische Hilfe.

Abschließend gilt mein besonderer Dank meinem Mann und meinen Eltern für die moralische Unterstützung während meiner Dissertation.

Meinem Sohn Luca Johannes danke ich dafür, dass er mir Zeit gegeben hat diese Dissertationsschrift zu beenden.

PUBLIKATIONSÜBERSICHT

In der folgenden Übersicht sind die der vorliegenden Arbeit zugrunde liegenden Publikationen in der Reihenfolge, in der sie im Ergebnissteil erscheinen, aufgeführt.

I. Rogalla, P., Lemke, I., Bullerdiek, J. (2002). Absence of HMGIC-LHFP fusion in pulmonary chondroid hamartomas with aberrations involving chromosomal regions 12q13-q15 and 13q12-q14. Cancer Genetics and Cytogenetics 133: 90-93.

II. Rogalla, P., Lemke, I., Kazmierczak, B., Bullerdiek, J. (2000). An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary

chondroid hamartomas with t(3;12)(q27-28;q14-15). Genes, Chromosomes &

Cancer 29: 363-366.

III. von Ahsen, I., Rogalla, P., Bullerdiek, J. (2005a). Expression pattern of the LPP-HMGA2 fusion transcript in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Cancer Genetics and Cytogenetics 163: 68-70.

IV. Lemke, I., Rogalla, P., Bullerdiek, J. (2001a). Large deletion of part of the HMGIC locus accompanying a t(3;12)(q27-28;q14-15) in a lipoma. Cancer Genetics and Cytogenetics 129: 161-164.

V. Lemke, I., Rogalla, P., Bullerdiek, J. (2001b). A novel LPP fusion gene indicates the crucial role of truncated LPP proteins in lipomas and pulmonary chondroid hamartomas. Cytogenetics and Cell Genetics 95: 153-156.

VI. Lemke, I., Rogalla, P., Grundmann, F., Kunze, W.-P., Haupt, R., Bullerdiek, J. (2002). Expression of the HMGA2-LPP fusion transcript in only 1 of 61

karyotypically normal pulmonary chondroid hamartomas. Cancer Genetic and Cytogenetics 138: 160-164.

VII. von Ahsen, I., Rogalla, P., Bullerdiek, J. (2005b). Mutations of the human high mobility group protein gene HMGA2 do not account for a majority of uterine leiomyomas. Molecular Human Reproduction (Eingereicht).

I.

Rogalla, P., Lemke, I., Bullerdiek, J. (2002).

Absence of HMGIC-LHFP fusion in pulmonary chondroid hamartomas with aberrations involving chromosomal regions 12q13-q15 and 13q12-q14. Cancer Genetics and Cytogenetics 133: 90-93.

Eigenanteil an dieser Publikation:

- Planung und Durchführung aller Arbeiten

- Verfassen der Publikation in Zusammenarbeit mit Herrn Dr. P. Rogalla

Cancer Genetics and Cytogenetics 133 (2002) 90–93

Short communication

Absence of HMGIC-LHFP fusion in pulmonary chondroid hamartomas with aberrations involving chromosomal regions

12q13 q15 and 13q12 q14

Piere Rogalla, Inga Lemke, Jörn Bullerdiek*

Center of Human Genetics, University of Bremen, Leobenerstr. ZGH, D-28359, Breman, Germany Received 3 August 2000; received in revised form 5 July 2001; accepted 6 July 2001

Abstract In a variety of benign solid human tumors the high mobility group protein gene HMGIC is affected by ab-errations involving the chromosomal region 12q14q15. Beside the two predominant alterations t(3;12) (q2728;q14q15) and t(12;14)(q14q15;q23q24), the t(12;13)(q14q15;q12q14) is another aber-ration observed recurrently in these tumors. Very recently, an HMGIC-LHFP (lipoma HMGIC fusion partner) fusion gene has been detected in a lipoma with a t(12;13). The results of the present study demon-strated the absence of the HMGIC-LHFP fusion in three pulmonary chondroid hamartomas (PCH) with complex aberrations involving chromosomal regions 12q13q15 and 13q12qq14 and one PCH with a simple t(12;13)(q1415;q13) by reverse transcription–polymerase chain reaction. Thus, intragenic rear-rangements within the LHFP gene leading to its fusion to HMGIC are not a consistent finding in mes-enchymal tumors with clonal aberrations of both chromosomal regions 12q13q15 and 13q12q14. © 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

In a variety of benign solid human tumors, aberrations involving chromosomal region 12q1415 have been shown to affect the high mobility group protein gene HMGIC. Beside the two predominant alterations affecting HMGIC, that is, t(3;12)(q27q28;q14q15) and t(12;14)(q14q15;

q23q24), the t(12;13)(q14q15;q12q14) is another ab-erration that has been observed recurrently. Very recently, an HMGIC-LHFP fusion gene has been shown in a lipoma with that translocation [1]. In that fusion, the 5 part of HMGIC encoding three AT hooks was fused to the 3 part of LHFP (lipoma HMGIC fusion partner) encoding a pro-tein belonging to a new propro-tein family that as yet has not been further analyzed [1]. The question arises whether in other cases with t(12;13)(q14q15;q12q14) the HMGIC-LHFP can be found as well. To address to this question, we have analyzed cell cultures from four pulmonary chondroid hamartomas (PCH) by reverse transcription–polymerase chain reaction (RT-PCR) for the existence of the HMGIC-LHFP fusion gene.

2. Materials and methods

The cases were selected from a series of 317 PCH re-cently described [2,3]. Whereas three PCH showed complex aberrations involving the chromosomal regions 12q13q15 and 13q12q14, the remaining case had a simple t(12;

13)(q14q15;q13; Table 1). The cervical cancer cell lines HeLa and MRIH-186 served as negative controls for the molecular studies. As a positive control, a plasmid contain-ing an HMGIC-LHFP fusion fragment was used. To gener-ate this fusion fragment, we amplified an HMGIC and an LHFP fragment, respectively, by PCR and cloned into the pGem-Teasy vector (Promega, Mannheim, Germany). For cloning additional EcoRI restriction sites were introduced.

For amplification, the following primers were used:

HMGIC specific primers (forward: 5-CTT CAG CCC AGG GAC AAC-3; reverse: 5-CCG GAA TTC ATT TCC TAG GTC TGC CTC TTG-3) and LHFP specific primers (forward: 5-CCG GAA TTC GTG AAA TCG GCT GGG CCT ACT A-3; reverse: LHFP1596do [see Table 2]).

The forward HMGIC specific primers for the RT-PCR experiments have been used in several RT-PCR and 3 rapid amplification of cDNA ends experiments [4–7]. The corre-sponding LHFP specific reverse primers were selected from primer sets (Fig. 1; Table 2), allowing for the amplification of the normal LHFP transcript based on the cDNA of LHFP

* Corresponding author. Tel.: 49-421-218-3589; fax: 49-421-218-4239.

E-mail address: bullerdiek@uni-bremen.de (J. Bullerdiek).

P. Rogalla et al. / Cancer Genetics and Cytogenetics 133 (2002) 90–93 91

(Genbank accession number AF098807). RNA was isolated using the trizol reagent (GIBCO BRL, Eggenstein, Ger-many). cDNA was synthesized using a poly(A)-oligo (dt) 17 primer and M-MLV reverse transcriptase (GIBCO-BRL). We performed RT-PCR in a 100-l volume contain-ing 10 mM Tris/HCl, pH 8.0, 50 mM KCl, 1.5 mM MgCl2, 100 M dATP, 100 M dTTP, 100 M dGTP, 100 M dCTP, 200 nM forward primer, 200 nM reverse primer, 1 unit/100 l DNA Taq polymerase (Sigma, Deisenhofen, Germany), and cDNA derived from 250 ng RNA. Amplifi-cations were performed for 35 cycles (1 minute 94C, 1 minute 55C to 60C, 1 minute 72C). All PCR experiments were performed in a nested or heminested manner (Fig. 2).

3. Results

All PCR products were separated on 1.5% agarose gels resulting in several fragments of varying sizes and intensi-ties in all PCH used, but all PCR experiments failed to

am-plify fragments of the expected sizes. As one example, the results of a nested PCR experiment are shown in Fig. 2a. In all PCR experiments Southern blotting and hybridization using an HMGIC specific probe (Fig. 2b) and rehybridiza-tion using a LHFP specific probe (data not shown) con-firmed the lack of HMGIC-LHFP fusion transcripts. In con-trast, the HMGIC-LHFP fusion fragment was detectable in all positive controls. Probes were generated and digoxige-nin-labeled by PCR using HMGIC specific primers (for-ward: 5-GTG AGG GCG CGG GGC AGC CGT CCA CTT C-3; reverse: 5-CCT CTT CGG CAG ACT CTT GTG AGG ATG TCT-3) and the LHFP primers LHFP846up and LHFP1163do (see Table 2). For hybridization, the Ex-pressHyb hybridization solution (Clontech, Heidelberg, Germany) was used and detection was performed as

de-Table 1

Karyotypes of pulmonary chondroid hamartomas investigated in the present study

Case no. Karyotype

Ha79 46,XX,del(6)(p21.1),der(12)t(12;13)(p12 or p13;q12) t(12;17)(q15;p13),der(13)t(12;13)(q15;q12), der(17)t(6;17)(p21.1;p13)[18]

Ha147 46,XY,del(6)(q24),t(12;13)(q15;q13)[22]

Ha181 45,XX,12,der(13)t(12;13)(q13;q12),del(14)(q22q24), der(18)t(12;18)p11.2;p11.1)[9]

Ha228 46;XX,der(13)t(13;14)(q14;q24),der(14) t(12;14)(q15;q24)[19]

Table 2

LHFP specific primers used in the present study for RT-PCR analyses

Name Sequence

LHFP261 up 5-GGATTATCTGTGGGTCCCTGGTGATT-3 LHFP360 up 5-GCATCCAGCCTGACTTGTACTGG-3 LHFP746 up 5-GTTGATTGGTGCTGGCTGTG-3 LHFP775 up 5-CCTTGGGCTGGGACAGTGA-3 LHFP846 up 5-GTGAAATCGGCTGGGCCTACTA-3 LHFP886 do 5-AGCAGCATGGCGGCAGTG-3 LHFP923 low 5-GCTTCTGTTTCTTGCCCGAAAAG-3 LHFP1079 low 5-TGATTTTATCGGGTTTCATT-3 LHFP1163 do 5-GCCTTTGGTCCATTTTTCTCCATCAT-3 LHFP1596 do 5-TTGGCTTATTGGTCCATTTATTAGG-3

Positions of primers are given by the first nucletide position matching within the sense sequence of the cDNA of LHFP (Genbank accession num-ber AF098807).

Fig. 1. Schematic presentation of the cDNA structure of HMGIC and LHFP and PCR experiments used for the detection of the expected fusion transcript HMGIC-LHFP in PCH with aberrations involving the chromosomal regions 12q13q15 and 13q12q14. The 3 untranslated region (UTR) of HMGIC is not

ÄHNLICHE DOKUMENTE