• Keine Ergebnisse gefunden

1.6 DNA  lesions  

1.6.1 Overview  

Endo-­‐  and  exogenous  agents  constantly  damage  DNA.  For  instance,  exposure  to  UV  radiation,  alkylating   agents  and  oxidative  species  leads  to  the  formation  of  abasic  sites,  pyrimidine  dimers,  alkylated  adducts   and  oxidative  lesion  products.  To  maintain  the  genomic  integrity  and  reduce  the  mutagenic  potential  cells   allocate  with  multiple  repair  pathways  and  specialized  enzymes.  However,  several  health  statistics  could   show  that  DNA  lesions  can  be  highly  mutagenic  and  sometimes  carcinogenic  e.g.  in  Europe  in  2000  ∼35   000   new   cases   of   UV   radiation   damage-­‐induced   skin   cancer   were   diagnosed   (68).   Further,   the   tobacco-­‐

derived  nitrosamine  NNK  is  associated  with  lung  cancer  resulting  in  ∼334  800  deaths  in  Europe  in  2006   (69).   Therefore   the   biological   prevalence   of   the   DNA   lesions   and   their   chemical   structures   need   to   be   determined.   The   main   aspect   here   are   (i)   identification   and   quantification   of   DNA   lesions   in   model   systems  and  in  vivo,  (ii)  to  assess  influences  of  lesions  on  physical  properties  of  DNA  e.g.  thermal  stability,   and  (iii)  to  elucidate  the  impact  of  the  lesions  on  DNA  function  e.g.  enzyme-­‐mediated  processes  such  as   replication.    

Within   the   last   decade   years   specialized   DNA   polymerases,   responsible   for   translesion   DNA   synthesis   (TLS),   were   identified   and   characterized.   W.   Yang   and   R.   Woodgate   published   a   clear   summary   of   this   class  of  enzymes  emphasizing  the  relationship  of  the  bypass  properties  and  the  structural  features  (29).  In   brief,   many   of   the   TLS   enzymes   are   member   of   the   Y-­‐family   of   DNA   polymerases   exhibiting   universal   features   to   manage   bypass   of   a   variety   of   DNA   lesions.   In   a   simplified   model   TLS   polymerases   can   be   categorized  into  two  classes.  The  first  class  of  enzyme  is  highly  specialized  and  responsible  for  bypassing   a  certain  DNA  lesion  e.g.  the  human  pol  η  is  able  to  bypass  thymine-­‐thymine  cyclobutane  dimer  with  high   efficiency.   Interestingly,   patients   showing   mutations   or   defects   in   the   human   pol   η   gene   suffer   from   sunlight-­‐sensitive   and   cancer-­‐prone  Xeroderma   pigmentosum   variant   (XP-­‐V)   syndrome   (70,   71).   The   second  class  of  enzymes  is  the  all-­‐rounder  and  has  the  ability  to  accommodate  different  DNA  lesions  e.g.  

the  archaeal  Dpo4  DNA  polymerase  from  the  Y-­‐family.  A  series  of  structural  studies  show  this  low  fidelity   polymerase   bound   to   damaged   substrates   such   as   oxidative   damage   (72,   73),   UV   cross-­‐linking   (74),  

benzo-­‐[a]pyrene  diol  epoxide  adduct  (BPDE)  (75),  and  abasic  site  lesions  (76).  However,  efficient  catalysis   is  mainly  observed  in  case  of  an  abasic  site  lesion(76,  77).  

 

1.6.2 Abasic  site  

The   most   common   DNA   damage   under   physiological   conditions   are   abasic   sites   resulting   mainly   from   spontaneous  hydrolysis  of  the  N-­‐glycosidic  bond  between   the   sugar   moiety   and   the   nucleobase   in   DNA   (78).   Abasic   sites  also  occur  as  intermediates  during  excision  repair  of   damaged  nucleotides  (79)  or  can  be  manifested  in  several   chemical   structures   such   as   C4’-­‐oxidized   abasic   site   (C4-­‐

AP)  after  treatment  of  DNA  with  antitumor  antibiotics  like   bleomycin   (80,   81).   The   abasic   site   L   (2’-­‐

deoxyribonolacetone)  results  from  one-­‐electron  nucleotide   oxidation   (82,   83).   In   general,   it   has   been   estimated   that   10000  abasic  sites  are  formed  in  human  cell  per  day  (78,  

84,  85).  Guanine  and  adenine  nucleobases  are  cleaved  most  efficiently  resulting  in  the  abasic  sugar  moiety   (AP,  Figure  9A).  To  investigate  the  biochemical  impact  of  AP  a  stabilized  tetrahydrofuran  analog  is  used   as  a  model.  

Since   the   genetic   information   gets   lost   by   the   cleavage   of   the   nucleobase,   abasic   sites   bear   a   high   mutagenic  potential  (85-­‐87).  To  face  this  problem  nature  offers  a  whole  arsenal  of  enzymes  and  possible   pathways.  In  most  cases,  the  lesion  is  removed  by  DNA  repair  systems  using  the  sister  strand  to  guide  for   incorporation  of  the  right  nucleotide.  However,  undetected  lesions  or  those,  formed  during  S  phase,  pose  a   challenge   to   DNA   polymerases   and   block   replication   (26,   88).   Additionally,   it   was   found   that   the   mutagenic  potential  of  these  lesions  in  translesion  synthesis  is  more  pronounced  in  animal  compared  with   bacterial  cells  presumably  because  of  higher  translesion  synthesis  in  eukaryotes  (87,  89,  90).  

A  set  of  studies  concerning  the  behavior  of  DNA  polymerases,  belonging  to  different  families,  showed  that   there  are  multiple  mechanisms  to  overcome  an  abasic  site.  Most  translesion  DNA  polymerases  from  family   X   and   Y   follow   various   loop   out   mechanisms   (76,   77,   91-­‐94).   Thereby,   the   nucleotide   selection   is   influenced   by   the   following   upstream   templating   bases   resulting   in   deletions   and   complex   mutation   spectra.  Recently,  an  amino  acid  templating  mechanism  was  found  for  the  “error-­‐free”  bypass  of  an  abasic   site   by   the   yeast   Rev1   DNA   polymerase   belonging   to   the   family   Y   (95).   Since   guanine   is   cleaved   most   efficiently   (85),   the   preference   of   Rev1   for   dCMP   incorporation   opposite   an   abasic   site   represents   the  

“best-­‐guess”.    

In   contrast,   in   vitro   and   in   vivo   studies   of   the   replicative   DNA   polymerases   from   family   A   (including   human  DNA  polymerases  γ  and  θ)  and  B  (including  human  DNA  polymerases  α,  ε  and  δ)  in  the  presence  of   the   stabilized   tetrahydrofuran   abasic   site   analog   F   (Figure   9D)   have   shown   that   purines,   in   particular   adenosine,   and   to   a   lesser   extent   guanosine,   are   most   frequently   incorporated   opposite   the   lesion.   The   strong  preference  for  adenosine  incorporation  opposite  an  abasic  site  has  been  termed  ‘A-­‐rule’  (89,  91,   Figure  9   Structures   of   different  forms   of   abasic   DNA  lesions.  

96-­‐104).   The   apparent   selectivity   for   incorporation   of   purines   ultimately   results   in   transversion   on  this  assumption  numerous  of  non-­‐natural  nucleotide  analogs  were  studied  regarding  their  behavior  in   the  presence  of  an  abasic  site.  If  the  induced  fit  model  is  taken  as  a  selection  criteria  opposite  abasic  sites,   a  non-­‐natural  nucleotide  analog  with  nearly  identical  size  to  the  Watson-­‐Crick  base  pair,  should  show  the   highest  incorporation  efficiency.  By  steric  examination  Matray  and  Kool  identified  the  pyrene  nucleoside   triphosphate  (dPTP)  as  a  perfect  match  in  the  absence  of  a  templating  base  (Figure  10)  (47).  Indeed,  they   could   show   that   the   pyrene   modified   nucleotide   is   incorporated   by   DNA   polymerase   I   from  E.   coli   with   higher  efficiency  than  any  other  natural  nucleotide,  demonstrating  that  a  simple  steric  model  is  sufficient   for   efficient   incorporation.   Further   the   fluorescent   nucleobase   analog   is   used   to   identify   and   sequence   abasic   site   lesions   in   DNA.   Studies   of   several   nucleotide  

analogs   identified   5-­‐nitro-­‐1-­‐indoyl-­‐nucleotide   (dNITP)   as   the  ‘specific  partner’  opposite  an  abasic  site,  since  dNIMP  is   incorporated   with   increased   efficiency   by   RB69   DNA   polymerase,   a   α-­‐like   DNA   polymerase,   compared   to   dPMP   (106).  The  structure  of  RB69  DNA  polymerase  capturing  an   artificial   5-­‐nitro-­‐1-­‐indoyl-­‐nucleotide   (dNITP)   opposite   an   abasic  site  in  the  active  site  of  the  enzyme  elucidated  that  a  

processing  an  adenosine  opposite  an  abasic  site  lesion  failed  so  far  (97).  The  structure  from  RB69  DNA   polymerase   in   presence   of   a   guanosine   opposite   an   abasic   is   still   not   sufficient   to   explain   the   ‘A-­‐rule’.  

Further  the  assignment  of  the  behavior  from  TLS  DNA  polymerases  to  explain  the  preference  of  adenosine   is   unsatisfactory,   given   that   these   families   use   different,   sequence-­‐depending   mechanisms   that   might   compete   with   the   A-­‐rule   when   bypassing   abasic   sites.   Therefore,   due   to   missing   structures   of   members   from   these   sequence   families,   the   selection   criteria   for   adenosine   opposite   an   abasic   site   remains   to   be   elucidated.