• Keine Ergebnisse gefunden

3   Conclusive  summary   69

5.2   Chemical  synthesis

5.2.1 5-­‐Nitro-­‐1-­‐indolyl-­‐2′-­‐deoxyriboside-­‐5′-­‐triphosphate  (dNITP)  

The   5-­‐nitro-­‐1-­‐indolyl-­‐2’-­‐deoxyriboside   (dNI)   was   purchased   from   Berry   &   Associates   Inc.,   USA.   20   mg   (71.9   µmol)   nucleoside   and   23   mg   (107.8   µmol)   proton   sponge   was   dissolved   in   previously   distilled   trimethylphosphate.   The   addition   of   POCl3   was   carried   out   under   ice   bad   cooling.   The   reaction   was   monitored  by  reverse  phase  TLC  in  isopropanol  /  water/  ammonia  =  3  /  1  /  1.  After  the  addition  of  1.2   equivalents  of  POCl3  719  µl  (359  µmol)  pyrophosphate  and  190  µl  (720  µmol)  tributylamine  was  added   simultaneously  and  fast.  The  solution  was  stirred  for  30  min  and  afterwards  quenched  by  adding  5  ml  0.1   M   TEAB   buffer.   The   reaction   mixture   was   three   times   extracted   against   ethyl   acetate.   The   aqueous   solution  was  further  purified  by  ion  exchange  chromatography  (see  chapter  5.1.2).  The  remaining  sample   was  desalted  by  RP-­‐MPLC  using  0.05  M  TEAA  buffer  and  acetonitrile  (see  chapter  5.1.2)  to  afford  dNITP   (13.7  µmol,  19%  yield).  

1H-­‐NMR  (400  MHz,  D2O):  δ  =  8.72  (d,  3J  =  2.2  Hz,  1H,  H-­‐4),  8.25  (dd,  3J  =  2.3,  9.2  Hz,  1H,  H-­‐6),  7.89  (d,  3J  =   3.5  Hz,  1H,  H-­‐2),  7.80  (d,  3J  =  9.2  Hz,  1H,  H-­‐7),  6.97  (d,  3J  =  5.9  Hz,  1H,  H-­‐3),  6.70  (dd,  3J  =  6.1,  8.2  Hz,  1H,  H-­‐

1’),  4.86  (dt,  3J  =  2.8,  5.9  Hz,  1H,  H-­‐3’),  4.35  –  4.31  (m,  1H,  H-­‐4’),  4.30  –  4.17  (m,  2H,  H-­‐5’),  3.26  (q,  3J  =  7.3   Hz,  24H,  NEt3);  2.87  (ddd,  3J  =  6.2,  8.2  Hz,  2J  =  14.3  Hz  1H,  H-­‐2’),  2.57  (ddd,  3J  =  2.9,  6.0  Hz,  2J  =  14.0  Hz,  1H,   H-­‐2’),  1.99  (s,  3H,  acetic  acid),  1.34  ppm  (t,  3J  =  7.3  Hz,  36H,  NEt3).  

31P  NMR  (162  MHz,  D2O):  δ  =  -­‐10.76  (d,  2J  =  19.8  Hz,  1P,  Pγ),  -­‐11.30  (d,  2J  =  20.1  Hz,  1P,  Pα),  -­‐23.21  ppm  (t,  2J  

=  20.1  Hz,  1P,  Pβ)  

HRMS:  m/z:  calcd  for  [C13H16N2O14P3-­‐]:  516.9809;  found:  516.9804.  

5.2.2 5’-­‐Tert-­‐butyldiphenylsilyl-­‐2’-­‐deoxyuridine  

To   protect   2’-­‐deoxyuridine   at   the   5’   position   1.5637   g   (6.85   mmol)   nucleoside   was   dissolved   in   15   ml   pyridine.   Next   1.96   ml   (7.54   mmol)   TBDPS-­‐Cl   (tert-­‐butyldiphenylsilylchloride)   was   added.   The   reaction  

mixture   was   stirred   over   night.   Pyridine   was   removed   and   the   reaction   residue   was   purified   by   flash   chromatography   (solvent:   hexane   /   ethyl   acetate   =   1   /   3)   to   afford   5’-­‐TBDPS   proteced   2’-­‐deoxyuridine   (5.49  mmol,  80%  yield).  

1H-­‐NMR  (400  MHz,  CDCl3):  δ  =  8.41  (br  s,  1H,  NH),  7.78  (d,  3J  =  8.2  Hz,  1H,  H-­‐6),  7.69  –  7.59  (m,  4H,  ArH),   7.51  –  7.37  (m,  6H,  ArH),  6.33  (t,  3J  =  6.4  Hz,  1H,  H-­‐1’),  5.46  (dd,  4J  =  2.1  Hz,  3J  =    8.1  Hz,  1H,  H-­‐5),  4.60  –   4.49  (m,  1H,  H-­‐3’),  4.04  –  3.95  (m,  2H,  H-­‐4’,  H-­‐5’),  3.90  –  3.80  (m,  1H,  H-­‐5’),  2.43  (ddd,  3J  =  4.0,  6.1  Hz,  2J  =   13.6  Hz,  1H,  H-­‐2’),  2.29  –  2.15  (m,  1H,  H-­‐2’),  1.09  ppm  (s,  9H,  C(CH3)3).  

13C  NMR  (101  MHz,  CDCl3):  δ  =  163.0,  150.2,  140.6,  135.8,  135.5,  132.8,  132.4,  130.4,  130.3,  128.2,  128.2,   102.5,  87.0,  85.1,  71.5,  63.7,  41.4,  27.1,  19.5  ppm.  

5.2.3 2’,3’-­‐dideoxyuridine  

200   mg   (0.43   mmol)   5’-­‐TBDPS   protected   2’-­‐deoxyuridine   and   199mg   (1.63   mmol)   DMAP   (4-­‐

(dimethylamino)-­‐pyridine)   were   dissolved   in   5   ml   acetonitrile.   89   µl   (0.64   mmol)   PhOCSCl   (o-­‐

phenylchlorothionoformate)  was  added  drop  wise.  The  reaction  mixture  was  stirred  at  room  temperature   and   monitored   by   TLC.   After   2.5   h   acetonitrile   was   removed   and   the   reaction   residue   was   resolved   in   CH2Cl2   following   an   extraction   against   5%   citric   acid.   The   organic   layer   was   dried   over   MgSO4   and   the   solvent   was   removed.   After   two   times   of   co-­‐evaporation   with   toluene   the   sample   was   solved   in   3   ml   toluene.   Next   14   mg   (0.086   mmol)   AIBN   (2,2’-­‐azobis(2-­‐methylpropionitrile))   and   346   µl   (1.29   mmol)   Bu3SnH   (tributylstannane)   were   dissolved   in   toluene   and   heated   to   85°C.   The   solution   was   added   drop   wise  to  this  solution.  The  reaction  mixture  was  refluxed  for  3  h.  Afterwards  toluene  was  removed  and  the   reaction  sample  was  filtered  over  a  short  column  (3  cm;  displaced  with  1%  KF)  using  ethyl  acetate.  The   filtrate   was   concentrated   and   resolved   in   THF   for   further   chemical   reaction.   136   µl   (0.47   mmol)   TBAF   solution  was  added.  After  complete  turnover  monitored  by  TLC  the  reaction  mixture  was  purified  by  flash   chromatography   (solvent:   CH2Cl2   and   MeOH;   stepwise   gradient   0-­‐5%   MeOH)   to   afford   2’,3’-­‐

dideoxyuridine  (0.15  mmol,  35%  yield).  

1H-­‐NMR  (400  MHz,  CDCl3):  δ  =  7.86  (d,  3J  =  8.1  Hz,  1H,  H-­‐6),  5.86  (dd,  3J  =  3.5,  6.6  Hz,  1H,  H-­‐1’),  5.50  (d,  3J  =   8.1  Hz,  1H,  H-­‐5),  4.01  –  3.95  (m,  1H,  H-­‐4’),  3.73  (dd,  3J  =  2.9,  2J  =  12.2,  1H,  H-­‐5’),  3.50  (dd,  3J  =  3.7,  2J  =  12.2,   1H,  H-­‐5’),  2.23  (dddd,  3J  =  6.8,  8.5,  9.8  Hz,  2J  =  13.5  Hz,  1H,  H-­‐2’),  1.90  (ddd,  3J  =  3.9,7.8  Hz,  2J  =  13.2  Hz,  1H,   H-­‐2’),  1.83  –  1.74  ppm  (m,  2H,  H-­‐3’).  

13C  NMR  (101  MHz,  CDCl3):  δ  =  164.7,  150.6,  140.9,  101.1,  86.3,  82.0,  62.4,  32.7,  24.5  ppm.  

5.2.4 5-­‐Iodo-­‐2’,3’-­‐dideoxyuridine  

100   mg   (0.47   mmol)   2’,3’-­‐dideoxyuridine   was   dissolved   in   MeOH.   33   µl   (0.66   mmol)   ICl   (iodine   monochloride)  was  added.  The  reaction  was  monitored  by  TLC.  The  reaction  mixture  was  stirred  at  room   temperature   over   night.   After   an   addition   of   in   total   1.9   equivalents   of   ICl   the   reaction   mixture   was   neutralized   with   10%   NH3   solution.   Afterwards   the   excess   of   iodine   was   destroyed   by   adding   0.5   M   NaHSO3  solution  until  the  solutions  was  discolored.  The  solvent  was  removed  by  the  rotation  evaporator.  

The   residue   was   purified   by   MPLC   using   ethyl   acetate   and   methanol   as   solvent   to   afford   5-­‐Iodo-­‐2’,3’-­‐

dideoxyuridine  (0.28  mmol,  59%  yield).  

1H-­‐NMR  (400  MHz,  CDCl3):  δ  =  8.51  (s,  1H,  H-­‐6),  5.97  (dd,  3J  =  2.8,  6.6  Hz,  1H,  H-­‐1’),  4.14  (qd,  J  =  2.6,  5.9,   1H,  H-­‐4’),  3.95  (dd,  3J  =  2.4,  2J  =  12.2,  1H,  H-­‐5’),  3.66  (dd,  3J  =  3.0,  2J  =  12.2,  1H,  H-­‐5’),  2.23  (dt,  3J  =  8.3,  2J  =   15.7,  1H,  H-­‐2’),  2.11  –  2.00  (m,  1H,  H-­‐2’),  1.99  –  1.89  ppm  (m,  2H,  H-­‐3’).  

13C  NMR  (101  MHz,  CDCl3):  δ  =  145.7,  87.0,  82.4,  62.3,  33.3,  24.3ppm.  

5.2.5 5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’,3’-­‐dideoxyuridine  (ddT

alkyne

)  

80   mg   (0.24   mmol)   5-­‐iodo-­‐2’,3’-­‐dideoxyuridine,   90   mg   (0.70   mmol)   1,4-­‐diethynylbenzene   and   9   mg   (0.047   mmol)   CuI   (copper(I)   iodine)   were   dissolved   in   DMF.   The   solution   was   degassed   before   27   mg   (0.024  mmol)  Pd(PPh3)4  (tetrakis(triphenylphosphine)palladium  (0))  catalyst  was  added.  After  a  second   time  of  degassing  66  µl  (0.47  mmol)  previously  distilled  Et3N  was  added.  The  reaction  mixture  was  stirred   at  room  temperature  and  monitored  by  TLC  (CH2Cl2  and  10%  MeOH).  After  2  h  the  solvent  was  removed   and  the  product  was  purified  by  flash  chromatography  (solvent:  CH2Cl2  and  MeOH;  stepwise  gradient  0-­‐

2%  MeOH)  to  yield  5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’,3’-­‐dideoxyuridine  (0.17  mmol,  71%  yield).  

1H-­‐NMR  (400  MHz,  MeOD):  δ  =  8.60  (s,  1H,  H-­‐6),  7.50  –  7.38  (m,  4H,  ArH),  6.04  (dd,  3J  =  2.9,  6.6  Hz,  1H,  H-­‐

1’),  4.18  (ddt,  3J  =  3.0,  6.2,  9.1  Hz,  1H,  H-­‐4’),  3.96  (dd,  3J  =  2.8,  12.3  Hz,  1H,  H-­‐5’),  3.71  (dd,  3J  =  3.2,  12.3  Hz,   1H,  H-­‐5’),  3.47  (s,  1H,  C≡CH),  2.43  (m,  1H,  H-­‐2’),  2.19  –  2.09  (m,  1H,  H-­‐2’),  2.07  –  1.92  ppm  (m,  2H,  H-­‐3’).  

13C-­‐NMR  (101  MHz,  MeOD):  δ  =  164.0,  150.8,  145.2,  132.4,  132.1,  124.4,  123.2,  99.4,  93.0,  87.9,  83.7,  83.7,   83.6,  80.1,  62.8,  59.3,  33.9,  25.0  ppm.  

HRMS:  m/z:  calcd  for  [C19H15N2O4-­‐]:  335.1026;  found:  335.1034.  

5.2.6 5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’,3’-­‐dideoxycytidine  (ddC

alkyne

)  

For  the  conversion  of  the  modified  dideoxyuridine  to  the  corresponding  modified  dideoxycytidine  14  mg   (42   µmol)   of   the   modified   dideoxyuridine   and   8.7   mg   (71   µmol)   DMAP   (4-­‐(dimethylamino)-­‐pyridine)   were  dissolved  in  acetonitrile.  Under  ice  bath  cooling  9,8  µl  (71  µmol)  Et3N  and  subsequently  20.4  mg  (67   µmol)  TPSCl  (triisopropyl  benzenesulfonyl  chloride)  were  added.  The  reaction  mixture  was  stirred  for  2  h   at  0°C.  Next  1  ml  of  a  mixture  of  33%  NH4OH  /  CH3CN  =  1  /  1  was  added  to  the  reaction  mixture.  After  1.5   h   stirring   at   0°C   the   reaction   mixture   was   allowed   to   warm   up   to   room   temperature   and   stirring   was   continued   for   another   1.5   h.   The   reaction   mixture   was   diluted   with   CH2Cl2   and   extracted   against   1M   aqueous  KHSO4  solution.  After  three  times  extraction  of  the  aqueous  phase  with  CH2Cl2  the  organic  layer   were   combined,   dried   over   MgSO4,   and   concentrated.   The   desired   cytidine   derivative   (23   µmol,   57%  

yield)   was   obtained   following   purification   by   flash   chromatography   (solvent:   ethyl   acetate   and   MeOH;  

stepwise  gradient  0-­‐5%  MeOH).  

1H-­‐NMR  (600  MHz,  DMSO-­‐d6):  δ  =  8.57  (s,  1H,  H-­‐6),  7.70  (br  s,  1H,  NH2),  7.62  –  7.58  (m,  2H,  ArH),  7.53  –   7.47  (m,  2H,  ArH),  7.03  (br  s,  1H,  NH2),  5.90  (dd,  3J  =  2.7,  6.7  Hz,  1H,  H-­‐1’),  5.23  (t,  3J  =  5.0  Hz,  1H,  OH),  4.32   (s,  1H,  C≡CH),  4.11  –  4.05  (m,  1H,  H-­‐4’),  3.79  (ddd,  3J  =  3.0,  5.4  Hz,  2J  =  12.0  Hz,  1H,  H-­‐5’),  3.61  –  3.55  (m,   1H,  H-­‐5’),  2.36  –  2.27  (m,  1H,  H-­‐2’),  1.98  –  1.91  (m,  1H,  H-­‐2’),  1.87  –  1.79  ppm  (m,  2H,  H-­‐3’).  

13C   NMR   (151   MHz,   DMSO-­‐d6):   δ   =   163.9,   163.8,   153.4,   145.6,   132.5,   131.8,   131.4,   131.3,   123.2,   121.3,   86.5,  84.3,  84.2,  83.1,  82.6,  82.2,  61.3,  33.0,  23.8  ppm.  

HRMS:  m/z:  calcd  for  [C19H16N3O3-­‐]:  334.1186;  found:  334.1193.  

5.2.7 5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’,3’-­‐dideoxyuridine-­‐5’-­‐triphophate  (ddT

alkyne

TP)  

6   mg   (17.7   µmol)   modified   dideoxyuridine   and   5.7   mg   (26.8   µmol)   proton   sponge   were   dissolved   in   previously  distilled  trimethylphosphate.  The  addition  of  2  µl  (21.4  µmol)  POCl3  was  carried  out  under  ice   bad  cooling.  The  reaction  was  monitored  by  reverse  phase  TLC  in  isopropanol  /  water/  ammonia  =  3  /  1  /   1.  After  2  h  stirring  173  µl  (83.2  µmol)  pyrophosphate  and  47  µl  (173  µmol)  tributylamine  were  added   fast  and  simultaneously.  The  solution  was  stirred  for  2  min  and  afterwards  quenched  by  adding  5  ml  0.1  M   TEAB  buffer.  The  reaction  mixture  was  extracted  three  times  against  ethyl  acetate.  The  aqueous  solution   was   further   purified   by   ion   exchange   chromatography   (see   chapter   5.1.2).   The   remaining   sample   was   desalted  by  RP-­‐MPLC  using  0.05  M  TEAA  buffer  and  acetonitrile  (see  chapter  5.1.2)  to  afford  the  modified   dideoxyuridine-­‐5’-­‐triphosphate  (5.2  µmol,  29%  yield).  

1H-­‐NMR  (400  MHz,  D2O):  δ  =  8.10  (s,  1H,  H-­‐6),  7.59  (d,  3J  =  8.3  Hz,  2H,  ArH),  7.53  (d,  3J  =  8.3  Hz,  2H,  ArH),   6.10  (dd,  3J  =  3.6,  6.9  Hz,  1H,  H-­‐1’),  4.43  –  4.35  (m,  1H,  H-­‐4’),  4.30  –  4.23  (m,  1H,  H-­‐5’),  4.18  –  4.10  (m,  1H,   H-­‐5’),  3.58  (s,  1H,  C≡CH),  3.14  (m,  24H,  NEt3),  2.53  –  2.42  (m,  1H,  H-­‐2’),  2.21  –  2.09  (m,  2H,  H-­‐2’,  H-­‐3’),  2.02   –  1.92  (m,  1H,  H-­‐3’),  1.90  (s,  3H,  acetic  acid),  1.25  ppm  (t,  3J  =  5.9  Hz,  36H,  NEt3).  

31P  NMR  (162  MHz,  D2O):  δ  =  -­‐10.84  (d,  2J  =  19.7  Hz,1P,  Pγ),  -­‐11.25  (d,  2J  =  19.9  Hz,  1P,  Pα),  -­‐23.31  ppm  (t,  2J  

=  19.5  Hz  1P,  Pβ).  

HRMS:  m/z:  calcd  for  [C19H18N2O13P3-­‐]:  575.0016;  found:  575.0022.  

5.2.8 5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’,3’-­‐dideoxycytidine-­‐5’-­‐triphosphate   (ddC

alkyne

TP)  

10   mg   (23.8   µmol)   modified   dideoxycytidine   and   9.6   mg   (44.7   µmol)   proton   sponge   were   dissolved   in   previously  distilled  trimethylphosphate.  The  addition  of  3.3  µl  (35.7  µmol)  POCl3  was  carried  out  under   ice  bad  cooling.  The  reaction  was  monitored  by  reverse  phase  TLC  in  isopropanol  /  water/  ammonia  =  3  /   1  /  1.  After  2  h  stirring  293  µl  (143  µmol)  pyrophosphate  and  79  µl  (297  µmol)  tributylamine  were  added   fast  and  simultaneously.  The  solution  was  stirred  for  2  min  and  afterwards  quenched  by  adding  5  ml  0.1  M   TEAB  buffer.  The  reaction  mixture  was  extracted  three  times  against  ethyl  acetate.  The  aqueous  solution   was   further   purified   by   ion   exchange   chromatography   (see   chapter   5.1.2).   The   remaining   sample   was   desalted  by  RP-­‐MPLC  using  0.05  M  TEAA  buffer  and  acetonitrile  (see  chapter  5.1.2)  to  afford  the  modified   dideoxycytidine-­‐5’-­‐triphosphate  (0.4  µmol,  1.7%  yield).  

1H-­‐NMR  (400  MHz,  D2O):  δ  =  8.22  (s,  1H,  H-­‐6),  7.60  (d,  3J  =  8.3  Hz,  2H,  ArH),  7.54  (d,  3J  =  8.3  Hz,  2H,  ArH),   6.08  (dd,  3J  =  2.6,  6.8  Hz,  1H,  H-­‐1’),  4.45  –  4.35  (m,  1H,  H-­‐4’),  4.34  –  4.25  (m,  1H,  H-­‐5’),  4.23  –  4.13  (m,  1H,   H-­‐5’),  3.59  (s,  1H,  C≡CH),  3.17  (q,  3J  =  7.3  Hz,  24H,  NEt3),  2.54  –  2.42  (m,  1H,  H-­‐2’),  2.17  –  2.05  (m,  2H,  H-­‐2’,   H-­‐3’),  1.89  –  1.87  (m,  1H,  H-­‐3’),  1.25  ppm  (t,  3J  =  7.2  Hz,  36H,  NEt3).    

31P  NMR  (162  MHz,  D2O):  δ  =  -­‐8.66  –  -­‐9.33  (m,1P,  Pγ),  -­‐10.65  –  -­‐11.08  (m,  1P,  Pα),  -­‐21.82  –  -­‐22.50  ppm  (m,   1P,  Pβ)  

HRMS:  m/z:  calcd  for  [C19H19N3O12P3-­‐]:  574.0176;  found:  574.0176.  

5.2.9 3’-­‐O-­‐acetyl-­‐5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’-­‐deoxyuridine  (dT

alkyne

)  

200   mg   (0.51   mmol)   5-­‐iodo-­‐2’,3’-­‐dideoxyuridine,   127   mg   (1.0   mmol)   1,4-­‐diethynylbenzene   and   19   mg   (0.1  mmol)  CuI  (copper(I)  iodine)  were  dissolved  in  DMF.  The  solution  was  degassed  before  5.8  mg  (5.1   µmol)  Pd(PPh3)4  (tetrakis(triphenylphosphine)palladium  (0))  catalyst  was  added.  After  a  second  time  of  

degassing   140   µl   (1.0   mmol)   previously   distilled   Et3N   was   added.   The   reaction   was   stirred   at   room   temperature  and  monitored  by  TLC  (ethyl  acetate  /  petrol  ether  =  3  /  1).  After  5  h  the  reaction  mixture   was  extracted  against  saturated  NaHCO3  solution.  The  aqueous  solution  was  washed  several  times  with   diethyl  ether.  The  combined  organic  layers  were  dried  over  MgSO4.  Next  the  solvent  was  removed  and  the   product  was  purified  by  flash  chromatography  (solvent:  ethyl  acetate  and  petrol  ether;  stepwise  gradient   2/1  –  1/1  –  1/2  –  1/3)  to  yield  5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’-­‐deoxyuridine  (0.13  mmol,  27%  yield).  

1H-­‐NMR  (400  MHz,  MeOD):  δ  =  8.45  (s,  1H,  H-­‐6),  7.54  –  7.40  (m,  4H,  ArH),  6.28  (dd,  3J  =  5.9,  8.2  Hz,  1H,  H-­‐

1’),  5.33  (dt,  3J  =  2.0,  6.1  Hz,  1H,  H-­‐3’),  4.14  (q,  3J  =  2.7  Hz,  1H,  H-­‐4’),  3.91  –  3.78  (m,  2H,  H-­‐5’),  3.62  (s,  1H,   C≡CH),  2.52  –  2.31  (m,  2H,  H-­‐2’),  2.10  ppm  (s,  3H,  OAc).  

13C  NMR  (101  MHz,  MeOD):  δ  =  172.2,  151.2,  145.1,  133.0,  132.5,  124.7,  123.8,  101,4,  100.6,  93.4,  87.1,   87.0,  83.9,  83.8,  80.6,  76.4,  62.8,  39.1,  20.9  ppm.  

HRMS:  m/z:  calcd  for  [C21H17N2O6-­‐]:  393.1081;  found:  393.1088.  

5.2.10 3’-­‐O-­‐acetyl-­‐5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’-­‐deoxycytidine  (dC

alkyne

)  

For   the   conversion   of   the   modified   deoxyuridine   to   the   corresponding   modified   deoxycytidine   64   mg   (0.16  mmol)  of  the  modified  deoxyuridine  and  39.7  mg  (0.33  mmol)  DMAP  (4-­‐(dimethylamino)-­‐pyridine)   were  dissolved  in  acetonitrile.  Under  ice  bath  cooling  45  µl  (0.33  mmol)  Et3N  and  subsequently  93.4  mg   (0.31  mmol)  TPSCl  (triisopropyl  benzenesulfonyl  chloride)  were  added.  The  reaction  mixture  was  stirred   for  1.5  h  at  0°C.  Next  1  ml  of  a  mixture  of  33%  NH4OH  /  CH3CN  =  1  /  1  was  added  to  the  reaction  mixture.  

After  1.5  h  stirring  at  0°C  the  reaction  mixture  was  allowed  to  warm  up  to  room  temperature  and  stirring   was  continued  for  another  1.5  h.  The  reaction  mixture  was  diluted  with  CH2Cl2  and  extracted  against  1M   aqueous  KHSO4  solution.  After  three  times  extraction  of  the  aqueous  phase  with  CH2Cl2  the  organic  layers   were   combined,   dried   over   MgSO4,   and   concentrated.   The   desired   cytidine   derivative   (95   µmol,   59%  

yield)   was   obtained   following   purification   by   flash   chromatography   (solvent:   ethyl   acetate   and   MeOH;  

stepwise  gradient  0-­‐4%  MeOH).  

1H-­‐NMR  (600  MHz,  DMSO-­‐d6):  δ  =  8.32  (s,  1H,  H-­‐6),  7.85  (br  s,  1H,  NH2),  7.68  –  7.59  (m,  2H,  ArH),  7.55  –   7.48  (m,  2H,  ArH),  7.16  (br  s,  1H,  NH2),  6.17  (dd,  3J  =  5.8,  8.3  Hz,  1H,  H-­‐1’),  5.35  –  5.24  (m,  1H,  OH),  5.21  (dt,  

3J  =  2.0,  6.2  Hz,  1H,  H-­‐3’),  4.34  (s,  1H,  C≡CH),  4.08  –  4.01  (m,  1H,  H-­‐4’),  3.73  –  3.62  (m,  2H,  H-­‐5’),  2.33  (ddd,  

3J  =  1.9,  5.7  Hz,  2J  =  14.0  Hz,  1H,  H-­‐2’),  2.22  (ddd,  3J  =  6.3,  8.3  Hz,  2J  =  14.3  Hz,  1H,  H-­‐2’),  2.07  ppm  (s,  3H,   OAc).  

13C   NMR   (151   MHz,   DMSO-­‐d6):   δ   =   177.7,   170.1,   163.7,   153.3,   145.1,   135.8,   131.8,   131.4,   123.0,   121.5,   93.4,  89.7,  85.5,  85.0,  83.7,  83.1,  82.7,  74.6,  61.2,  37.9,  20.9  ppm.  

HRMS:  m/z:  calcd  for  [C21H18N3O5-­‐]:  392.1241;  found:  392.1247.  

5.2.11 5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’-­‐deoxyuridine-­‐5’-­‐triphosphate  (dT

alkyne

TP)  

14   mg   (35.5   µmol)   modified   deoxyuridine   and   11.4   mg   (53.2   µmol)   proton   sponge   were   dissolved   in   previously  distilled  trimethylphosphate.  The  addition  of  3.9  µl  (42.6  µmol)  POCl3  was  carried  out  under   ice  bad  cooling.  The  reaction  was  monitored  by  reverse  phase  TLC  in  isopropanol  /  water/  ammonia  =  3  /   1   /   1.   After   1   h   stirring   355   µl   (1.78   mmol)   pyrophosphate   and   94   µl   (355   µmol)   tributylamine   were   added  fast  and  simultaneously.  The  solution  was  stirred  for  15  min  and  afterwards  quenched  by  adding  5   ml  0.1  M  TEAB  buffer.  The  reaction  mixture  was  extracted  three  times  against  ethyl  acetate.  The  sample  

was  concentrated  and  resolved  in  10  ml  water.  To  remove  the  3’  protecting  group  20  ml  33%  ammonia   solution   was   added.   The   reaction   mixture   was   stirred   for   1   h   and   was   afterwards   concentrated.   The   aqueous   solution   was   further   purified   by   ion   exchange   chromatography   (see   chapter   5.1.2).   The   remaining  sample  was  desalted  by  RP-­‐MPLC  using  0.05  M  TEAA  buffer  and  acetonitrile  (see  chapter  5.1.2)   to  afford  the  modified  deoxyuridine-­‐5’-­‐triphosphate  (3.6  µmol,  10%  yield).  

1H-­‐NMR  (400  MHz,  D2O):  δ  =  8.20  (s,  1H,  H-­‐6),  7.56  (d,  3J  =  8.0  Hz,  2H,  ArH),  7.50  (d,  3J  =  8.0  Hz,  2H,  ArH),   6.28  (t,  3J  =  6.7  Hz,  1H,  H-­‐1’),  4.67  –  4.62  (m,  1H,  H-­‐3’),  4.27  –  4.16  (m,  3H,  H-­‐4’,  H-­‐5’),  3.58  (s,  1H,  C≡CH),   3.16  (q,  3J  =  7.3  Hz,  24H,  NEt3),  2.53  –  2.42  (m,  1H,  H-­‐2’),  2.43  –  2.37  (m,  2H,  H-­‐2’),  1.24  ppm  (t,  3J  =  7.3  Hz,   36H,  NEt3).    

31P  NMR  (162  MHz,  D2O):  δ  =  -­‐7.78  –  -­‐8.25  (m,  1P,  Pγ),  -­‐11.23  (d,  2J  =  20.0  Hz,  1P,  Pα),  -­‐22.04  –  -­‐22.50  ppm   (m,  1P,  Pβ).  

HRMS:  m/z:  calcd  for  [C19H18N2O14P3-­‐]:  590.9965;  found:  590.9972.  

5.2.12 5-­‐(2-­‐(4-­‐ethynylphenyl)ethynyl)-­‐2’-­‐deoxycytidine-­‐5’-­‐triphosphate  (dC

alkyne

TP)  

15   mg   (38   µmol)   modified   deoxycytidine   and   12.3   mg   (57.2   µmol)   proton   sponge   were   dissolved   in   previously  distilled  trimethylphosphate.  The  addition  of  4.2  µl  (45.8  µmol)  POCl3  was  carried  out  under   ice  bad  cooling.  The  reaction  was  monitored  by  reverse  phase  TLC  in  isopropanol  /  water/  ammonia  =  3  /   1   /   1.   After   1   h   stirring   381   µl   (191   µmol)   pyrophosphate   and   101   µl   (380   µmol)   tributylamine   were   added  fast  and  simultaneously.  The  solution  was  stirred  for  15  min  and  afterwards  quenched  by  adding  5   ml  0.1  M  TEAB  buffer.  The  reaction  mixture  was  extracted  three  times  against  ethyl  acetate.  The  sample   was  concentrated  and  resolved  in  10  ml  water.  To  remove  the  3’  protecting  group  20  ml  33%  ammonia   solution   was   added.   The   reaction   mixture   was   stirred   for   1   h   and   was   afterwards   concentrated.   The   aqueous   solution   was   further   purified   by   ion   exchange   chromatography   (see   chapter   5.1.2).   The   remaining  sample  was  desalted  by  RP-­‐MPLC  using  0.05  M  TEAA  buffer  and  acetonitrile  (see  chapter  5.1.2)   to  afford  the  modified  deoxycytidine-­‐5’-­‐triphosphate  (4.5  µmol,  12%  yield).  

1H-­‐NMR  (400  MHz,  D2O):  δ  =  8.22  (s,  1H,  H-­‐6),  7.64  (d,  3J  =  7.0  Hz,  2H,  ArH),  7.57  (d,  3J  =  7.0  Hz,  2H,  ArH),   6.31  (t,  3J  =  6.4  Hz,  1H,  H-­‐1’),  4.69  –  4.60  (m,  1H,  H-­‐3’),  4.27  (br  s,  3H,  H-­‐4’,  H-­‐5’),  3.65  (s,  1H,  C≡CH),  3.23   (q,  3J  =  7.1  Hz,  6H,  NEt3),  2.57  –  2.46  (m,  1H,  H-­‐2’),  2.42  –  2.30  (m,  2H,  H-­‐2’),  1.31  ppm  (t,  3J  =  7.2  Hz,  9H,   NEt3).  

31P  NMR  (162  MHz,  D2O):  δ  =  -­‐8.40  –  -­‐10.63  (m,  1P,  Pγ),  -­‐10.62  –  12.00  (m,  1P,  Pα),  -­‐20.43  –  -­‐23.90  ppm  (m,   1P,  Pβ).  

HRMS:  m/z:  calcd  for  [C19H19N3O13P3-­‐]:  590.0125;  found:  590.0143.  

5.3 Molecular  biological  Experiments