• Keine Ergebnisse gefunden

Increase  in  incorporation  efficiency  of  the  alkyne  modified  substrates  by  using  a

2   Results  and  Discussion   19

2.5   Elongation  of  modified  nucleotide  analogs

2.5.3   Increase  in  incorporation  efficiency  of  the  alkyne  modified  substrates  by  using  a

2.5.3 Increase   in   incorporation   efficiency   of   the   alkyne   modified   substrates   by   using  a  mutated  KlenTaq  variant  

The   present   structural   data   indicates   that   during   enzymatic   introduction   of   modified   substrates   the   enzyme  DNA  interactions  on  the  primer  site  are  clearly  affected.  The  idea  suggests  itself  that  to  strengthen   the  interaction  framework  on  the  template  site  might  compensate  the  decreased  in  stabilizing  the  primer   Figure  53  Zoom  into  the  active  site  of  KlenTaqddC-­‐alkyne  (brown).  (A)  Close-­‐up  view  of  the  complexation  of  Mg2+  ions  by   the  incoming  ddCalkyneTP  and  the  amino  acids  crucial  for  catalysis.  (B)  Octahedral  coordination  of  the  metal  ion  A  in   KlenTaqddC-­‐alkyne.   (C)   Coordination   of   metal   ion   A   by   five   ligands   in  KlenTaq1QTM   (green).   (D)   Superimposition   of   KlenTaqddC-­‐alkyne  and  KlenTaq1QTM  showing  the  same  orientation  as  in  (A).  

strand.  Keeping  this  in  mind,  the  acceptance  of  the  alkyne  modified  substrates  was  further  investigated  by   a  previously  evolved  KlenTaq  I614K,  M747K  mutant  (henceforth  termed  KlenTaqDM)  (181).  This  variant   combines   two   single   mutants   derived   from   directed-­‐evolution   approaches,   which   are   known   for   its   improved  translesion  synthesis  capability.  It  was  found  that  the  mutation  of  a  single  nonpolar  amino  acid   side   chain   by   a   cationic   side   chain   increases   the   processivity   of  KlenTaqDM   by   expanded   positively   charged  surface  potential  areas.  The  mutations  are  located  at  the  template  site,  thus  KlenTaqDM  was  used   to  prove  the  above  mentioned  hyphosesis.  The  competition  experiments  catalyzed  by  KlenTaqDM  result  in   a   slightly   improved   incorporation   efficiency   for   dTalkyneTP   showing   an   approximately   5-­‐fold   lower   incorporation  efficiency  compared  to  the  natural  counterparts  (Figure  54).  In  correlation  with  this  results   the   competition   experiment   carried   out   with   dCalkyneTP   vs.   dCTP   show   similar   trends.   Surprisingly   dCalkyneTP  seems  to  be  slightly  better  accepted  by  KlenTaqDM  than  the  natural  counterpart.  These  findings   support  the  idea  of  the  balance  between  the  enzyme  substrate  interactions.  

 

Figure   54   Acceptance   of   dTalkyneTP   and   dCalkyneTP   by  KlenTaqDM   DNA   polymerase.   (A)   Competition   experiments   of   dTalkyneTP   versus   dTTP.  

PAGE   analysis   of   an   exemplary   competition   experiments   employing   KlenTaqDM   DNA   polymerase   (reaction   time:   1   min).   The   ratio   of   dTalkyneTP/dTTP   was   varied   from   1/1   to   100/1   (1/1,   2/1,   4/1,   10/1,   20/1,   50/1,   100/1).   Lane   P:   5’-­‐32P-­‐labeled   primer;   lane   C:   only   dTTP   (ratio:  0/1);  lane  Talkyne:  only  dTalkyneTP  (ratio:  1/0).  The  product  bands   were  quatified  to  evaluate  the  incorporation  efficiencies  of  dTalkyneTP  (■,   dashed   line)   and   dTTP   (•,   solid   line)   catalyzed   by   KlenTaq.   The   conversion  in  %  was  plotted  versus  the  concentration.  A  zoom   into  the   cross   spot   indicates   the   approximate   ratio   where   both   nucleotides   are   equally   incorporated   with   a   dotted   line.   (B)   Same   as   in   (A)   using   dCalkyneTP   and   dCTP   instead.   The   ratio   of   dCalkyneTP/dCTP   was   varied   from  1/10  to  10/1  (1/10,  1/4,  1/2,  1/1,  2/1,  4/1,  10/1).  

2.5.4 Discussion  

KlenTaq  DNA  polymerase  –  a  member  of  the  A  family  –  is  a  high  fidelity  DNA  polymerase,  known  for  its   accuracy   in   DNA   synthesis.   However,   the   obtained   structures   of  KlenTaq   capturing   suitable   alkyne   modified   substrates   in   the   active   site   illustrate   once   more   the   plasticity   of   the   enzyme.   The   model   of  

“active   site   tightness”   described   by   Kool   relies   on   a   sterically   defined   binding   pocket   of   the   incoming   nucleotide   (42).   Since   the   natural   substrates   also   differ   from   each   other,   there   are   also   relative   flexible   regions   in   this   binding   pocket.   This   fact   underpins   the   idea   that   the   enzyme   is   able   to   respond   to   the   incoming  nucleotide  and  shows  certain  flexibility  at  these  positions.  Attaching  the  modification  at  the  C5   atom   of   the   pyrimidines   has   two   major   advantages.   Firstly,   modifications   at   this   position   cause   minor   disruption  of  the  DNA  duplex,  since  the  modification  points  to  the  major  groove.  Secondly,  it  also  results  in   minor  disruption  of  the  ternary  complex  of  the  enzyme  as  the  present  structural  study  emphasizes.  The   disturbances   of   the   enzyme   substrates   interactions   are   minimal,   since   the   enzyme   is   sensitive   to   alterations   at   that   position.   Moreover,   the   present   structural   study   indicates   that   DNA   polymerases   are   not  only  able  to  accept  modifications,  they  can  interact  and  stabilize  the  modified  substrates.  The  alkyne   linked  ethynylphenyl  ring  of  dTalkyneTP  and  dCalkyneTP  is  able  to  interact  with  positively  charged  amino  acid   side   chains   like   arginine   or   lysine   via   cation-­‐π   interaction.   Similar   effects   were   found   in  KlenTaq   processing   a   dendron   modified   nucleotide   dTdendTP   (176).   In   this   case   the   Arg660   interacts   with   the   nitrogen   of   the   propargylamide   linkage   and   the   3’-­‐primer   terminus,   contributing   to   increase   the   incorporation   efficiency.   Whereas   a   spinlabel   modified   nucleotide   dTspinTP   is   examined   as   a   disruption   and  Arg660  is  released  from  its  stabilizing  interaction  to  the  primer  strand  and  flips  out  to  make  room  for   the  spinlabel  (176).  In  correlation  with  these  findings,  the  well  acceptance  of  dTalkyneTP  and  dCalkyneTP  of   might  lead  back  to  the  cation-­‐π  interaction  to  Arg587  and  Lys663.  However,  the  contribution  of  Lys663  to   stabilize   the   modified   substrates   via   cation-­‐π   interaction   remains   to   be   elucidated.   Given   that   Lys663   exhibits   an   enlarged   distance   from   the   amino   group   to   the   center   of   the   aromatic   ring   compared   to   Arg587.   The   introduction   of   the   modification   at   the   C5   atom   of   the   nucleobase   does   not   induce   a   conformational   change   of   Lys663,   whereas   it   clearly   affects   the   conformation   of   Arg587.   Similar   orientations   of   Arg587   are   found   in  KlenTaq   processing   a   guanosine   (PDB:   1QSS),   or   when   purines   are   incorporated  opposite  an  abasic  site  (PDB:  3LWL  /  3RR8  /3RRG).  During  bypass  of  an  abasic  site  Arg587   was   identified   as   a   stabilizing   factor   for   the   incoming   purine   nucleotides   via   hydrogen   bond   and/or   cation-­‐π   interactions   (149).   Further,   functional   in   combination   with   mutational   studies   of   DNA   polymerase  I  from  E.  coli  (Klenow  Fragment),  sharing  a  high  degree  of  structural  and  sequence  similarity   with  KlenTaq,   identified   Arg682,   which   is   homolog   to   Arg587   in  KlenTaq,   as   base   substitution   mutator   (163).   The   R682A   variant   of   Klenow   Fragment   shows   a   decreased   fidelity   at   the   insertion   step,   underpinning   the   hypothesis   that   interactions   to   Arg587   contribute   to   the   substrate   acceptance.   This   might  also  be  transferable  to  modified  substrates.  Thus,  in  addition  to  the  previously  identified  Arg660  as   a  stabilizing  factor  for  propargylamide  linked  modifications  (176),  the  present  structural  and  functional   study  identified  Arg587  as  a  stabilizing  guide  for  an  ethynylphenylethynyl  linkage.  

Further  the  introduction  of  two  consecutive  alkyne  modified  substrates  revealed  that  the  benzene  rings   can  communicate  with  each  other  via  π-­‐π  stacking  interaction.  This  interaction  dissolves  the  conjugated   aromatic   system,   reaching   over   nucleobase   and   modification,   forcing   the   nucleotide   analog   to   twist   the  

modification   in   respect   to   the   nucleobase.   Thereby,   the   disruption   of   the   enzyme’s   active   site   is   minimized,  indicated  by  the  reorientation  of  Arg660  and  Arg587.  The  presence  of  amino  acid  with  a  long   side  chain  near  the  substrates  such  as  arginine  clearly  contributes  to  the  enzyme  plasticity  and  flexibility.  

The  results  suggest  that  modifications,  which  require  a  rigid  linkage,  might  be  better  tolerated  by  a  DNA   polymerase  if  they  contain  an  aromatic  ring,  which  can  communicate  with  the  protein  or  with  each  other   via  cation-­‐π  or  π-­‐π  interaction,  respectively.  In  fact,  several  examples  of  dNTPs  that  are  processed  by  DNA   polymerases   and   modified   via   a   C5   ethynylphenylethynyl   linker   have   been   reported   (136,   182).   For   instance,   Burgess   and   coworkers   demonstrated   that   rigid   conjugated   linkers   are   able   to   enhance   the   spectroscopic   properties   of   dye   labeled   nucleotide   analogs   (182).   Further   the   incorporation   studies   of   these   nucleotides   showed   that   the   acceptance   by   AmpliTaqFS   DNA   polymerase   (widely   applied   in   high   throughput   DNA   sequencing   methods)   is   increased   in   line   with   the   linker   length.   The   dye   labeled   nucleotide   with   the   ethynylphenylethynyl   linkage   is   recognized   by  TaqFS,   whereas   the   use   of   the   dye   labeled   nucleotide   analog   with   a   simple   alkyne   linkage   in   primer   extension   reactions   result   in   no   significant  product  formation.  These  insights  and  the  present  structural  study  suggest  that  implementing   an  aromatic  ring  at  the  discussed  position  in  modified  dNTPs  may  improve  their  substrate  properties.  This   enhancement   of   design   guidelines   for   the   development   of   new   modified   dNTPs,   in   combination   with   directed  evolution  of  DNA  polymerases  (178-­‐180),  will  stimulate  the  development  of  future  applications.  

For   instance,   the   employment   of   KlenTaqDM   –   an   evolved   KlenTaq   mutant   –   showing   enhanced   translesion  synthesis  capability,  results  in  slightly  increased  incorporation  efficiencies  for  dTalkyneMP  and   dCalkyneMP,  underscoring  the  impact  of  evolved  DNA  polymerases.