• Keine Ergebnisse gefunden

Hemmung durch Polyanionen

CD 50 -Hepatozyten -HepG2

N- terminus C-termin al domain terminal dom ainATP-binding loop

6.1.4. Die Hemmung der CyclinA-aktivierten cyclinabhängige Kinase2

Alleine der Vergleich der in-silico Daten der Verbindungsklasse A, der Anthranoide, im Vergleich zur CK-2, zeigt eine deutlich schlechtere Bindung zur Proteinkinase CDK2/cyclinA.

A-1 A-5 A-6 A-7 A-8 C-5 C-6 C-7 C-8 D-4 D-5 D-6

1,00E-09 1,00E-08

1,00E-07 1,00E-06 1,00E-05 1,00E-04

[6-10] Vergleich der Docking KD-Werte der CK-2 (rot) mit der der CDK2/cyclinA (blau)

Aufgrund der schlechten in-silico Voraussagen, wurden keine näheren Strukturauswertungen und darauf folgend auch keine in-vitro Enzymtests durchgeführt. Die Bindung des CyclinA an das CDK-Protein bewirkt eine Aktivierung des Proteinkomplexes.

Infolge dessen kommt es zu einer Konformationsänderung und damit einer Öffnung der ATP-Bindungsstelle. Somit sind unsere untersuchten Liganden und potentiellen Inhibitoren einfach volumenmäßig zu klein für diese Bindungsstelle. Folglich ist, für eine mögliche Stabilisierung über hydrophobe Wechselwirkungen und Wasserstoffbrückenbindungen, einfach die Distanz zwischen Ligand und einen Großteil der Aminosäuren der Bindungstasche zu groß.

6.2. Zusammenfassung

In der vorliegenden Arbeit konnten wir in den meisten Fällen eine weitestgehend selektive Hemmung der CK-2 zeigen und vielfach auch die Ursachen strukturell nachweisen.

Für die Zukunft ist eine Basis geschaffen, targetorientiert gezielte Inhibitormodifikationen vorzunehmen, um sowohl die Hemmung als auch die Selektivität entsprechend zu verändern und zukünftig noch verbessern zu können.

Ausblick

Die Aufklärung der verschiedenen Eingriffsmöglichkeiten in spezielle zelluläre Signalwege spielt nicht nur für neue therapeutische Pharmazeutika eine wichtige Rolle, sondern leistet auch in hohem Maße einen Beitrag über die Aufklärung toxikologisch relevanter Wirkungsmechanismen auf der Proteinebene. Die genaue Kenntnis über die Angriffspunkte eines toxikologischen Agens im Signaltransduktionsweg ermöglicht langfristig gesehen den gezielten Eingriff über Hemmung oder Aktivierung bestimmter Teilbereiche.

In Zukunft sollen auf diesem Gebiet, weitere Strukturmodifizierungen aus den vier Teilbereichen der Anthranoide untersucht werden, um noch systematischere Aussagen zu Struktur-Funktions-Beziehungen treffen zu können. Auch sollen die Bindungstaschen der CK1 und der GSK-3β, ähnlich wie in dieser Arbeit für die CK2 genauer untersucht werden und über Alignement-Analysen der Kinasen untereinander auch kleinere Abweichungen in der Lage der Aminosäuren bestimmt werden. Dies könnte einen weiteren Beitrag zur Ursachenforschung der Selektivität bestimmter Verbindungen, trotz hoher Konservierung der ATP-Bindungstaschen innerhalb der Kinasenfamilie, leisten.

Ein weiterer interessanter Aspekt liegt in der direkten Hemmung der GSK-3β, einem Schlüsseltarget und Effektor auch in Insulinsignalwegen. Biologische Testungen und weiterführende Untersuchungen auch in diese Richtung werden durchgeführt.

Literaturverzeichnis

[1]Günther, R., Elsner, C., Schmidt, S. and Hofmann, H. (2004) On the rational design of substrate mimetics: the function of docking approaches for the prediction of protease specificities. Org. Biomol. Chem. 2, 1442-1446

[2]Battistutta, R., Sarno, S., De Moliner, E., Papinutto, E., Canotti, G., and Pinna, L.A. (2000) The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J. Biol. Chem. 275, 29618-29622

[3]Teich, L., Daub, K.S., Krügel, V., Nissler, L., Gebhardt, R., and Eger, K.

(2004) Synthesis and biological evaluation of new derivatives of emodin.

Bioorg. & Medicin. Chem. 12, 5961-5971

[4]Popper, H., Schaffner, F. (1961) Die Leber, Struktur und Funktion. Georg Thieme Verlag, Stuttgart

[5]Löffler, G., Petrides, P.E. (1997) Biochemie und Pathobiochemie. Springer Verlag, 5. Auflage: 1023-1039

[6]Lerche, K.S. (2004) Derivate des Emodins als Inhibitoren von Proteinkinasen – Neue Targets für die Krebstherapie? Diplomarbeit

[7]Reichl, F. (2002) Taschenatlas der Toxikologie – Substanzen, Wirkungen, Umwelt. Thieme Verlag, Stuttgart 2. Auflage: 123-124

[8]Neuhaus, P., Pfitzmann, R. (2005) Aktuelle Aspekte der Lebertransplantation. Uni-Med Verlag AG, Bremen, Boston, London 2.

Auflage: 12-13

[9]Marquardt, H., Schäfer, S. (2004) Lehrbuch der Toxikologie.

Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 2. Auflage: 303-327

[10] Kolligs, F.T., Bommer, G., Goke, B. (2002) Wnt/β-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66 (3): 131-144

[11] Li, H., Pamukcu, R., Thompson, W.J. (2002) β-catenin signalling:

therapeutic strategies in oncology. Cancer Biol. Ther. 1(6) Review: 621-625

[12] Van den Heuvel, S. (2005) Cell-cycle regulation. Worm Book 21 Review:

1-16

[13] Malumbres, M. (2007) Cyclins and related kinases in cancer cells. J. Buon 12 Sup. 1 Review: 45-52

[14] Shibasaki, F., Price, E.R., Milan, D., Mc Keon, F. (1996) Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature 382 (6589): 370-373

[15] Staddon, J.M., Herrenknecht, K., Smales, C., Rubin, L.L. (1995):

Evidence that tyrosine phosphorylation may increase tight junction permeability. Journal of Cell Science 108 (Pt 2): 609-619

[16] Davis, M.J., Wu, X., Nurkiewicz, T.R., Kawasaki J., Gui, P., Hill, M.A., Wilson, E. (2001) Regulation of ion channels by protein phosphorylation.

American J. of Physiological Heart Circ. Physiol. 281 (5): H1835-1862

[17] Srivastava, A.K., St-Louis, J. (1997) Smooth muscle contractility and protein tyrosine phosphorylation. Molecular Cell Biochemistry 176 (1-2): 47-51

[18] Lin, T.A., Lawrence, J.C. Jr. (1997) Control of PHAS-I phosphorylation in 3T3-L1 adipocytes: effects of inhibiting protein phosphatases and the p70S6K signalling pathway. Diabetologia 40, Suppl. 2: 18-24

[19] Alcazar, A., Rivera, J., Gomez-Calcerrada, M., Munoz, F., Salinas, M., Fando, J.L. (1996): Changes in the phosphorylation of eukaryotic initiation factor 2α, initiation factor 2B activity and translational rates in primary neuronal cultures under different physiological growing conditions. Brain Res.

Mol. Brain Res. 38 (1): 101-108

[20] Marin, O., Bustos, V.H., Cesaro, L., Meggio, F., Pagano, M.A., Antonelli, M., Allende, C.C., Pinna, L.A., Allende, J.E. (2003) A noncanonical sequence phosphorylated by casein kinase 1 in β-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Biochemistry, Vol. 100, No.

18: 10193-10200

[21] Hoekstra, M.F., Dhillon, N., Carmel, G., De Maggio, A.J., Lindberg, R.A., Hunter, T., Kuret, J. (1994) Budding and fission yeast casein kinase I isoforms have dual-specifity protein kinase activity. Molecular Biological Cell 5 (8): 877-886

[22] Panek, R.L., Lu, G.H., Klutchko, S.R., Batley, B.L., Dahring T.K., Hamby, J.M., Hallak, H., Doherty, A.M., Keiser, J.A. (1997): In vitro pharmacological characterization of PD 166285, a new nanomolar potent and broadly active protein tyrosine kinase inhibitor. Journal of Pharmacological Exp. Ther. 283 (3): 1433-1444

Rowles, J., Slaughter, C., Moomaw, C., Hsu, J., Cobb, M.H. (1991)

Purification of casein kinase I and isolation of cDNAs encoding multiple casein kinase I-like enzymes. Proc. Natl. Acad. Sci. USA 88 (21): 9548-9552

[24] Vancura, A., Sessler, A., Leichus, B., Kuret, J. (1994) A prenylation motif is required for plasma membrane localization and biochemical function of casein kinase I in budding yeast. Journal of Biological Chemistry 269 (30):

19271-19278

[25] Knippschild, U., Gocht, A., Wolff, S., Huber, N., Löhler, J., Stöter, M.

(2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell. Sign., 17, 675-689.

[26] Wolff, S., Xiao, Z., Wittau, M., Süssner, N., Stöter, M., Knippschild, U.

(2005) Interaction of casein kinase 1 delta (CK1δ) with the light chain LC2 of microtubule associated protein 1 A (MAP1A). Bioch. Biophys. Acta, 1745, 196-206.

[27] Li, G., Yin, H., Kuret, J. (2004) Casein kinase 1 delta phosphorylates Tau and disrupts its binding to microtubules. J. of Biol. Chem., 279 (16), 15938-15945.

[28] Kattapuram, T., Yang, S., Maki, J.L., Stone, J.R. (2005) Protein kinase CK1α regulates mRNA binding by heterogeneous nuclear ribonucleoprotein C in response to physiologic levels of hydrogen peroxide. J. of Biol. Chem., 280 (15), 15340-15347.

[29] Lincoln, G., Messager, S., Andersson, H., Hazlerigg, D. (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc. Natl.

Acad. Sci. USA, 99 (21), 13890-13895.

[30] Price, M.A., Kalderon, D. (2002) Proteolysis of the Hedgehog signalling effector cubitus interruptus requires phosphorylation by Glycogen synthase kinase 3 and Casein kinase 1. Cell, 108, 823-835.

[31] Takenaka, Y., Fukumori, T., Yoshii, T., Oka, N., Inohara, H., Kim, H.R., Bresalier, R.S., Raz, A. (2004) Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs.

Mol. Cell. Biol., 24 (10), 4395-4406.

[32] Sobrado, P., Jedlicki, A., Bustos, V.H., Allende, C., Allende, J.E. (2005) Basic region of residues 228-231 of protein kinase CK1α is involved in its interaction with axin: Binding to axin does not affect the kinase activity. J. of Cell. Biochem., 94, 217-224.

[33] Davidson, G., Wu, W., Shen, J., Bilic, J., Fenger, U., Stannek, P., Glinka, A., Niehrs, C. (2005) Casein kinase 1 γ couples Wnt receptor activation to cytoplasmatic signal transduction. Nature, 438,867-872.

[34] Chergui, K., Svenninggsson, P., Greengard, P. (2005) Physiological role

for casein kinase 1 in glutamatergic synaptic transmission. J. of Neurosc., 25 (28), 6601-6609.

[35] Liu, F., Virshup, D.M., Nairn, A.C., Greengard, P. (2002) Mechanism of regulation of casein kinase I activity by group I metabotropic glutamate receptors. J. of Biol. Chem., 277 (47), 45393-45399.

[36] Knippschild, U., Wolff, S., Giamas, G., Brockschmidt, C., Wittau, M., Würl, P.U., Eismann, T., Stöter, M. (2005) The role of the casein kinase 1 (CK1) familiy in different signaling pathways linked to cancer development.

Onkologie, 28, 508-514.

[37] Faust, M., Montenarh, M. (2000) Subcellular localization of protein kinase CK2 – A key to its function? Cell Tissue Res., 301, 329-340.

[38] Lin, W., Tuazon, P.T., Traugh, J.A. (1991) Characterization of the catalytic subunit of casein kinase II expressed in Escherichia coli and regulation of activity. J. of Biol. Chem., 266 (9), 5664-5669.

[39] Li, D., Dobrowolska, G., Krebs, E.G. (1999) Identification of proteins that associate with protein kinase CK2. Molec. and Cell. Biochem., 191, 223-228.

[40] Dobrowolska, G., Lozeman, F.J., Li, D., Krebs, E.G. (1999) CK2, a protein kinase of the next millennium. Molec. and Cell. Biochem., 191, 3-12.

[41] Meggio, F., Pinna, L.A. (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J., 17, 349-368.

[42] Homma, M.K., Li, D., Krebs, E.G., Yuasa, Y., Homma, Y. (2002) Association and regulation of casein kinase 2 activity by adenomatous polyposis coli protein. PNAS, 99 (9), 5959-5964.

[43] Hildesheim, J., Salvador, J.M., Hollander, M.C., Fornace, A.J. (2005) Casein kinase 2- and protein kinase A- regulated adenomatous polyposis coli and β-catenin cellular localization is dependent on p38MAPK. J. of Biol.

Chem., 280 (17), 17221-17226.

[44] Song, D.H., Dominguez, I., Mizuno, J., Kaut, M., Mohr, S.C., Seldin, D.C.

(2003) CK2 phosphorylation of the armadillo repeat region of β-catenin potentiates Wnt signalling. J. of Biol. Chem., 278 (26), 24018-24025.

Xu, X., Landesman-Bollag, E., Channavajhala, P.L., Seldin, D.C. (1999) Murine protein kinase CK2: gene and oncogene. Molec. and Cell. Biochem., 191, 65-74.

[46] Schuster, N., Prowald, A., Schneider, E., Scheidtmann, K., Montenarh, M.

(1999) Regulation of p53 mediated transactivation by the β-subunit of protein kinase CK2. FEBS Letters, 447, 160-166.

[47] Hockman, D.J., Schultz, M.C. (1996) Casein kinase II is required for efficient transcription by RNA polymerase III. Molec. and Cell. Biol., 16 (3), 892-898.

[48] Miro, F.A., Llorenz, F., Roher, N., Plana, M., Gómez, N., Itarte, E. (2002) Persistent nuclear accumulation of protein kinase CK2 during the G1-phase of the cell cycle does not depend on the ERK1/2 pathway but requires active protein synthesis. Arch. of Biochem. and Biophys., 406, 165-172.

[49] Allende, J.E., Allende, C.C. (1995) Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J., 9, 313-323.

[50] Lim, A.C.B., Tiu, S., Li, Q., Qi, R.Z. (2004) Direct regulation of Microtubule dynamics by protein kinase CK2. J. of Biol. Chem., 279 (6), 4433-4439.

[51] Ravi, R., Bedi, A. (2002) Sensitization of tumor cells to Apo2 Ligand/TRAIL-induced apoptosis by inhibition of casein kinase II. Cancer Research, 62, 4180-4185.

[52] Guo, C., Yu, S., Davis, A.T., Wang, H., Green, J.E., Ahmed, K. (2001) A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells. J. of Biol. Chem., 276 (8), 5992-5999.

[53] Guerra, B., Issinger, O. (1999) Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis, 20, 391-408.

[54] Litchfield, D.W. (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J., 369, 1-15.

[55] Gruppuso, P.A., Boylan, J.M. (1995) Developmental changes in the activity and cellular localization of hepatic casein kinase II in the rat. J. Cell Biochem., 58 (1), 65-72.

[56] Li, P.F., Li, J., Muller, E.C., Otto, A., Dietz, R., von Harsdorf, R. (2002) Phosphorylation by protein kinase CK2: A signaling switch for the caspase-inhibiting protein ARC. Molec. Cell, 10 (2), 247-258.

[57] Miro, F.A., Llorens, F., Roher, N., Plana, M., Gómez, N., Itarte, E.

Persistent nuclear accumulation of protein kinase CK2 during the G1-phase of the cell cycle does not depend on the ERK1/2 pathway but requires active protein synthesis. Archives of Biochem. and Biophysics, 406, 165-172.

[58] Kulartz, M., Hiller, E., Kappes, F., Pinna, L.A., Knippers, R. (2004) Protein kinase CK2 phosphorylates the cell cycle regulatory protein geminin.

Biochem. and Biophys. Res. Comm., 315, 1011-1017.

[59] Cole, A., Frame, S., Cohen, P. (2004) Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem. J., 377, 249-255.

[60] Dajani, R., Fraser, E., Roe, M., Young, N., Good, V., Dale, T.C., Pearl, L.H. (2001) Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell, 105, 721-732.

[61] Frame, S., Cohen, P. (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem. J., 359, 1-16.

[62] Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., Okamura, H., Woodgett, J., He, X. (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 438 (8), 873-877.

[63] van Noort, M., Meeldijk, J., van der Zee, R., Destree, O., Clevers, H.

(2002) Wnt signaling controls the phosphorylation status of β-catenin. J. of Biol. Chem., 277 (20), 17901-17905.

[64] McManus, E.J., Sakamoto, K., Armit, L.J., Ronaldson, L., Shpiro, N., Marquez, R., Alessi, D.R. (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J., 24, 1571-1583.

[65] Lipina, C., Huang, X., Finlay, D., McManus, E.J., Alessi, D.R., Sutherland, C. (2005) Analysis of hepatic gene transcription in mice expressing insulin-insensitive GSK3. Biochem. J., 392, 633-639.

[66] Watcharasit, P., Bijur, G.N., Zmijewski, J.W., Song, L., Zmijewski, A., Chen, X., Johnson, G.V.W., Jope, R.S. (2002) Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage. PNAS, 99 (12), 7951-7955.

[67] Cho, J., Johnson, G.V.W. (2004) Glycogen synthase kinase 3β induces Caspase-cleaved Tau aggregation in situ. J. of Biol. Chem., 279 (52), 54716-54723.

Kaytor, M.D., Orr, H.T. (2002) The GSK3β signalling cascade and neurodegenerative disease. Curr. Opinion in Neurobiol., 12, 275-278.

[69] Kim, S.I., Park, C.S., Lee, M.S., Kwon, M.S., Jho, E.H., Song, W.K.

(2004) Cyclin-dependent kinase 2 regulates the interaction of Axin with β-catenin. Biochem. Biophys. Res. Commun., 317 (2), 478-483.

[70] Walker, E.H., Pacold, M.E., Perisic, O., Stephens, L., Hawkins, P.T.,

Wymann, M.P., Williams, R.L. (2000) Structural Determinants of Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002, Quercetin, Myricetin, and Staurosporine. Molecular Cell, Vol. 6: 909-919

[71] De Moliner, E., Moro, S., Sarno, S., Zagotto, G., Zanotti, G., Pinna, L.A., Battistutta, R. (2002) Inhibition of Protein Kinase CK2 by Anthraquninone-related Compounds. The Journal of Biological Chemistry, Vol. 278, No. 3:

1831-1836

[72] Su, Y., Chang, H., Shyue, S., Hsu, S. (2005) Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signalling pathway. Biochem. Pharmacol., 70, 229-241.

[73] Huang, Q., Shen, H., Ong, C. (2005) Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Cell. Mol. Life Sci., 62, 1167-1175.

[74] Lin, S., Yang, J., Hsia, T., Lee, J., Chiu, T., Wei, Y., Chung, J. (2005) Effect of inhibition of aloe-emodin on N-acetyltransferase activity and gene expression in human malignant melanoma cells (A375.S2). Melanoma Res., 15, 489-494.

[75] Basu, S., Ghosh, A., Hazra, B. (2005) Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents. Phytotherap. Res., 19, 888-894.

[76] Lee, H., Lin, C., Yang, W., Leung, W., Chang, S. (2005) Aloe-emodin induced DANN damage through generation of reactive oxygen species in human lung carcinoma cells. Cancers Letters, 1-9

[77] Du, Y., Ko, K.M. (2005) Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia-reperfusion injury in rat hearts: Single versus multiple doses and gender difference. Life Sci., 77, 2770-2782.

[78] Bi, S., Song, D., Kan, Y., Xu, D., Tian, Y., Zhou, X., Zhang, H. (2005) Spectroscopic characterization of effective components anthraquinones in chinese medicinal herbs binding with serum albumins. Spectrochimica Acta Part A 2005, 62, 203-212.

[79] Garg, A.M., Buchholz, T.A., Aggarwal, B.B. (2005) Chemosensitizion and

radiosensitization of tumors by plant polyphenols. Antioxidants and Redox Signalling, 7 (11), 1630-1647.

[80] Wang, X.H., Wu, S.Y., Zen, Y.S. (2004) Inhibitory effects of emodin on angiogenesis. Yao Xue Xue Bao, 39 (4), 254-258.

[81] Kwak, H.J., Park, M.I., Park, C.M., Moon, S.I., Yoo, D.H., Lee, H.C., Lee, S.H., Kim, M.S., Lee, H.W., Shin, W.S., Park, I.C., Rhee, C.H., Hong S.I.

(2006) Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int. J.

Cancer, 118 (11), 2711-2720.

[82] Gu, J., Hasuo, H., Takeya, M., Akasu, T. (2005) Effects of emodin on synaptic transmission in rat hippocampal CA1 pyramidal neurons in vitro.

Neuropharmacol., 49, 103-111.

[83] Pickhardt, M., Gazova, Z., von Bergen, M., Khlistunova, I., Wang, Y., Hscher, A., Mandelkow, E., Biernat, J., Mandelkow, E. (2005) Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J. of Biol. Chem., 280 (5), 3628-3635.

[84] Mashhoon, N., DeMaggio, A.J., Terreshko, V., Bergmeier, S.C., Egli, M., Hoekstra, M.F., Kuret, J. (2000) Crystal structure of a conformation-selective casein kinase-1 inhibitor. J. Biol. Chem., 275, 20052-20060.

[85] Battistutta, R., Sarno, S., DeMoliner, E., Papinutto, E., Canotti, G., Pinna, L.A. (2000) The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J. Biol. Chem., 275, 29618-29622.

[86] Bhat, R., Xue, Y., Berg, S., Hellberg, S., Ormö, M., Nilsson, Y., Radesäter, A., Jerning, E., Markgren, P., Borgegard, T., Nylof, M., Giménez-Cassina, A., Hernández, F., Lucas, J.J., Díaz-Nido, J., Avila, J. (2003) Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem., 278, 45937-45945.

[87] Jefrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., Payletich, M.P. (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature, 376 (6538), 313-320.

Byvatov, E., Fechner, U., Sadowski, J., Schneider, G. (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci. 2003, 43 (6), 1882-1889.

[89] Zakharian, T.Y., Coon, S.R. (2001) Evaluation of Spartan semi-empirical molecular modelling software for calculations of molecules on surfaces: CO adsorption on Ni (111). Comput. Chem., 25 (2), 135-144.

[90] Goodsell, D.S., Morris, G.M., Olson, A.J. (1996) Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Rec., 9, 1-5.

[91] Morris, G.M., Goodsell, D:S:, Huey, R., Olson, A.J. (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock2.4. J. of Comp.-aided Mol. Des., 10, 293-304.