• Keine Ergebnisse gefunden

130

From the results obtained from in vivo and in vitro disruption of Go/i subgroup of G proteins in Or22a neurons, we proposed a model for insect olfactory signaling (for results see chapter 3), in which the activated Gβγ heterodimer plays a role in signaling.

We think that Gβγ heterodimer can act directly on OR-Orco complex and lead to or enhance the influx of cations. This hypothesis needs to be evaluated. Cells expressing dORs can be stimulated with or without odorants and with or without intracellular injection of Gβγ heterodimer and by this way we can evaluate our hypothesis. In order to test this hypothesis, Xenopus oocytes (stage V and VI) or HEK cells can be used as an experimental model and odor evoked currents can be quantified with or without intracellular injection of the protein or the m-RNA coding for Gβγ heterodimer. I used Xenopus oocytes as an experimental model to test this hypothesis, but the experiments were failed because in my hands dORs were non-functional in these cell systems (dORs were detected by western blot in cytoplasmic fraction but not on the membrane fraction;

data not shown). Hence one can use HEK cells (dORs are functional in these cells) as an experimental model and test this hypothesis in future. Odor evoked currents of HEK293 cells (technique needs to be developed, previously we measured odor evoked calcium changes) expressing dORs together with or without the gene encoding for Gβγ heterodimer can be quantified. Co-expression of Gβγ heterodimer may enhance the odor response and could indicate the role of Gβγ heterodimer in signaling. But if Gβγ heterodimer can mimic odor stimulation cannot be tested easily in HEK cells. May be we can try to stimulate (injection via pressure) the cells with Gβγ heterodimer via intracellularly injected glass pipette. This method needs to be validated and maybe we can find the answer for our question in the end.

From the results obtained from in vivo disruption of Go and Gq subgroup of G proteins in dendro-somatic compartment and in axon terminals of Or92a neurons, we concluded that Go and Gq modulates the odor response in periphery and plays a role in presynaptic excitation and inhibition possibly via the activity of neurotransmitters (for more details see Chapter 4). But the modulation observed in the axon terminals (synaptic output) could be still attributed by the modulation in the periphery, so it is important to measure the electrical activity of Or92a ORNs (single sensillum recordings (SSRs)).

Results of SSRs could indicate how much the modulation observed in the axon terminals is due to the modulation mediated in the periphery. From the results obtained in the dendro-somatic compartment, we proposed a putative model for the modulation mediated by Go and Gq;odor induced transduction in Or92a neurons involves several parallel processes (both ionotropic and metabotropic pathways contribute to) and these processes are modulated by Go and Gq. But “why” such a model is ecologically relevant is not addressed in our experiments. Or92a responds to food odorants (odorants that activate the receptor strongly (best ligand) known to date have buttery and fruity (grape)

Chapter 6. Conclusions and Outlook

131

flavor), we speculate that a hungry fly could activate either Go or Gq pathway and modulates the transduction cascade, leading to the high sensitivity of the receptor, whereas a non hungry fly could activate both pathways and hence the sensitivity of the receptor is unchanged. In order to test this hypothesis, one can measure odor induced calcium changes (dendro-somatic compartment) in hungry or satiated flies (all genotypes tested in Chapter 4 should be tested). If any one of the pathways (Go or Gq pathway) is linked to the state of an animal then the odor response of the control flies will differ and that can correlate with the response observed in mutants in previous experiments. Also the response of the mutant flies will be altered if they play a role in modulation of the odor response depending on the state of the animal that we tested and these results could indicate the necessity of modulation of odor response and its ecological relevance.

Moreover the model we proposed for the modulation mediated by Go and Gq is highly putative. Involvement of potassium channels (GIRK or Kir channels) in odor responses needs to be tested. Drosophila genome encodes for three Kir channel proteins;

Ir, IrK2 and IrK3 and all these proteins are expressed in adult head and brain. Mutations targeting to any of these proteins in Or92a neurons could indicate the involvement of these proteins in odor responses. RNAi construct is available for one of the Kir channels (IrK2 or Kir2.1), which allows for physiological experiments on ORNs lacking this channel. If the modulation is carried out by IrK2 channel, then the ORNs lacking this channel should be hyperexcitable like the Go mutant.

From the results obtained in the axon terminals, we proposed a model for the modulation mediated by Go and Gq; Go and Gq plays a role in pre-synaptic inhibition or excitation respectively possibly via the activity of neurotransmitters. We proposed that gamma-aminobutyric acid (GABA; inhibitory neurotransmitter) or acetylcholine (Ach;

excitatory neurotransmitter) could be the neurotransmitter involved. GABA receptors (GABAR) were shown to play a role in pre-synaptic inhibition of Drosophila ORNs (Olsen and Wilson, 2008; Root et al., 2008) and thus it can support our hypothesis (activation of Go by GABABR may lead to pre-synaptic inhibition). Pharmacological experiments targeting these two neurotransmitters (antagonists specific to these receptors; GABABR and m-AchR) can give us an idea about the modulation mediated by Go and Gq. If the modulation observed is via these two neurotransmitters then the odor responses observed with the presence of the pharmacon will be similar as observed in the mutants. All these experiments can give us an insight about why insects uses complex transduction cascade for olfactory signaling.

Above all in our experiments we didn’t show the direct interaction of the OR with the G protein. Interaction of the insect ORs with G proteins are greatly unknown.

Which of the protein (OR or Orco) activates the G protein is unknown; it could be also possible that OR-Orco complex can activate the G protein and not the individual

Chapter 6. Conclusions and Outlook

132

protein. In order to elucidate the direct coupling between ORs and G proteins several biochemical experiments can be performed like pull down assays, radioactive labeling experiments and non radioactive labeling experiments (e.g. europium-labeled GTP assay). Also by using these assays we can find which of the protein or the complex activates the G proteins.

133

Summary

Intracellular signaling in insect olfactory receptor neurons remains unclear, with both metabotropic and ionotropic components being discussed. This doctoral thesis investigates the role of heterotrimeric G proteins in olfactory signaling of insects.

Drosophila odorant receptors, Or22a and Or92a were used as the model for insect ORs and the role of G proteins; Go/i subgroup or Go and Gq proteins respectively, in these neurons for olfactory signaling was studied by combined in vivo and in vitro approach. Go/i subgroup of G proteins contributed to the odor responses both for the fast (phasic) and for the slow (tonic) response component and the signaling is mediated by the Gβγ subunits of the heterotrimeric Go/i proteins. In vivo disruption of Go and Gq modulated the odor response of Or92a neurons in the periphery and also played a role in pre-synaptic excitation and inhibition possibly via the activity of neurotransmitters. From these results we could conclude that different ORs activate a G protein to a varying degree and an OR can activate more than one G protein upon odor detection. In general we could conclude that insects use multiple pathways for olfactory signaling, and activates diverse G proteins (metabotropic signaling pathway) upon odor detection.

These results add an intriguing component to the still open full picture of insect olfactory transduction.

134

Zusammenfassung

Die intrazelluläre Signalübertragung in olfaktorischen Rezeptorneuronen bei Insekten ist bis heute unklar. Es werden sowohl metabotrope, als auch ionotrope Komponenten in diesem Kontext diskutiert. In dieser Doktorarbeit wird die Rolle von heterotrimeren G Proteinen bei der olfaktorischen Signalübertragung in Insekten untersucht. Als Modellrezeptoren wurden die Duftrezeptoren Or22a und Or92a von Drosophila verwendet und die Rolle von G Proteinen, speziell der Untergruppen Go/i, Go and Gq, in der olfaktorischen Signalübertragung mit kombinierten in vivo und in vitro Ansätzen untersucht. Wir konnten zeigen, dass die Go/i Untergruppe der G-Proteine sowohl zu der schnellen (phasischen) Kompontene, als auch zu der langsamen (tonischen) Komponente von Duftantworten beiträgt. Die Signalübertragung wird durch die Gβγ Untereinheiten der heterotrimeren Go/i Proteine vermittelt. In vivo Zerstörung von Go und Gq regulierte die Duftantwort von Or92a Neuronen in der Peripherie und spielte ebenfalls eine Rolle bei der präsynaptischen Erregung und Inhibition, möglicherweise durch die Aktivität von Neurotransmittern. Anhand dieser Ergebnisse konnten wir schliessen, dass verschiedene ORs ein G Protein unterschiedlich stark aktivieren und dass ein OR mehr als ein G Protein bei Duftdetektion aktivieren kann. Im Allgemeinen konnten wir schliessen, dass Insekten mehrere Wege zur olfaktorischen Signalübertragung nutzen und dass diverse G Proteine (metabotrope Signalübertragung) bei der Duftdetektion aktiviert werden. Diese Ergebisse fügen dem immer noch offnen Gesamtbild der olfaktorischen Transduktion bei Insekten eine faszinierende Komponente hinzu.

135

Bibliography

Araneda, R.C., A.D. Kini, and S. Firestein. 2000. The molecular receptive range of an odorant receptor. Nat Neurosci. 3:1248-1255.

Atwood, B.K., J. Lopez, J. Wager-Miller, K. Mackie, and A. Straiker. 2011. Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics. 12:14.

Backer, J.M., S.E. Shoelson, E. Haring, and M.F. White. 1991. Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region. J Cell Biol. 115:1535-1545.

Bargmann, C.I. 2006. Comparative chemosensation from receptors to ecology. Nature.

444:295-301.

Benton, R., S. Sachse, S.W. Michnick, and L.B. Vosshall. 2006. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS biology. 4:e20.

Benton, R., K.S. Vannice, C. Gomez-Diaz, and L.B. Vosshall. 2009. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 136:149-162.

Berghard, A., and L.B. Buck. 1996. Sensory transduction in vomeronasal neurons:

evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. The Journal of Neuroscience 16:909-918.

Berghard, A., L.B. Buck, and E.R. Liman. 1996. Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. Proc Natl Acad Sci U S A.

93:2365-2369.

Berna, A.Z., A.R. Anderson, and S.C. Trowell. 2009. Bio-benchmarking of electronic nose sensors. PLoS One. 4:e6406.

Boekhoff, I., and H. Breer. 1992. Termination of second messenger signaling in olfaction. Proc Natl Acad Sci U S A. 89:471-474.

Boekhoff, I., E. Seifert, S. Goggerle, M. Lindemann, B.W. Kruger, and H. Breer. 1993.

Pheromone-Induced 2nd-Messenger Signaling in Insect Antennae. Insect biochemistry and molecular biology. 23:757-762.

Boto, T., C. Gomez-Diaz, and E. Alcorta. 2010. Expression analysis of the 3 G-protein subunits, G , G , and G , in the olfactory receptor organs of adult Drosophila melanogaster. Chem Senses. 35:183-193.

Breer, H., I. Boekhoff, and E. Tareilus. 1990. Rapid kinetics of second messenger formation in olfactory transduction. Nature. 345:65-68.

Buck, L., and R. Axel. 1991. A novel multigene family may encode odorant receptors - a molecular-basis for odor recognition. Cell. 65:175-187.

Calver, A.R., C.H. Davies, and M. Pangalos. 2002. GABA(B) receptors: from monogamy to promiscuity. Neurosignals. 11:299-314.

Campbell, K., P. Kalen, K. Wictorin, C. Lundberg, R.J. Mandel, and A. Bjorklund. 1993.

Characterization of GABA release from intrastriatal striatal transplants:

dependence on host-derived afferents. Neuroscience. 53:403-415.

Bibliography

136

Chakraborty, T.S., S.P. Goswami, and O. Siddiqi. 2009. Sensory correlates of imaginal conditioning in Drosophila melanogaster. Journal of Neurogenetics. 23:210-219.

Chatterjee, A., G. Roman, and P.E. Hardin. 2009. Go contributes to olfactory reception in Drosophila melanogaster. BMC physiology. 9:22.

Chou, Y.H., M.L. Spletter, E. Yaksi, J.C. Leong, R.I. Wilson, and L. Luo. 2010. Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci. 13:439-449.

Clyne, J.D., T.C. Brown, and R.I. Hume. 2003. Expression level dependent changes in the properties of P2X2 receptors. Neuropharmacology. 44:403-412.

Clyne, P.J., C.G. Warr, and J.R. Carlson. 2000. Candidate taste receptors in Drosophila.

Science. 287:1830-1834.

Clyne, P.J., C.G. Warr, M.R. Freeman, D. Lessing, J. Kim, and J.R. Carlson. 1999. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron. 22:327-338.

Couto, A., M. Alenius, and B.J. Dickson. 2005. Molecular, anatomical, and functional organization of the Drosophila Olfactory system. Current Biology. 15:1535-1547.

Dascal, N. 1997. Signalling via the G protein-activated K+ channels. Cell Signal. 9:551-573.

Dascal, N. 2001. Ion-channel regulation by G proteins. Trends Endocrinol Metab. 12:391-398.

Dawson, T.M., J.L. Arriza, D.E. Jaworsky, F.F. Borisy, H. Attramadal, R.J. Lefkowitz, and G.V. Ronnett. 1993. Beta-adrenergic receptor kinase-2 and beta-arrestin-2 as mediators of odorant-induced desensitization. Science. 259:825-829.

de Brito Sanchez, M.G., and K.E. Kaissling. 2005. The antennal benzoic acid receptor cell of the female silk moth Bombyx mori L.: structure-activity relationship studies with halogen substitutes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 191:189-196.

de Bruyne, M., P.J. Clyne, and J.R. Carlson. 1999. Odor coding in a model olfactory organ: the Drosophila maxillary palp. The Journal of Neuroscience. 19:4520-4532.

de Bruyne, M., K. Foster, and J.R. Carlson. 2001. Odor coding in the Drosophila antenna.

Neuron. 30:537-552.

Deng, Y., W. Zhang, K. Farhat, S. Oberland, G. Gisselmann, and E.M. Neuhaus. 2011.

The stimulatory Galpha(s) protein is involved in olfactory signal transduction in Drosophila. PLoS One. 6:e18605.

Dobritsa, A.A., W. van der Goes van Naters, C.G. Warr, R.A. Steinbrecht, and J.R.

Carlson. 2003. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron. 37:827-841.

Duffy, J.B. 2002. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis.

34:1-15.

Dulac, C., and R. Axel. 1995. A novel family of genes encoding putative pheromone receptors in mammals. Cell. 83:195-206.

Estes, P.S., J. Roos, A. van der Bliek, R.B. Kelly, K.S. Krishnan, and M. Ramaswami.

1996. Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment-specific markers. The Journal of Neuroscience. 16:5443-5456.

Bibliography

137

Ferguson, S.S. 2001. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 53:1-24.

Ferguson, S.S., and M.G. Caron. 1998. G protein-coupled receptor adaptation mechanisms. Semin Cell Dev Biol. 9:119-127.

Fishilevich, E., and L.B. Vosshall. 2005. Genetic and functional subdivision of the Drosophila antennal Lobe. Current Biology. 15:1548-1553.

Flecke, C., A. Nolte, and M. Stengl. 2010. Perfusion with cAMP analogue affects pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta in a time-dependent manner. J Exp Biol. 213:842-852.

Flecke, C., and M. Stengl. 2009. Octopamine and tyramine modulate pheromone-sensitive olfactory sensilla of the hawkmoth Manduca sexta in a time-dependent manner. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 195:529-545.

Flores-Morales, A., C.J. Greenhalgh, G. Norstedt, and E. Rico-Bautista. 2006. Negative regulation of growth hormone receptor signaling. Mol Endocrinol. 20:241-253.

Fluegge, D., L.M. Moeller, A. Cichy, M. Gorin, A. Weth, S. Veitinger, S. Cainarca, S.

Lohmer, S. Corazza, E.M. Neuhaus, W. Baumgartner, J. Spehr, and M. Spehr.

2012. Mitochondrial Ca(2+) mobilization is a key element in olfactory signaling.

Nat Neurosci. 15:754-762.

Freedman, N.J., and R.J. Lefkowitz. 1996. Desensitization of G protein-coupled receptors. Recent Prog Horm Res. 51:319-351.

Gainetdinov, R.R., R.T. Premont, L.M. Bohn, R.J. Lefkowitz, and M.G. Caron. 2004.

Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci. 27:107-144.

Galizia, C.G., D. Munch, M. Strauch, A. Nissler, and S. Ma. 2010. Integrating heterogeneous odor response data into a common response model: A DoOR to the complete olfactome. Chem Senses. 35:551-563.

Galizia, C.G., S. Sachse, A. Rappert, and R. Menzel. 1999. The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci.

2:473-478.

Gao, Q., and A. Chess. 1999. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics. 60:31-39.

Getahun, M.N., S.B. Olsson, S. Lavista-Llanos, B.S. Hansson, and D. Wicher. 2013.

Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PLoS One. 8:e58889.

Gilman, A.G. 1984. G proteins and dual control of adenylate cyclase. Cell. 36:577-579.

Gilman, A.G. 1987. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615-649.

Gray, J.M., D.S. Karow, H. Lu, A.J. Chang, J.S. Chang, R.E. Ellis, M.A. Marletta, and C.I. Bargmann. 2004. Oxygen sensation and social feeding mediated by a C.

elegans guanylate cyclase homologue. Nature. 430:317-322.

Grosse-Wilde, E. 2006. A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses. 31:547-555.

Bibliography

138

Grosse-Wilde, E., T. Gohl, E. Bouche, H. Breer, and J. Krieger. 2007. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur J Neurosci. 25:2364-2373.

Ha, T.S., and D.P. Smith. 2006. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. The Journal of Neuroscience. 26:8727-8733.

Hallem, E.A., and J.R. Carlson. 2004. The odor coding system of Drosophila. Trends in Genetics. 20:453-459.

Hallem, E.A., M.G. Ho, and J.R. Carlson. 2004. The molecular basis of odor coding in the Drosophila antenna. Cell. 117:965-979.

Harrison, J.B., H.H. Chen, A.D. Blake, N.S. Huskisson, P. Barker, and D.B. Sattelle.

1995. Localization in the nervous system of Drosophila melanogaster of a C-terminus anti-peptide antibody to a cloned Drosophila muscarinic acetylcholine receptor. J Neuroendocrinol. 7:347-352.

Hildebrand, J.G., and G.M. Shepherd. 1997. Mechanisms of olfactory discrimination:

converging evidence for common principles across phyla. Annu Rev Neurosci.

20:595-631.

Hoger, U., P.H. Torkkeli, and A.S. French. 2005. Calcium concentration changes during sensory transduction in spider mechanoreceptor neurons. Eur J Neurosci. 22:3171-3178.

Holekamp, T.F., D. Turaga, and T.E. Holy. 2008. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron. 57:661-672.

Hoover, K.C. 2010. Smell with inspiration: the evolutionary significance of olfaction. Am J Phys Anthropol. 143:63-74.

Jefferis, G.S., C.J. Potter, A.M. Chan, E.C. Marin, T. Rohlfing, C.R. Maurer, Jr., and L.

Luo. 2007. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell. 128:1187-1203.

Jones, D.T., and R.R. Reed. 1989. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science. 244:790-795.

Jones, P.L., G.M. Pask, D.C. Rinker, and L.J. Zwiebel. 2011. Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A. 108:8821-8825.

Jones, P.L., G.M. Pask, I.M. Romaine, R.W. Taylor, P.R. Reid, A.G. Waterson, G.A.

Sulikowski, and L.J. Zwiebel. 2012. Allosteric antagonism of insect odorant receptor ion channels. PLoS One. 7:e30304.

Kain, P., T.S. Chakraborty, S. Sundaram, O. Siddiqi, V. Rodrigues, and G. Hasan. 2008.

Reduced odor responses from antennal neurons of Gq , phospholipase C , and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction. The Journal of Neuroscience. 28:4745-4755.

Kalidas, S., and D.P. Smith. 2002. Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron. 33:177-184.

Kang, G.-J., Z.-J. Gong, J.-A. Cheng, C.-G. Mao, and Z.-R. Zhu. 2011. Cloning and expression analysis of a G-protein subunit- in the rice water weevil Lissorhoptrus oryzophilus Kuschel. Arch Insect Biochem Physiol 76:43-54.

Bibliography

139

Katada, S., T. Hirokawa, Y. Oka, M. Suwa, and K. Touhara. 2005. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. The Journal of Neuroscience. 25:1806-1815.

Katanaev, V.L., R. Ponzielli, M. Semeriva, and A. Tomlinson. 2005. Trimeric G protein-dependent frizzled signaling in Drosophila. Cell. 120:111-122.

Katanaev, V.L., and A. Tomlinson. 2006. Multiple roles of a trimeric G protein in Drosophila cell polarization. Cell Cycle. 5:2464-2472.

Katanayeva, N., D. Kopein, R. Portmann, D. Hess, and V.L. Katanaev. 2010. Competing activities of heterotrimeric G proteins in Drosophila wing maturation. PLoS One.

5:e12331.

Kaupmann, K., K. Huggel, J. Heid, P.J. Flor, S. Bischoff, S.J. Mickel, G. McMaster, C.

Angst, H. Bittiger, W. Froestl, and B. Bettler. 1997. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors.

Nature. 386:239-246.

Kaupp, U.B. 2010. Olfactory signalling in vertebrates and insects: differences and commonalities. Nature Rev Neurosci. 11:188-200.

Keene, A.C., and S. Waddell. 2007. Drosophila olfactory memory: single genes to complex neural circuits. Nature reviews. Neuroscience. 8:341-354.

Kerr, J.N., D. Greenberg, and F. Helmchen. 2005. Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci U S A. 102:14063-14068.

Kiely, A., A. Authier, A.V. Kralicek, C.G. Warr, and R.D. Newcomb. 2007. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells.

Journal of Neuroscience Methods. 159:189-194.

Knight, P.J., T.A. Pfeifer, and T.A. Grigliatti. 2003. A functional assay for G-protein-coupled receptors using stably transformed insect tissue culture cell lines. Anal Biochem. 320:88-103.

Kopein, D., and V.L. Katanaev. 2009. Drosophila GoLoco-protein pins is a target of Galpha(o)-mediated G protein-coupled receptor signaling. Mol Biol Cell. 20:3865-3877.

Krannich, S., and M. Stengl. 2008. Cyclic nucleotide-activated currents in cultured olfactory receptor neurons of the hawkmoth Manduca sexta. J Neurophysiol.

100:2866-2877.

Krautwurst, D., K.W. Yau, and R.R. Reed. 1998. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell. 95:917-926.

Kurahashi, T., and A. Menini. 1997. Mechanism of odorant adaptation in the olfactory receptor cell. Nature. 385:725-729.

Kurtovic, A., A. Widmer, and B.J. Dickson. 2007. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature. 446:542-546.

Laissue, P.P., and L.B. Vosshall. 2008. The olfactory sensory map in Drosophila. Adv Exp Med Biol. 628:102-114.

Lambert, D. 2004. Drugs and receptors. Continuing Education in Anaesthesia, Critical Care &

Pain. 4:181-184.

Bibliography

140

Larsson, M.C., A.I. Domingos, W.D. Jones, M.E. Chiappe, H. Amrein, and L.B.

Vosshall. 2004. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron. 43:703-714.

Law, P.Y., D.S. Hom, and H.H. Loh. 1983. Opiate receptor down-regulation and desensitization in neuroblastoma X glioma NG108-15 hybrid cells are two separate cellular adaptation processes. Mol Pharmacol. 24:413-424.

Leinders-Zufall, T., C.A. Greer, G.M. Shepherd, and F. Zufall. 1998. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction. The Journal of Neuroscience 18:5630-5639.

Levasseur, G., M.A. Persuy, D. Grebert, J.J. Remy, R. Salesse, and E. Pajot-Augy. 2003.

Ligand-specific dose-response of heterologously expressed olfactory receptors.

Eur J Biochem. 270:2905-2912.

Liberles, S.D., and L.B. Buck. 2006. A second class of chemosensory receptors in the olfactory epithelium. Nature. 442:645-650.

Logothetis, D.E., and H. Zhang. 1999. Gating of G protein-sensitive inwardly rectifying K+ channels through phosphatidylinositol 4,5-bisphosphate. J Physiol. 520 Pt 3:630.

Lucas, P., K. Ukhanov, T. Leinders-Zufall, and F. Zufall. 2003. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant

Lucas, P., K. Ukhanov, T. Leinders-Zufall, and F. Zufall. 2003. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant