• Keine Ergebnisse gefunden

1. Berg, J.M., Tymoczko, J.L. and Stryer, L. (2002) Biochemistry. 5th ed. W. H. Freeman, New York, NY.

2. Madigan, M.T., Martinko, J.M., Stahl, D.A. and Clark, D.P. (2012) In Espinoza, D. (ed.), Brock Biology of Microorganisms. 13th ed. Pearson Education, Inc., San Francisco, CA.

3. Dahm, R. (2005) Friedrich Miescher and the discovery of DNA. Developmental Biology, 278, 274-288.

4. Holley, R.W., Everett, G.A., Madison, J.T. and Zamir, A. (1965) Nucleotide Sequences in the Yeast Alanine Transfer Ribonucleic Acid. Journal of Biological Chemistry, 240, 2122-2128.

5. Holley, R.W., Apgar, J., Everett, G.A., Madison, J.T., Marquisee, M., Merrill, S.H., Penswick, J.R. and Zamir, A.

(1965) Structure of a Ribonucleic Acid. Science, 147, 1462-1465.

6. Gardner, R.S., Wahba, A.J., Basilio, C., Miller, R.S., Lengyel, P. and Speyer, J.F. (1962) SYNTHETIC

POLYNUCLEOTIDES AND THE AMINO ACID CODE, VII. Proceedings of the National Academy of Sciences, 48, 2087-2094.

7. Wahba, A.J., Gardner, R.S., Basilio, C., Miller, R.S., Speyer, J.F. and Lengyel, P. (1963) SYNTHETIC

POLYNUCLEOTIDES AND THE AMINO ACID CODE, VIII. Proceedings of the National Academy of Sciences, 49, 116-122.

8. Nirenberg, M.W. and Matthaei, J.H. (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences, 47, 1588-1602.

9. Morgan, A.R., Wells, R.D. and Khorana, H.G. (1966) STUDIES ON POLYNUCLEOTIDES, LIX. FURTHER CODON ASSIGNMENTS FROM AMINO ACID INCORPORATIONS DIRECTED BY RIBOPOLYNUCLEOTIDES CONTAINING REPEATING TRINUCLEOTIDE SEQUENCES. Proceedings of the National Academy of Sciences of the United States of America, 56, 1899-1906.

10. Warner, J.R., Knopf, P.M. and Rich, A. (1963) A multiple ribosomal structure in protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 49, 122-129.

11. Peer, A. and Margalit, H. (2014) Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions. Rna, 20, 994-1003.

12. Shinhara, A., Matsui, M., Hiraoka, K., Nomura, W., Hirano, R., Nakahigashi, K., Tomita, M., Mori, H. and Kanai, A.

(2011) Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli. BMC genomics, 12, 428-428.

13. Winkler, W., Nahvi, A. and Breaker, R.R. (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature, 419, 952-956.

14. Winkler, W.C., Nahvi, A., Sudarsan, N., Barrick, J.E. and Breaker, R.R. (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nature structural biology, 10, 701-707.

15. Mandal, M., Boese, B., Barrick, J.E., Winkler, W.C. and Breaker, R.R. (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell, 113, 577-586.

16. Roth, A. and Breaker, R.R. (2009) The Structural and Functional Diversity of Metabolite-Binding Riboswitches. Annual Review of Biochemistry, 78, 305-334.

17. Waters, L.S. and Storz, G. (2009) Regulatory RNAs in Bacteria. Cell, 136, 615-628.

18. Green, N.J., Grundy, F.J. and Henkin, T.M. (2010) The T box mechanism: tRNA as a regulatory molecule. FEBS letters, 584, 318-324.

19. Marraffini, L.A. and Sontheimer, E.J. (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature reviews. Genetics, 11, 181-190.

20. Westra, E.R., Buckling, A. and Fineran, P.C. (2014) CRISPR-Cas systems: beyond adaptive immunity. Nature reviews. Microbiology, 12, 317-326.

21. Choi, J. and Majima, T. (2011) Conformational changes of non-B DNA. Chemical Society reviews, 40, 5893-5909.

22. Du, X., Wojtowicz, D., Bowers, A.A., Levens, D., Benham, C.J. and Przytycka, T.M. (2013) The genome-wide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli. Nucleic acids research, 41, 5965-5977.

23. Wang, G. and Vasquez, K.M. (2014) Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA repair, 19, 143-151.

24. Huang, Y. and Mrazek, J. (2014) Assessing diversity of DNA structure-related sequence features in prokaryotic genomes. DNA research : an international journal for rapid publication of reports on genes and genomes, 21, 285-297.

25. Bochman, M.L., Paeschke, K. and Zakian, V.A. (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nature reviews. Genetics, 13, 770-780.

26. Holder, Isabelle T. and Hartig, Jörg S. (2014) A Matter of Location: Influence of G-Quadruplexes on Escherichia coli Gene Expression. Chemistry & biology.

27. Henderson, I.R., Owen, P. and Nataro, J.P. (1999) Molecular switches--the ON and OFF of bacterial phase variation. Molecular microbiology, 33, 919-932.

28. van der Woude, M.W. and Baumler, A.J. (2004) Phase and antigenic variation in bacteria. Clinical microbiology reviews, 17, 581-611, table of contents.

29. Levene, P.A. and London, E.S. (1929) THE STRUCTURE OF THYMONUCLEIC ACID. Journal of Biological Chemistry, 83, 793-802.

30. Franklin, R.E. and Gosling, R.G. (1953) Molecular Configuration in Sodium Thymonucleate. Nature, 171,

740-31. Nikolova, E.N., Kim, E., Wise, A.A., O/'Brien, P.J., Andricioaei, I. and Al-Hashimi, H.M. (2011) Transient Hoogsteen base pairs in canonical duplex DNA. Nature, 470, 498-502.

32. Nikolova, E.N., Goh, G.B., Brooks, C.L. and Al-Hashimi, H.M. (2013) Characterizing the Protonation State of Cytosine in Transient G·C Hoogsteen Base Pairs in Duplex DNA. Journal of the American Chemical Society, 135, 6766-6769.

33. Sen, D. and Gilbert, W. (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 334, 364-366.

34. Frank-Kamenetskii, M.D. and Mirkin, S.M. (1995) Triplex DNA Structures. Annual Review of Biochemistry, 64, 65-95.

35. Watson, J.D. and Crick, F.H. (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171, 737-738.

36. Williamson, J.R., Raghuraman, M.K. and Cech, T.R. (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell, 59, 871-880.

37. Leontis, N.B., Stombaugh, J. and Westhof, E. (2002) The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic acids research, 30, 3497-3531.

38. Mirkin, S.M. and Frank-Kamenetskii, M.D. (1994) H-DNA and related structures. Annual review of biophysics and biomolecular structure, 23, 541-576.

39. Htun, H. and Dahlberg, J.E. (1989) Topology and formation of triple-stranded H-DNA. Science, 243, 1571-1576.

40. Malfoy, B., Rousseau, N., Vogt, N., Viegas-Pequignot, E., Dutrillaux, B. and Leng, M. (1986) Nucleotide sequence of an heterochromatic segment recognized by the antibodies to Z-DNA in fixed metaphase chromosomes. Nucleic acids research, 14, 3197-3214.

41. Johnston, B.H. (1992) Generation and detection of Z-DNA. Methods in enzymology, 211, 127-158.

42. Brazda, V., Laister, R.C., Jagelska, E.B. and Arrowsmith, C. (2011) Cruciform structures are a common DNA feature important for regulating biological processes. BMC molecular biology, 12, 33.

43. Murat, P. and Balasubramanian, S. (2014) Existence and consequences of G-quadruplex structures in DNA.

Current opinion in genetics & development, 25, 22-29.

44. Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K. and Neidle, S. (2006) Quadruplex DNA: sequence, topology and structure. Nucleic acids research, 34, 5402-5415.

45. Rawal, P., Kummarasetti, V.B., Ravindran, J., Kumar, N., Halder, K., Sharma, R., Mukerji, M., Das, S.K. and Chowdhury, S. (2006) Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome research, 16, 644-655.

46. Wang, G. and Vasquez, K.M. (2006) Non-B DNA structure-induced genetic instability. Mutation research, 598, 103-119.

47. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E.

(2000) The Protein Data Bank. Nucleic acids research, 28, 235-242.

48. Quintana, J.R., Grzeskowiak, K., Yanagi, K. and Dickerson, R.E. (1992) Structure of a B-DNA decamer with a central T-A step: C-G-A-T-T-A-A-T-C-G. Journal of molecular biology, 225, 379-395.

49. Brzezinski, K., Brzuszkiewicz, A., Dauter, M., Kubicki, M., Jaskolski, M. and Dauter, Z. (2011) High regularity of Z-DNA revealed by ultra high-resolution crystal structure at 0.55 A. Nucleic acids research, 39, 6238-6248.

50. Lim, K.W. and Phan, A.T. (2013) Structural basis of DNA quadruplex-duplex junction formation. Angewandte Chemie, 52, 8566-8569.

51. Ortiz-Lombardia, M., Gonzalez, A., Eritja, R., Aymami, J., Azorin, F. and Coll, M. (1999) Crystal structure of a DNA Holliday junction. Nature structural biology, 6, 913-917.

52. van Dongen, M.J.P., Doreleijers, J.F., van der Marel, G.A., van Boom, J.H., Hilbers, C.W. and Wijmenga, S.S.

(1999) Structure and mechanism of formation of the H-y5 isomer of an intramolecular DNA triple helix.

Nature structural & molecular biology, 6, 854-859.

53. Esmaili, N. and Leroy, J.L. (2005) i-motif solution structure and dynamics of the d(AACCCC) and d(CCCCAA) tetrahymena telomeric repeats. Nucleic acids research, 33, 213-224.

54. Gavathiotis, E. and Searle, M.S. (2003) Structure of the parallel-stranded DNA quadruplex d(TTAGGGT)4 containing the human telomeric repeat: evidence for A-tetrad formation from NMR and molecular dynamics simulations. Organic & biomolecular chemistry, 1, 1650-1656.

55. Zhang, N., Phan, A.T. and Patel, D.J. (2005) (3 + 1) Assembly of three human telomeric repeats into an asymmetric dimeric G-quadruplex. Journal of the American Chemical Society, 127, 17277-17285.

56. Parkinson, G.N., Lee, M.P. and Neidle, S. (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 417, 876-880.

57. Lim, K.W., Ng, V.C., Martin-Pintado, N., Heddi, B. and Phan, A.T. (2013) Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic acids research, 41, 10556-10562.

58. Hamada, H. and Kakunaga, T. (1982) Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature, 298, 396-398.

59. Wang, A.H., Quigley, G.J., Kolpak, F.J., Crawford, J.L., van Boom, J.H., van der Marel, G. and Rich, A. (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282, 680-686.

60. Holliday, R. (1964) A mechanism for gene conversion in fungi. Genetics Research, 5, 282-304.

61. Lyamichev, V.I., Mirkin, S.M. and Frank-Kamenetskii, M.D. (1986) Structures of homopurine-homopyrimidine tract in superhelical DNA. Journal of biomolecular structure & dynamics, 3, 667-669.

62. Day, H.A., Pavlou, P. and Waller, Z.A.E. (2014) i-Motif DNA: Structure, stability and targeting with ligands.

Bioorganic & medicinal chemistry, 22, 4407-4418.

63. Maizels, N. (2006) Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nature structural & molecular biology, 13, 1055-1059.

64. Biffi, G., Tannahill, D., McCafferty, J. and Balasubramanian, S. (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nature chemistry, 5, 182-186.

65. Biffi, G., Di Antonio, M., Tannahill, D. and Balasubramanian, S. (2014) Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nature chemistry, 6, 75-80.

66. Cahoon, L.A. and Seifert, H.S. (2009) An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science, 325, 764-767.

67. Paeschke, K., Capra, J.A. and Zakian, V.A. (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell, 145, 678-691.

68. Feldkamp, U. and Niemeyer, C.M. (2006) Rational design of DNA nanoarchitectures. Angewandte Chemie, 45, 1856-1876.

69. Krishnan, Y. and Simmel, F.C. (2011) Nucleic acid based molecular devices. Angewandte Chemie, 50, 3124-3156.

70. Bang, I. (1910) Untersuchungen über die Guanylsäure. Biochemische Zeitschrift, 26, 293-311.

71. Huppert, J.L. (2008) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes.

Chemical Society reviews, 37, 1375-1384.

72. Gellert, M., Lipsett, M.N. and Davies, D.R. (1962) Helix formation by guanylic acid. Proceedings of the National Academy of Sciences of the United States of America, 48, 2013-2018.

73. Williamson, J.R. (1994) G-quartet structures in telomeric DNA. Annual review of biophysics and biomolecular structure, 23, 703-730.

74. Hazel, P., Huppert, J., Balasubramanian, S. and Neidle, S. (2004) Loop-length-dependent folding of G-quadruplexes. Journal of the American Chemical Society, 126, 16405-16415.

75. Simonsson, T. (2001) G-quadruplex DNA structures--variations on a theme. Biological chemistry, 382, 621-628.

76. Hazel, P., Parkinson, G.N. and Neidle, S. (2006) Predictive modelling of topology and loop variations in dimeric DNA quadruplex structures. Nucleic acids research, 34, 2117-2127.

77. Chen, Y., Agrawal, P., Brown, R.V., Hatzakis, E., Hurley, L. and Yang, D. (2012) The major G-quadruplex formed in the human platelet-derived growth factor receptor beta promoter adopts a novel broken-strand structure in K+ solution. Journal of the American Chemical Society, 134, 13220-13223.

78. Holder, Isabelle T. and Hartig, Jörg S. A Matter of Location: Influence of G-Quadruplexes on Escherichia coli Gene Expression. Chemistry & biology.

79. Cang, X., Šponer, J. and Cheatham, T.E. (2011) Explaining the varied glycosidic conformational, G-tract length and sequence preferences for anti-parallel G-quadruplexes. Nucleic acids research, 39, 4499-4512.

80. Neidle, S. (2006) Quadruplex nucleic acids. RSC Publishing, Cambridge.

81. Wang, Y. and Patel, D.J. (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1, 263-282.

82. Li, J., Correia, J.J., Wang, L., Trent, J.O. and Chaires, J.B. (2005) Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic acids research, 33, 4649-4659.

83. Ambrus, A., Chen, D., Dai, J., Bialis, T., Jones, R.A. and Yang, D. (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic acids research, 34, 2723-2735.

84. Dai, J., Carver, M. and Yang, D. (2008) Polymorphism of human telomeric quadruplex structures. Biochimie, 90, 1172-1183.

85. Ying, L., Green, J.J., Li, H., Klenerman, D. and Balasubramanian, S. (2003) Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer.

Proceedings of the National Academy of Sciences of the United States of America, 100, 14629-14634.

86. Rujan, I.N., Meleney, J.C. and Bolton, P.H. (2005) Vertebrate telomere repeat DNAs favor external loop propeller quadruplex structures in the presence of high concentrations of potassium. Nucleic acids research, 33, 2022-2031.

87. Singh, V., Azarkh, M., Exner, T.E., Hartig, J.S. and Drescher, M. (2009) Human telomeric quadruplex conformations studied by pulsed EPR. Angewandte Chemie, 48, 9728-9730.

88. Azarkh, M., Singh, V., Okle, O., Dietrich, D.R., Hartig, J.S. and Drescher, M. (2012) Intracellular conformations of human telomeric quadruplexes studied by electron paramagnetic resonance spectroscopy. Chemphyschem : a European journal of chemical physics and physical chemistry, 13, 1444-1447.

89. Singh, V., Azarkh, M., Drescher, M. and Hartig, J.S. (2012) Conformations of individual quadruplex units studied in the context of extended human telomeric DNA. Chemical communications, 48, 8258-8260.

90. Chen, F.M. (1992) Sr2+ facilitates intermolecular G-quadruplex formation of telomeric sequences.

Biochemistry, 31, 3769-3776.

91. Miura, T. and Thomas, G.J., Jr. (1994) Structural polymorphism of telomere DNA: interquadruplex and duplex-quadruplex conversions probed by Raman spectroscopy. Biochemistry, 33, 7848-7856.

92. Miura, T., Benevides, J.M. and Thomas, G.J., Jr. (1995) A phase diagram for sodium and potassium ion control of polymorphism in telomeric DNA. Journal of molecular biology, 248, 233-238.

93. Miyoshi, D., Nakao, A., Toda, T. and Sugimoto, N. (2001) Effect of divalent cations on antiparallel G-quartet structure of d(G4T4G4). FEBS letters, 496, 128-133.

94. Miyoshi, D., Nakao, A. and Sugimoto, N. (2003) Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca2+. Nucleic acids research, 31, 1156-1163.

95. Webba da Silva, M. (2007) NMR methods for studying quadruplex nucleic acids. Methods, 43, 264-277.

96. Vorlickova, M., Kejnovska, I., Sagi, J., Renciuk, D., Bednarova, K., Motlova, J. and Kypr, J. (2012) Circular dichroism and guanine quadruplexes. Methods, 57, 64-75.

97. Mergny, J.L., Phan, A.T. and Lacroix, L. (1998) Following G-quartet formation by UV-spectroscopy. FEBS letters, 435, 74-78.

98. Mergny, J.L. and Lacroix, L. (2009) UV Melting of G-Quadruplexes. Current protocols in nucleic acid chemistry / edited by Serge L. Beaucage ... [et al.], Chapter 17, Unit 17 11.

99. Azarkh, M., Singh, V., Okle, O., Seemann, I.T., Dietrich, D.R., Hartig, J.S. and Drescher, M. (2013) Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nature protocols, 8, 131-147.

100. Holder, I.T., Drescher, M. and Hartig, J.S. (2013) Structural characterization of quadruplex DNA with in-cell EPR approaches. Bioorganic & medicinal chemistry, 21, 6156-6161.

101. Campbell, N.H. and Parkinson, G.N. (2007) Crystallographic studies of quadruplex nucleic acids. Methods, 43, 252-263.

102. Sun, D. and Hurley, L.H. (2010) Biochemical Techniques for the Characterization of G-Quadruplex Structures:

EMSA, DMS Footprinting, and DNA Polymerase Stop Assay. Methods in molecular biology (Clifton, N.J.), 608, 65-79.

103. Okumus, B. and Ha, T. (2010) In Baumann, P. (ed.), G-Quadruplex DNA. Humana Press, Vol. 608, pp. 81-96.

104. Sun, D. and Hurley, L.H. (2009) The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. Journal of medicinal chemistry, 52, 2863-2874.

105. Lu, M., Guo, Q. and Kallenbach, N.R. (1992) Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T. Biochemistry, 31, 2455-2459.

106. Garbett, N.C., Mekmaysy, C.S. and Chaires, J.B. (2010) Sedimentation Velocity Ultracentrifugation Analysis for Hydrodynamic Characterization of G-Quadruplex Structures. Methods in molecular biology (Clifton, N.J.), 608, 97-120.

107. Scaria, P.V., Shire, S.J. and Shafer, R.H. (1992) Quadruplex structure of d(G3T4G3) stabilized by K+ or Na+ is an asymmetric hairpin dimer. Proceedings of the National Academy of Sciences, 89, 10336-10340.

108. Smith, F.W., Lau, F.W. and Feigon, J. (1994) d(G3T4G3) forms an asymmetric diagonally looped dimeric quadruplex with guanosine 5'-syn-syn-anti and 5'-syn-anti-anti N-glycosidic conformations. Proceedings of the National Academy of Sciences of the United States of America, 91, 10546-10550.

109. Phan, A.T. and Mergny, J.-L. (2002) Human telomeric DNA: G-quadruplex, i-motif and Watson–Crick double helix. Nucleic acids research, 30, 4618-4625.

110. Snatzke, G. (2000) In Berova, N., Nakahigashi, K. and W., W. R. (eds.), Circular Dichroism: principles and applications. 2nd ed. Wiley-VCH, New York.

111. Bishop, G.R. and Chaires, J.B. (2001), Current Protocols in Nucleic Acid Chemistry. John Wiley & Sons, Inc.

112. Vorlickova, M., Kejnovska, I., Bednarova, K., Renciuk, D. and Kypr, J. (2012) Circular dichroism spectroscopy of DNA: from duplexes to quadruplexes. Chirality, 24, 691-698.

113. Kypr, J., Kejnovska, I., Renciuk, D. and Vorlickova, M. (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic acids research, 37, 1713-1725.

114. Joachimi, A., Benz, A. and Hartig, J.S. (2009) A comparison of DNA and RNA quadruplex structures and stabilities. Bioorganic & medicinal chemistry, 17, 6811-6815.

115. Gray, D.M., Wen, J.-D., Gray, C.W., Repges, R., Repges, C., Raabe, G. and Fleischhauer, J. (2008) Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. Chirality, 20, 431-440.

116. Balagurumoorthy, P., Brahmachari, S.K., Mohanty, D., Bansal, M. and Sasisekharan, V. (1992) Hairpin and parallel quartet structures for telomeric sequences. Nucleic acids research, 20, 4061-4067.

117. Balagurumoorthy, P. and Brahmachari, S.K. (1994) Structure and stability of human telomeric sequence.

Journal of Biological Chemistry, 269, 21858-21869.

118. Rachwal, P.A. and Fox, K.R. (2007) Quadruplex melting. Methods, 43, 291-301.

119. Huppert, J.L. and Balasubramanian, S. (2005) Prevalence of quadruplexes in the human genome. Nucleic acids research, 33, 2908-2916.

120. Capra, J.A., Paeschke, K., Singh, M. and Zakian, V.A. (2010) G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS computational biology, 6, e1000861.

121. Lipps, H.J. and Rhodes, D. (2009) G-quadruplex structures: in vivo evidence and function. Trends in cell biology, 19, 414-422.

122. Balasubramanian, S. and Neidle, S. (2009) G-quadruplex nucleic acids as therapeutic targets. Current opinion in chemical biology, 13, 345-353.

123. Patel, D.J., Phan, A.T. and Kuryavyi, V. (2007) Human telomere, oncogenic promoter and 5'-UTR

G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic acids research, 35, 7429-7455.

124. (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860-921.

125. Siddiqui-Jain, A., Grand, C.L., Bearss, D.J. and Hurley, L.H. (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences of the United States of America, 99, 11593-11598.

126. McLuckie, K.I., Waller, Z.A., Sanders, D.A., Alves, D., Rodriguez, R., Dash, J., McKenzie, G.J., Venkitaraman, A.R.

and Balasubramanian, S. (2011) G-quadruplex-binding benzo[a]phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. Journal of the American Chemical Society, 133, 2658-2663.

127. Cogoi, S. and Xodo, L.E. (2006) G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic acids research, 34, 2536-2549.

128. Halder, K., Wieland, M. and Hartig, J.S. (2009) Predictable suppression of gene expression by 5'-UTR-based RNA quadruplexes. Nucleic acids research, 37, 6811-6817.

129. Halder, K., Largy, E., Benzler, M., Teulade-Fichou, M.P. and Hartig, J.S. (2011) Efficient suppression of gene expression by targeting 5'-UTR-based RNA quadruplexes with bisquinolinium compounds. Chembiochem : a European journal of chemical biology, 12, 1663-1668.

130. Halder, R., Riou, J.F., Teulade-Fichou, M.P., Frickey, T. and Hartig, J.S. (2012) Bisquinolinium compounds induce quadruplex-specific transcriptome changes in HeLa S3 cell lines. BMC research notes, 5, 138.

131. Zhao, J., Bacolla, A., Wang, G. and Vasquez, K.M. (2010) Non-B DNA structure-induced genetic instability and evolution. Cellular and molecular life sciences : CMLS, 67, 43-62.

132. Endoh, T., Kawasaki, Y. and Sugimoto, N. (2013) Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor alpha. Nucleic acids research, 41, 6222-6231.

133. Beaudoin, J.D. and Perreault, J.P. (2013) Exploring mRNA 3'-UTR G-quadruplexes: evidence of roles in both alternative polyadenylation and mRNA shortening. Nucleic acids research, 41, 5898-5911.

134. Wieland, M. and Hartig, J.S. (2007) RNA quadruplex-based modulation of gene expression. Chemistry &

biology, 14, 757-763.

135. Endoh, T., Kawasaki, Y. and Sugimoto, N. (2013) Suppression of gene expression by G-quadruplexes in open reading frames depends on G-quadruplex stability. Angewandte Chemie, 52, 5522-5526.

136. Endoh, T. and Sugimoto, N. (2013) Unusual -1 ribosomal frameshift caused by stable RNA G-quadruplex in open reading frame. Analytical chemistry, 85, 11435-11439.

137. Beaume, N., Pathak, R., Yadav, V.K., Kota, S., Misra, H.S., Gautam, H.K. and Chowdhury, S. (2013) Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D.

radiodurans involves G4 DNA-mediated regulation. Nucleic acids research, 41, 76-89.

138. Cahoon, L.A. and Seifert, H.S. (2013) Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. PLoS pathogens, 9, e1003074.

139. Konig, S.L., Huppert, J.L., Sigel, R.K. and Evans, A.C. (2013) Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences. Nucleic acids research, 41, 7453-7461.

140. Ellegren, H. (2004) Microsatellites: simple sequences with complex evolution. Nature reviews. Genetics, 5, 435-445.

141. Zhou, K., Aertsen, A. and Michiels, C.W. (2014) The role of variable DNA tandem repeats in bacterial adaptation. FEMS microbiology reviews, 38, 119-141.

142. Spritz, R.A. (1981) Duplication/deletion polymorphism 5' - to the human beta globin gene. Nucleic acids research, 9, 5037-5047.

143. Miesfeld, R., Krystal, M. and Arnheim, N. (1981) A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human delta and beta globin genes. Nucleic acids research, 9, 5931-5947.

144. Jeffreys, A.J., Wilson, V. and Thein, S.L. (1985) Hypervariable 'minisatellite' regions in human DNA. Nature, 314, 67-73.

145. Tautz, D., Trick, M. and Dover, G.A. (1986) Cryptic simplicity in DNA is a major source of genetic variation.

Nature, 322, 652-656.

146. Litt, M. and Luty, J.A. (1989) A hypervariable microsatellite revealed by in vitro amplification of a

dinucleotide repeat within the cardiac muscle actin gene. American journal of human genetics, 44, 397-401.

147. MacDonald, M.E., Ambrose, C.M., Duyao, M.P., Myers, R.H., Lin, C., Srinidhi, L., Barnes, G., Taylor, S.A., James, M., Groot, N. et al. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 72, 971-983.

148. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. and Fischbeck, K.H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature, 352, 77-79.

149. Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F., Zhang, F.P. et al. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905-914.

150. Han, X., Leroy, J.L. and Gueron, M. (1998) An intramolecular i-motif: the solution structure and base-pair opening kinetics of d(5mCCT3CCT3ACCT3CC). Journal of molecular biology, 278, 949-965.

151. Brooks, T.A. and Hurley, L.H. (2010) Targeting MYC Expression through G-Quadruplexes. Genes & cancer, 1, 641-649.

152. Gonzalez, V. and Hurley, L.H. (2010) The c-MYC NHE III(1): function and regulation. Annual review of pharmacology and toxicology, 50, 111-129.

153. Lu, Q., Teare, J.M., Granok, H., Swede, M.J., Xu, J. and Elgin, S.C. (2003) The capacity to form H-DNA cannot substitute for GAGA factor binding to a (CT)n*(GA)n regulatory site. Nucleic acids research, 31, 2483-2494.

154. van Belkum, A., van Leeuwen, W., Scherer, S. and Verbrugh, H. (1999) Occurrence and structure-function relationship of pentameric short sequence repeats in microbial genomes. Research in microbiology, 150, 617-626.

155. Mrazek, J., Guo, X. and Shah, A. (2007) Simple sequence repeats in prokaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 104, 8472-8477.

156. Mazel, D., Houmard, J., Castets, A.M. and Tandeau de Marsac, N. (1990) Highly repetitive DNA sequences in cyanobacterial genomes. Journal of bacteriology, 172, 2755-2761.

157. Correia, F.F., Inouye, S. and Inouye, M. (1988) A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. The Journal of biological chemistry, 263, 12194-12198.

158. Liu, S.V., Saunders, N.J., Jeffries, A. and Rest, R.F. (2002) Genome analysis and strain comparison of correia repeats and correia repeat-enclosed elements in pathogenic Neisseria. Journal of bacteriology, 184, 6163-6173.

159. Delihas, N. (2011) Impact of small repeat sequences on bacterial genome evolution. Genome biology and evolution, 3, 959-973.

160. Poirel, L., Carrer, A., Pitout, J.D. and Nordmann, P. (2009) Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antimicrobial agents and chemotherapy, 53, 2492-2498.

161. De Gregorio, E., Abrescia, C., Carlomagno, M.S. and Di Nocera, P.P. (2002) The abundant class of nemis repeats provides RNA substrates for ribonuclease III in Neisseriae. Biochimica et biophysica acta, 1576, 39-162. 44. De Gregorio, E., Silvestro, G., Venditti, R., Carlomagno, M.S. and Di Nocera, P.P. (2006) Structural organization

and functional properties of miniature DNA insertion sequences in yersiniae. Journal of bacteriology, 188, 7876-7884.

163. Chen, Y., Zhou, F., Li, G. and Xu, Y. (2008) A recently active miniature inverted-repeat transposable element, Chunjie, inserted into an operon without disturbing the operon structure in Geobacter uraniireducens Rf4.

Genetics, 179, 2291-2297.

164. Snyder, L.A., Shafer, W.M. and Saunders, N.J. (2003) Divergence and transcriptional analysis of the division

164. Snyder, L.A., Shafer, W.M. and Saunders, N.J. (2003) Divergence and transcriptional analysis of the division