• Keine Ergebnisse gefunden

Identification of characteristic model-observation deviations for coupled data assimilation

N/A
N/A
Protected

Academic year: 2021

Aktie "Identification of characteristic model-observation deviations for coupled data assimilation"

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Identification of characteristic model-observation deviations for

coupled data assimilation

Gernot Geppert and Felix Ament Meteorological Institute, Universität Hamburg

Workshop on Data Assimilation in Terrestrial Systems, Bonn 19. September 2016

(2)

Introduction

Goal: Strongly-coupled data assimilation

⇒ exploit links between model components

• Instantaneous deviations are not appropriate due to small-scale fluctuations.

• Instead use characteristic patterns in differences between forecast and observation.

t T

2 m

night day

dry soil wet soil

t T

2 m

night day

low thermal cond.

high thermal

cond.

1/18 Gernot Geppert

(3)

Characteristic deviations

Combine atmospheric state vector elements and observations into pseudo-observations which can be shown to be related to soil and surface states:

• gradients, biases, phase shifts

• estimate correlations with desired state or paramter (eg. soil moisture, thermal conductivity)

t T

2 m

night day

dry soil wet soil

t T

2 m

night day

low thermal cond.

high thermal

cond.

2/18 Gernot Geppert

(4)

Virtual reality framework

To assess the impact in data assimilation experiments at a later stage we use a virutal reality framework:

• multi-year simulations with TerrSysMP (B. Schalge's talk, Wed)

• COSMO coupled to CLM

• 1 km horizontal resolution

• simulation results stored with 15 min resolution

longitude / degrees east

latitude/degreesnorth

STG KIT

7.63 7.57

8.52 8.50

9.41 9.43

10.30 10.36

47.54 47.54

48.14 48.14

48.74 48.74

49.34 49.34

Bare soil Needleleaf evergreen Broadleaf deciduous Grass Crop

3/18 Gernot Geppert

(5)

Setting up ICON-LES in the virtual reality

We use ICON in a large-eddy-simulation configuration to capture the coupled system as realistically as possible.

• limited-area simulations ⇒ small domain inside the virtual reality

• ≈ 150 m and 300 m spatial resolution

longitude / degrees east

latitude/degreesnorth

9.81

9.85 9.88

9.92 9.96

10.00 10.03

10.08 10.11

10.16

48.34 48.34

48.39 48.39

48.44 48.44

48.49 48.49

cropland broadleaf forest needleleaf forest grassland bare soil

4/18 Gernot Geppert

(6)

Setting up ICON-LES in the virtual reality

• remap quadrilateral COSMO and CLM data to triangular ICON grid

• initial data for ICON-LES simulations

• boundary data every 15 min

• convert CLM variables to ICON-compatible variables

• matric potential to soil moisture index

• CLM soil state to q

surf

• adapt variable names and units

...

96000 96400 96800 97200 97600 98000 98400 98800 P

96000 96400 96800 97200 97600 98000 98400 98800 W

−0.18

−0.12

−0.06 0.00 0.06 0.12 0.18 0.24 0.30V

−3.6

−3.3

−3.0

−2.7

−2.4

−2.1

−1.8

−1.5 U

2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 T

284.5 284.8 285.1 285.4 285.7 286.0 286.3 286.6

...

96000 96400 96800 97200 97600 98000 98400 98800 P

96000 96400 96800 97200 97600 98000 98400 98800 W

−0.18

−0.12

−0.06 0.00 0.06 0.12 0.18 0.24 0.30V

−3.6

−3.3

−3.0

−2.7

−2.4

−2.1

−1.8

−1.5 U

2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6

T

284.5 284.8 285.1 285.4 285.7 286.0 286.3 286.6

5/18 Gernot Geppert

(7)

ICON-LES simulations

Currently three simulations:

• ensemble with perturbed initial soil moisture (10 days)

• ensemble with perturbed initial soil moisture and perturbed soil thermal conductivity (3 days)

• single realisation of a 1-year continuous simulation

6/18 Gernot Geppert

(8)

ICON-LES simulations

7/18 Gernot Geppert

(9)

ICON-LES simulations

• ensemble with perturbed initial soil moisture (10 days)

Jun012010 Jun022010

Jun032010 Jun042010

Jun052010 Jun062010

Jun072010 Jun082010

Jun092010 0.10

0.15 0.20 0.25 0.30 0.35 0.40

soilmoisture/m3m3

deciduous broadleaf trees, clay/loam

8/18 Gernot Geppert

(10)

Morning temperature gradient

• ensemble with perturbed initial soil moisture (10 days)

−0.10 −0.05 0.00 0.05 0.10

soil moisture anomaly θ

0

/ m

3

m

−3

−0.20

−0.15

−0.10

−0.05 0.00 0.05 0.10

anomaly in mo rning temp erature increase

d T d t

0

/ K h

−1

r = −0.74 deciduous broadleaf trees

t T

2 m

night day

dry soil wet soil

9/18 Gernot Geppert

(11)

Lapse rate

• ensemble with perturbed initial soil moisture (10 days)

−0.10 −0.05 0.00 0.05 0.10

soil moisture anomalyθ0/m3m−3

−0.015

−0.010

−0.005 0.000 0.005 0.010 0.015 0.020

anomalyinverticaltemperaturegradient

dT dz 0 /Km1

r= 0.83 deciduous broadleaf trees

-15 -10 -5 04 Jun 05 Jun 06 Jun

temperature difference to lowest level /K 0

500 1000 1500 2000 2500 3000

height/m

dry, bare soil dry, forest wet, bare soil wet, forest

10/18 Gernot Geppert

(12)

Morning temperature gradient vs soil moisture - 1 year

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.10 0.15 0.20 0.25 0.30 0.35 0.40

volumetric soil moisture

−0.50.00.51.01.52.0 0.10

0.15 0.20 0.25 0.30 0.35 0.40

−0.50.00.51.01.52.0

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

−0.50.00.51.01.52.0−0.50.00.51.01.52.0

11/18 Gernot Geppert

(13)

Morning temperature gradient vs soil moisture - 1 year

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.10 0.15 0.20 0.25 0.30 0.35 0.40

volumetric soil moisture

−0.50.00.51.01.52.0 0.10

0.15 0.20 0.25 0.30 0.35 0.40

−0.50.00.51.01.52.0

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

temperature gradient / K h

−1

−0.50.00.51.01.52.0−0.50.00.51.01.52.0 longitude / degrees east

latitude/degreesnorth

9.81

9.85 9.88

9.92 9.96

10.00 10.03

10.08 10.11

10.16

48.34 48.34

48.39 48.39

48.44 48.44

48.49 48.49

cropland broadleaf forest needleleaf forest grassland bare soil

11/18 Gernot Geppert

(14)

Morning temperature gradient vs soil moisture - 1 year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−1.0

−0.5 0.0 0.5 1.0

co rrelation

12/18 Gernot Geppert

(15)

Lapse rate vs soil moisture - 1 year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−1.0

−0.5 0.0 0.5 1.0

co rrelation

13/18 Gernot Geppert

(16)

Morning temperature gradient - May--July

crop broadleaf grass bare

−1.0

−0.5 0.0 0.5 1.0

co rrelation

14/18 Gernot Geppert

(17)

Lapse rate vs soil moisture - May--July

crop broadleaf grass bare

−1.0

−0.5 0.0 0.5 1.0

co rrelation

15/18 Gernot Geppert

(18)

Thermal conductivity

• ensemble with perturbed initial soil moisture and perturbed soil thermal conductivity (3 days)

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 286

288 290 292 294 296 298 300

temperature/K

t T

2 m

night day

low thermal cond.

high thermal

cond.

16/18 Gernot Geppert

(19)

Thermal conductivity

• ensemble with perturbed initial soil moisture and perturbed soil thermal conductivity (3 days)

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00

284 286 288 290 292 294 296 298 300 302

temp erature / K

17/18 Gernot Geppert

(20)

Conclusions - Work in progress

• strongly coupled data assimilation should exploit (known) links between model components

• this requires combining states and observations across space or time

• use independent, high-resolution model to identify characteristic deviations

• avoid spurious relationships

• capture system as realistically as possible

• for soil moisture, there is no universal applicability, we are limited to favorable meteorological conditions (ie. water limited ET)

• outlook: conditional sampling for irregular parameter updates

18/18 Gernot Geppert

Referenzen

ÄHNLICHE DOKUMENTE

Observation characteristics on day 8: (a) The horizontal domain is shown, together with the Argo profiler locations (crosses) and the synthetic SSH observations (colored) on the

2.2 The Finite Element Sea Ice-Ocean Model (FESOM) The sea ice-ocean component in the coupled system is represented by FESOM, which allows one to simulate ocean and

This adjustment is accomplished by a conservative remapping of the FESOM land-sea distribution to the T63 grid of ECHAM6 using an adapted routine that has primarily been

2.2 The Finite Element Sea Ice-Ocean Model (FESOM) The sea ice-ocean component in the coupled system is represented by FESOM, which allows one to simulate ocean and

2.2 The Finite Element Sea Ice-Ocean Model (FESOM) The sea ice-ocean component in the coupled system is represented by FESOM, which allows one to simulate ocean and

2.2 The Finite Element Sea Ice-Ocean Model (FESOM) The sea ice-ocean component in the coupled system is represented by FESOM, which allows one to simulate ocean and

Temperature Assimilation into an Operational Coastal Ocean- Biogeochemical Model of the North and Baltic Seas:.. Weakly and Strongly Coupled

In this step the model state vectors are collected on the filter communicator with the help of the coupling communicator (see Fig. Then the observation data are read from netCDF