• Keine Ergebnisse gefunden

A Carbuncle-free Roe-Type Solver for the Euler Equations

N/A
N/A
Protected

Academic year: 2021

Aktie "A Carbuncle-free Roe-Type Solver for the Euler Equations"

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Equations

Friedemann Kemm BTU Cottbus

kemm@math.tu-cottbus.de

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

0 5 10 20 15 25 30

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

0 5 10 20 15 25 30

0 10 20 30 40 50 60 70

(2)

Stability of Discrete Shock Profiles

1d:

• Post-shock oscillations (Quirk 1994; Jin & Liu 1996; Arora & Roe 1997, . . . )

• Godunov scheme: unstable discrete profiles (Bultelle, Grassin, Serre 1998)

⇒ tend to neighbouring stable profiles

2d:

• High resolution Riemann solvers produce unstable profiles (Dumbser, Moschetta, Gressier 2004)

• Same mechanism in Carbuncle and Odd-Even-Decoupling (Chauvat, Moschetta, Gressier 2005)

(3)

1d-Stability ↔ 2d-Stability

entropy

transport jump backwards

jump forward

original shock location

y

x

shear

wave

⇒ Stabilization by viscosity on linear waves parallel to shock front

(4)

HLLE Solver

x t

Sl Sr

ql qr

qHLL

• HLL: Constant intermediate state according to conservation

• HLLE: Natural choice of bounding speeds:

SL = min{u˜ − a, u˜ l − al,0} SR = max{u˜ + ˜a, ur + ar,0}

• High viscosity on shear and entropy waves

(5)

HLLEM

• Comparison of viscosity matrices

• With Roe eigenvalues as SL and SR

gRoe(qr,ql) = gHLL(qr,ql) − u˜2 − ˜a2

4˜a κ[˜lT2 ∆q˜r2 + ˜lT3 ∆q˜r3].

with

κ = 2˜a

˜

a + |u|˜

• Now for gHLL take SL, SR like for HLLE → HLLEM.

• Exact resolution of entropy- and shear waves (Park, Kwon 2002)

(6)

HLL as Modification of Roe

x

˜ t

u a˜ u˜ φ(θ) ˜a u˜ u˜ +φ(θ) ˜a u˜ + ˜a

• Harten Hyman type splitting of contact wave

• HLL for φ(θ) = 1

• Same flux with HLLEM and κ replaced by (1 − φ(θ))κ

(7)

Desirable Properties of the new Solver

• Exact Resolution of single discontinuities

• No carbuncle

• No information from neighbouring Riemann problems needed

flux to compute

strong shock?

strong shock?

(8)

Indicator for Entropy- and Shear Waves

Rankine-Hugoniot condition for single contact or shear wave:

f(qr) − f(ql) = ˜u(qr − ql)

Idea: Residual in Rankine-Hugoniot condition as indicator:

R := f(qr) − f(ql) − u(q˜ r − ql)

Relate to flow magnitudes:

θ =

R

˜ a

2

(9)

Completing the Switching Function

Viscosity bounded by HLL(E):

φ(θ) = min{1, θ}

Relax by some parameter:

φ(θ) = min{1, ε θ}

Less dangerous when flow component parallel to shock:

φ(θ) = min{1, ε θ max{0,1 − Muα}} , α > 0

Make φ concave (experimental):

φ(θ) = min{1,(ε θ max{0,1 − Muα})β} , 0 < β < 1

(10)

Application of the Switch

Roe:

• Split wave with u˜ into waves with u˜ − φ(θ)˜a and u˜ + φ(θ)˜a ⇒ RoeCC HLLEM:

• Multiply anti-diffusion coefficient κ by 1 − φ(θ) ⇒ HLLEMCC Both fluxes identical apart from entropy fix

Reasonable setting:

ε = 1

100 , α = β = 1 3

(11)

Quirk Test

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0 200 400 600 800 1000 1200 1400 1600

Quirk test: Godunov

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0 200 400 600 800 1000 1200 1400 1600

Quirk test: HLLEMCC, eps=0.01

Godunov HLLEMCC

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0 200 400 600 800 1000 1200 1400 1600

Quirk test: HLLEM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0 200 400 600 800 1000 1200 1400 1600

Quirk test: HLLE

HLLEM HLLE

(12)

Steady Shock

0 1 2 3 4 5 6 7

0 10 20 30 40 50 60 70 80 90 100

steady shock, Godunov

0 1 2 3 4 5 6 7

0 10 20 30 40 50 60 70 80 90 100

steady shock, HLLEMCC

Godunov HLLEMCC

0 1 2 3 4 5 6 7 8

0 10 20 30 40 50 60 70 80 90 100

steady shock, HLLEM

0 1 2 3 4 5 6 7

0 10 20 30 40 50 60 70 80 90 100

steady shock, HLLE

HLLEM HLLE

(13)

Colliding Flow (2nd-Order)

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

Colliding flow: Godunov

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

Colliding flow: HLLEMCC

Godunov HLLEMCC

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

Colliding flow: HLLEM

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

Colliding flow: HLLE

HLLEM HLLE

(14)

Colliding Flow (2nd-Order)

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

0 5 10 15 20 25 30

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

0 5 10 15 20 25 30 0 10 20 30 40 50 60 70

Godunov HLLEMCC

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

0 5 15 10 20 25 30

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

0 5 15 10 20 25 30 0 10 20 30 40 50 60 70

HLLEM HLLE

(15)

Sod Problem: Contact Discontinuity

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

0.6 0.65 0.7 0.75 0.8 0.85

HLLEMCC HLLEM HLLE

(16)

Conclusions

• No complete analysis available

• Possible to avoid carbuncle while retaining exact resolution of contact waves

• No information on neighbouring Riemann problems needed (efficiency)

• Steady profiles replaced by stable neighbouring profiles

(17)

Appendix

(18)

Comparison of Roe and HLLE Flux

Roe Flux

gRoe(qr, ql) = 1

2[f(qr) + f(ql)] − 1

2|A(q˜ r, ql)|(qr − ql)

HLLE Flux

gHLL(qr, ql) = 1

2[f(qr) + f(ql)] − 1 2

SR + SL

SR − SL[f(qr) − f(ql)] + SRSL

SR − SL(qr − ql)

If Roe Matrix exists

gHLL(qr, ql) = 1

2[f(qr) + f(ql)] − 1 2

SR + SL SR − SL

A(q˜ r, ql)(qr − ql) + SRSL

SR − SL(qr − ql)

(19)

Comparison of Viscosity Matrices

Roe

VRoe = |A(q˜ r, ql)|

HLLE

VHLL = SR + SL SR − SL

A(q˜ r, ql) − 2 SRSL SR − SLI

If SL eigenvalue of A˜ with eigenvector rl

VHLLL = −SLL

If SR eigenvalue of A˜ with eigenvector rr

VHLLr = SRr

(20)

Idea of HLLEM: Write Roe as Correction of HLL

• Choose SL, SR to be the Roe eigenvalues for the outer waves

• L˜ and R˜ Matrices with left/right eigenvectors of Roe matrix as rows/columns and L˜R˜ = I

• Find diagonal matrix K such that

VRoe = VHLL + SRSL SR − SL

RK˜ L˜

• Only entries for inner waves in K

Referenzen

ÄHNLICHE DOKUMENTE

Key words: hyperbolic systems, wave equation, evolution Galerkin schemes, Maxwell equa- tions, linearized Euler equations, divergence-free, vorticity, dispersion..

different standard Riemannsolvers for pressure part for E-cusp already many failed schemes. With

generalized to higher orders by Rider, Greenough and Kamm 2005.. PHM, PRM, Double

The DFT/MRCI method has been successfully applied in excited states calculations of organic molecules [74–80] and transition metal complexes [81, 82], in excitation energy

Instead, we follow a different strategy in order to construct an explicit measure-valued solution for the compressible Euler equations which can not be generated by a sequence

To investigate the relation between operating parameters of the X-Ray source and the performance of the ion mobility spectrometer, parametric studies of filament current

Though, roughly speaking, we repeat the basic strategy used in [11, 14] the concrete constructions are rather different. What concerns the algebraic versions of our Schur-

quences of complex q × q matrices. In the second part of the paper, we will construct a Schur-type algorithm for a special class of holomorphic matrix functions, which turns out to