• Keine Ergebnisse gefunden

Prof. Dr. Otto April 18, 2011

N/A
N/A
Protected

Academic year: 2022

Aktie "Prof. Dr. Otto April 18, 2011"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Linear Algebra II Tutorial Sheet no. 2

Summer term 2011

Prof. Dr. Otto April 18, 2011

Dr. Le Roux Dr. Linshaw

Exercise T1 (Geometric characterisation of linear maps by eigenvalues)

Give a geometric description of all the endomorphisms ofR3with the following sets of eigenvalues:

(a) λ1=−1,λ2=0,λ3=1 (b) λ1=1,λ2=2,λ3=3

(c) λ1=−1,λ2=1,λ3=2

Note that you cannot assume anything about the corresponding eigenvectors other than that they form a basis (why?).

Exercise T2 (Eigenvalues and eigenvectors overRandC) LetAbe the3×3-matrix

0 −1 4

1 0 2

0 0 1

.

(a) Determine the characteristic polynomial of the matrixA.

(b) Find all real eigenvalues ofAand the corresponding eigenvectors of the mapϕ:R3→R3withϕ(x) =Ax.

(c) Find all eigenvalues for the corresponding mapϕ:C3→C3withϕ(x) =Axand give a basis of each eigenspace.

Exercise T3 (Diagonalisation) Consider the matrixA=

2 2 1 3

overR.

(a) Determine all eigenvalues ofAand corresponding eigenvectors.

(b) Find a regular matrixCsuch thatD=C−1ACis a diagonal matrix.

(c) CalculateA6.

(d) Find a “positive square root” ofA, i.e., find a matrixRwith non-negative eigenvalues such thatR2=A (e) Check thatt7→etAv0solves the differential equation d tdv(t) =Av(t)with initial valuev(0) =v0. Exercise T4 (Eigenvalues of nilpotent maps)

Let V be a vector space of dimension greater than 0, and letϕ :VV be a nilpotent endomorphism, that is, an endomorphism such thatϕk=0for somek∈N.

(a) Show that 0 is the only possible eigenvalue ofϕ.

(b) Show that 0 is an eigenvalue ofϕ.

1

Referenzen

ÄHNLICHE DOKUMENTE

(This implies that π preserves angles. Such maps are called

Linear Algebra II.. Exercise

give a geometric description of complex multiplication in terms of rotations and rescalings (i.e., dilations or contractions) in R

Recall that, last semester in Linear Algebra I, we have shown in exercise (E14.2) that, given n distinct real numbers a

Linear Algebra II Tutorial Sheet no.. Le

Linear Algebra II Tutorial Sheet no.. Le

(b) Show that an orthogonal map in R 3 is either the identity, a reflection in a plane, a reflection in a line, the reflection in the origin, a rotation about an axis or a

Let V be a finite dimensional euclidean or unitary space and ϕ an endomorphism