• Keine Ergebnisse gefunden

composites Steel foil reinforcement for high performance bearing strength in Thin ‐Ply Composites Part C: Open Access

N/A
N/A
Protected

Academic year: 2022

Aktie "composites Steel foil reinforcement for high performance bearing strength in Thin ‐Ply Composites Part C: Open Access"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

Composites Part C: Open Access

journalhomepage:www.elsevier.com/locate/jcomc

Steel foil reinforcement for high performance bearing strength in Thin ‐Ply composites

Benedikt Kötter

a,

, Kohei Yamada

b

, Johann Körbelin

a

, Kazumasa Kawabe

b

, Masaaki Nishikawa

c

, Masaki Hojo

c

, Bodo Fiedler

a

aInstitute of Polymer and Composites, Hamburg University of Technology, Denickestraße 15, Hamburg 21073, Germany

bIndustrial Technology Center of Fukui Prefecture, 61-10, Kawaiwashizuka, Fukui 910-0102, Japan

cDepartment of Mechanical Engineering and Science, Kyoto University, C3, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan

a r t i c le i n f o

Keywords:

Fibre metal laminate (FML) Hybrid material Stress distribution Open hole test Digital Image Correlation

a b s t r a ct

ThisstudyinvestigatestheinfluenceoflocalhybridizationofThinandThick-PlyCFRPlaminatesontheopen-hole andbearingproperties.TheareaweightoftheCFRPunidirectionalprepregsusedis40gsminthecaseofThin-Ply layersand160gsminthecaseofThick-Plylayers.Thesteelusedisa1.4310stainless-steelfoilwiththesame layerthicknessastheprepregs.Inthehybridarea,90layerswerelocallyreplacedbystainlesssteelpatches.The localmetalfoilcontentvariesfrom6.25%,12.5%to25.0%.Fornotchedlaminates,theopenholetensilestrength issignificantlydecreasedwiththinnerlayerthicknesses.Thefailurebehaviorchangesfromcomplexdelamination dominatedfailuretobrittlefailure.Byusingstainlesssteelfoilsintheregionsofstressconcentrations,energycan bedissipatedbyplasticdeformationofthesteelfoilandstressescanbedeflectedtoneighbouringareas.ForThin- Plysampleswithalocalsteelcontentof25%theopenholetensilestrengthincreasesby64%incomparisontothe referenceThin-Plyspecimensandthesensitivitytowardsstressconcentrationsdecreases.Thebearingstrength ofthehybridCFRPlaminatesisincreasedbyupto54.6%incomparisontothereferencematerial,duetothe confinementofthesteelfoilandtheresultinghighercompressivestrengthandtheplasticdeformationathigh stresses.Thestress–straindiagramsandmicrographsofthefibremetalsamplesrevealthatdamageisinitiated beforethemaximumbearingstrength.However,thedamageoffsetbearingstrengthincreaseconcerningthe specificdensityofthematerialsignificantly.

1. Introduction

Duetotheexcellentdensity-specificmechanicalproperties,carbon fibrereinforcedcomposites(CFRPs)areoftenusedasastructuralma- terialforlightweightstructures[1].However,conventionalCFRPlam- inatesorstructuresdonotexploitthefullpotentialoftheusedcarbon fibres.Oneapproachtoimprovetheirperformanceistoreducethelayer thickness.Kawabeetal.andSihnetal.presentedaspread-towprocess toproducethinunidirectionalplies,so-calledThin-Plylayersaslowas 20μm[2,3].Asaresult,thedegreeoffreedomindesignincreaseswith decreasinglayerthicknessduetothelargernumberof usedplies or morepreciseload-dependentdesign.

Thefailurebehaviorishighlydependentonthelayerthickness,a decreasedlayerthicknesssuppressestransversemicrocrackingandfree edgedelaminationduetoanincreaseoftransversetensilestrength(in- situeffect)[4].Thefailuremodechangesfromcomplexdelamination

Thisworkwasfinancialsupportedbythe“DerÜbersee-Clube.V.”,Hamburg,Germany.ThankstoAviatecGobalAviationGmbH&Co.KG,Henstedt-Ulzburg, Germanyforsupplyingsurfacepre-treatmentsystems

Correspondingauthor.

E-mailaddress:benedikt.koetter@tuhh.de(B.Kötter).

URL:http://www.tuhh.de/kvweb(B.Kötter)

dominatedfailureto abrittle failurefrom Thick- toThin-Ply[3–7], whichresultsinahigherultimatetensilestrengthforunnotchedquasi- isotropicspecimens[3,6,8].Inadditiontotheimprovementoftheme- chanicalproperties duetothein-situ effect,thelaminatequalityim- proveswithregardtovoidcontent,fibreangledeviationandresinrich areas withdecreasing layerthickness. This can be attributedto the spreading process,whichresultsin amorehomogeneousfibredistri- bution.Duetothesefactors,thecompressivestrengthofunidirectional Thin-Plysamplesincreasescomparedtothickerlayers[6,8].

Incontrasttotheunnotchedsamples,notchedThin-Plyspecimens exhibitaloweropenholetensilestrength.Asaconsequenceofthesup- pressionofinter-fibrefractureanddelamination,nocrackbluntingof thestressconcentrationduetointerlaminardamageoccurs.Thus,no energycanbedissipatedorstressdivertedtoadjacentareasandnopre- damageleadstoprematurefibrefailureatthenotchorstressconcentra- tionregion[3,6,7].Inordertoreducethenotchsensitivity,thematerial

https://doi.org/10.1016/j.jcomc.2020.100085

Received13October2020;Receivedinrevisedform7December2020;Accepted8December2020

2666-6820/© 2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

Table1

Laminatelayupsandglobalspecimendensitiesfortheopenholetensile(OHT)andbearingtests.

Configuration (SF: Steel Foil) Density in g/cm 3 Layup OHT Bearing

CFRP: 40 gsm; Reference 1.53 1.53 [45/90/-45/0] 12s

CFRP: 40 gsm; SF 6.25 %; ( t = 0.04 mm) 1.62 1.67 [(45/SF/-45/0) 3/(45/90/-45/0) 9] s

CFRP: 40 gsm; SF 12.5 %; ( t = 0.04 mm) 1.70 1.80 [(45/SF/-45/0) 6/(45/90/-45/0) 6] s CFRP: 40 gsm; SF 25.0 %; ( t = 0.04 mm) 1.86 2.07 [45/SF/-45/0] 12s

CFRP: 160 gsm; Reference 1.53 1.53 [45 4/90 4/-45 4/0 4] 3s

CFRP: 160 gsm; SF 25.0 %; ( t = 0.16 mm) 1.88 2.12 [45 4/SF/-45 4/0 4] 3s

canbemodifiedinsuchawaythattheentirefailuremechanismchanges and,forexample,micro-damagesoccur.Onepossibilityistointroduce asecondmaterial(hybridization),allowingsynergyeffectstobeused incustomizeddesignsdependingontheloadsituationsuchasnotches orloadintroductionareas.Inthisstudy,theapproachistolocallysub- stitute90CFRPlayerswithstainlesssteelfoilsintheareaofstresscon- centration.Stainlesssteelislesssensitivetostressconcentrationsdue totheirisotropicmaterialandstrainhardeningproperties.Incontrastto titaniumoraerospacealuminiumalloys,stainlesssteelsaremoreeco- nomical[9].Duetohybridizationwithstainlesssteel,thefailurebehav- iorchangesfromabrittlefailurebacktoacomplexmulti-modefailure.

PreviousstudieswhichhaveinvestigatedcarbonfibrereinforcedThin- Plylaminateswithstainlesssteelpatchesshowhigheropenholetensile strengths[10,11],whichincreasedfrom390MPato630MPawitha localsteelcontentof25%,anincreaseofabout60.44%.Althoughthe globaldensityofthespecimenincreasesduetohybridization,theden- sityspecificstrengthisnonethelessincreasingandthenotchsensitivity isreduced.Localthickeningorotherdesignfeaturescanbeminimized oreliminated.Previousstudiesencounteredstressconcentrationsinthe transitionzonecausedbythedifferenceinstiffnessofCFRPandstainless steel.Thereforethestainlesssteelpatcheswerearrangedstep-wise.As aresult,theincreasedstressesaredistributedoverawiderarea,andlo- callythestressconcentrationdecreases[11].Thestaircasearrangement hasalsobeenusedinotherworks[12–14].

AnotherfieldofapplicationforhybridCFRPlaminatesisfastener- basedjoints.Boltorrivetjointsarethemostcommonlyusedtypeof joiningtechniquestodayduetotheirsimpleapplication,lowpriceand thepossibilityofrelease[15–17].However,thistypeofjointisnotap- propriatefortheuseofCFRP.AstudybyAmacheretal.showedthat thebearingstrength ofThick-Plysamplesis20%lowerthantheun- notchedtensilestrength.Inthecaseofthin-layerspecimens,thereduc- tionwas31%,wherebytheabsolutebearingstrengthof584MPafor Thin-Plyishigherthanthebearingstrengthof476MPaforThick-Ply samples[4,6].ThebearingstrengthofThin-Plyishigher,howeverthe differencebetweenunnotchedandbearingstrengthisgreater,whichis limitingthepotentialofThin-Ply.Asaresultthejointshavetobeim- proved.Theuseofstainlesssteellayerscouldreducethegapbetween tensilestrengthandbearingstrengthandthuspreventsolutionssuchas localthickeningofthelaminate[18],placinginsertssuchasmetallic rings[16]orZ-pinning[19,20].Thefrequentlyusedlocalthickening hasthedisadvantagethatbendingstressesandpeelstressesareintro- ducedintothematerial,whichcanbepreventedbyhybridisationwhile retainingtheoriginalgeometry.Petersenetal.investigatedthetransi- tionzone(TZ)betweenstainlesssteelandCFRPlayersforunnotched tensileandbendingsamples[21].Thelayersusedhadathicknessof 0.13mm.Fourdifferent arrangementsof themetalin thetransition zonewereinvestigated.Itwasobservedthatdelaminationbetweenma- trixandstainlesssteelisachallengeintheTZ[21].Withreducedlayer thickness,thenumberoflayersincrease,whichdecreasestheinterlam- inarshearstressescausedbythermalandmechanicalloads,whichre- ducesandsuppressedthegrowthofdelaminations.Asaconsequence, therequirementsofthebondingbetweenresinandmetalare,therefore, lesscritical.Well-knownsolutionssuchastheBoeingSol-Gelprocess aresufficientandnofurtherinvestigationsarenecessary[11,22].Other

workhasfocusedontheinfluenceofthefasteningtorqueonthebearing strengthandthefailurebehaviorofthespecimen.Whethertheboltis tightenedornotandwithwhichtorqueitistightenedhasasignificant influenceonthebearingstrength.Ingeneral,highertighteningtorques increasethebearingstrength,aslongasthetighteningdoesnotdamage thespecimen[12,23–25].

2. Materialsandmethods

2.1. Materialsandspecimenpreparation

The prepregsystem used in this studywas manufacturedby the spread towtechnology atthe IndustrialTechnology Centerof Fukui Prefecture,Japan.TR50ScarbonfibresfromMitsubishiChemicalCo., Ltd. and a bisphenol-A based epoxy resin from a combination of jER828:jER1001ina4:6ratiofromMistubishiChemicalCo.,Ltd.was used.Theareaweightoftheprepreglayerswas40gsm.Thick-Plylam- inates witharesultingareaweightof160 gsmwereproducedusing theblock-scaling method.Thefibrevolumecontentof theproduced laminatesis55%.Assubstitutelayers,theausteniticstainlesssteelal- loy1.4310(X10CrNi18-8)fromh+sPräzisionsfolienGmbH,Pirkbei Weiden,Germanywereused.Thealloy1.4310ischaracterizedbyhigh strengthandductility,andexhibitsgoodcorrosionproperties.Thethick- nessesofthefoilsarethesameastheprepreglayers.Thestrengthofthe Thin-PlymetalfoilishigherthanthestrengthoftheThick-Plyfoildue strainhardeningfromthecoldrollingduringmanufacturing.Thefoils arecutusingaprecisioncutterforelectricalboards.Thiscuttingmethod preventswarpingedgesandthereforeadditionalweakpointsinthema- terials.Table1displaysthelocalvolumecontentofstainlesssteelnear theholeandtheglobalspecimendensity.Incontrasttothelocalsteel content,theglobaldensityiscalculatedovertheentiresample,asthe patchesareonlyappliedlocally,eveninpracticaluse.Ifthesteelcon- tentislowerthan25%,theouter90layersarereplacedbysteelfoils symmetricaltothemid-plane,becauseduetotheclearancefitbetween boltandholetheboltinclinesunderloadandtheouterlayersareloaded underpressure.Inordertominimizealocalstiffnessincreasebyinsert- ingstainlesssteelinsteadof90CFRPlayers,thesteelpatcheshavea differentlength,andtheirdesignisstepwise,asshowninFig.1.

Thelaminatesaremanufacturedbyahandlayupandanintermedi- atevacuumwasappliedeveryfourthlayer.Ahigh-performancesol-gel surfacepre-treatmentprocessusing3M’s(Germany)AC-130-2surface pre-treatmentsystem,anaerospacecertifiedtwo-partwater-basedsys- temwithoutchromate,wasappliedtoincreasetheadhesionbetween stainlesssteelandmatrix.Thepre-treatmentsystemimprovesthead- hesionasaresultofthechemicalinteractionattheinterfacebetween stainlesssteelandthematrix[22]. Theprocessconsistsof foursteps [22]:

1. Deoxidizingandextendingthesurfacemanuallyofthemetalwith# 500abrasivepaper.

2. Cleaningofthesurfacewithacetonetoremoveallmetalandabra- sivepartsandmixingtheAC-130-2Sol-GelKit.

3. Applyingthesurfacepre-treatmentbyimmersionbathfor2min.

4. Dryingofthecoatedsurfaceforatleast60min.

(3)

Fig.1. Openholetensilespecimengeometrywithalocal steelcontentof25%and12.5%.

Table2

Openholetensileandbearingspecimendimensions[26,27]. Specimen dimension OHT specimen in mm Bearing specimen in mm Hole diameter, d 6 ± 0.06 6 +0.00/ 0.03

Thickness, t 3.84 3.84

Length, l 250 135

Width, w 36 ± 1 36 ± 1

Edge distance, e 125 ± 0.12 18 ± 1

Thepatchesareinsertedmanuallyduringlaminationandthelami- natesarecuredinanautoclaveat130Cand5barfor2h.Thecured plateswerecutwith thecircularsaw Brillant265 fromATMwitha Corundumbladeandaconstantfeedspeedof1.5mm/s.Theholewas milledusing adouble-edgeddiamondmillingcutterwithadiameter of1.8mm.Thespecimendimensionsaredeterminedaccordingtothe standardsforOHT(ASTMD5766[26])andforBearing(ASTMD5961 [27])tests.AllspecimendimensionsareshowedinTable2.

2.2. Experimentalmethods

Theopenholetension testsaccordingtoASTMD5766 [26]were carriedoutintwodifferentlabs.Ofthe24samplestested,6weretested inJapanatShimadzu’stestlaboratoryinKyoto,Japan.AshimadzuAG- Xplusuniversaltestmachinewithamaximumtensileforceof250kN andmechanicalwedgeclampswasused.Far-fieldstrainrecordingwas performedusingstraingages,near-fieldrecordingusingaDigitalIm- ageCorrelation(DIC)system(5Msystem)fromGOMGmbH,Germany.

Thenear-fielddisplacementsandstrainswererecordedusingaspeckle pattern,whichwasappliedtothesurfaceofthespecimenusingwhite andblackacrylicpaint.Theevaluationofthedatawascarriedoutby thesoftwareARAMISProfessional,whichisdistributedbyGOMGmbH.

Theremainingopenholetensiontestsandthebearingtestsaccording toASTMD5961[27]areconductedinHamburg,Germany.Forthein- vestigationsinHamburgaZwickRoellZ400universaltestingmachine withamaximumloadof400kNwasused.Thespecimenswereclamped usingmechanicalwedgeclamps.Thetestparameterswereadaptedto thecorrespondingstandardsothattheresultsarecomparablewiththe datafromJapanorotherstudies.ThetestsinJapanaswellasinHam- burgwereperformedunderstandardclimateconditionsof20Cand 50%humidity.

Theprocedure A“Double ShearTest” accordingtoASTM D5961 [27]was chosen forthe bearingtests.The fasteningtorque was set to3Nm.Previousinvestigationshavedemonstratedthatifthehigh- strengthboltsarenottightened,theywillfailbefore thehybridFML specimen.Thereforenopredictionofthebearingstrengthwillbepos- sible.Theclampingpressurewasappliedtothesampleusingasteel

Fig.2.Testsetupdouble-shearbearingtest.

washerwithaninnerdiameter of6.3mm andanouterdiameterof 12mm.Inthecaseofbearingtests,thecalculationofthestrainsresults fromthelocaldisplacementsofthesampleandtheupperclampingsys- tem.Thecalculationofthebearingstrain𝜀br isshowninFormula1.𝛿1

and𝛿2arethelocaldisplacementsasitisshownintheschematictest setupin Fig.2,𝐾 isthecalculationfactortodistinguishsingle-shear fromdouble-sheartests.Forsingle-shearteststhe𝐾is1.0.𝐷isthedi- ameterofthehole.

𝜀br= (𝛿1+𝛿2)∕2

𝐾𝐷 (1)

Thebearingstrength𝜎br iscalculatedaccordingtoFormula2.𝑃 is theload,isthespecimenthicknessand𝑘istheloadperholefactor;

1.0forsingle-fastenerorpintestsand2.0fordouble-fastenertests.

𝜎br= 𝑃

𝑘𝐷 (2)

To be able toassess thefailuremechanisms, micrographsof the testedsampleswereprepared.Samplesuptothefinalfailure,aswellas samplesuptoastressof95%ofthemaximumstress,wereexamined.

Forthispurpose,thesampleswerefirstembeddedincolouredepoxy resintopreventfurtherdamage duringsawingofthesamples. After sawing,thespecimenswereembeddedinacold embeddingmaterial (KEM15plusfromATMQnessGmbH)andautomaticallygroundand polished.Thepolishingprocessconsistsofseveralsteps,startingwith

#320abrasivepapertoadiamondsuspensionwithagrainsizeof1μm.

Thepolishedsurfaceswereobservedwiththedigitalmicroscopefrom KEYENCE.

(4)

Fig.3. Openholetensilestrength(blue)anddensityspecificopenholetensile strength(grey)ofCFRPandHybridCFRPfibremetallaminates.

3. Resultsanddiscussion 3.1. Openholetensiletests

Fig.3showstheresultsoftheopenholetensiletests.Thestrengthis illustratedinblue,andthespecificstrengthingrey.Thespecificstrength representstheratioofthestrengthandtheglobaldensityofthesample.

Therefore,Thick-Plysampleswithalocalsteelcontentof25%havea densityof1.88g/cm3incontrasttothereferencesampleswithadensity of1.53g/cm3.Thecorrespondingdensitiesofthesamplesaresumma- rizedinTable1.TheopenholetensilestrengthoftheThin-Plysamples recordeda9%lowerstrengththantheThick-Plyspecimens.Thiscorre- spondstootherstudieswhichhadinvestigatedtheOHTstrengthcon- cerningthelayerthickness[3,6,11].Amacheretal.showedthatinitial damageinthematerialshiftstohigherstrainsorstresseswithdecreasing layerthickness.Theonsetofdamageincreasedfrom255MPaforThick- Plyspecimensto352MPaforThin-Plyspecimens.Duetothedelayed onsetofdamage,thelackofstressrelaxationthroughdamageleadsto higherstressconcentrationsandpremature,brittlefailure[3,6,7].

Theultimatestrength increasessignificantlywithincreasing steel content.Withalocalsteelcontentof25%,thestrengthrisesby64%, andeventhespecificstrengthrisesbyupto36%.Duetothehybridiza- tion,thenotchsensitivitydecreaseswithanincreaseinsteelcontent.

Thereductioninnotchsensitivityisexpressedinadecreasingnotched strengthreductionratio(NSR).TheNSRindicatestheratiobetweenthe notchedstrengths𝜎UNTandthemiddlestressinthenetsection𝜎net.The stressinthenetsectioniscalculatedfromtheOHTstrength𝜎OHT,the specimenwidth𝑊 andtheholediameter𝐷,seeEq.(3)[7].

𝑁𝑆𝑅=𝜎UNT

𝜎net

= 𝜎UNT

𝜎OHT∕(1−𝑊𝐷)

(3)

Fig.4.Stress–strain-diagramoftheopenholetensiletests.

Avalueofnearlyoneindicatesthatthestressconcentrationhasonly aminimalinfluenceonthestrength,whereashighervaluesindicatehigh sensitivitytostressconcentrations.Themeasuredvaluesareshownin Table3.ItcanbeseenthattheNSRdecreaseswithincreasingsteelcon- tent,thusreducingthesusceptibilitytostressconcentrations.Inthecase oftheThin-PlyFMLsampleswithasteelcontentof25%,theNSRvalue is1.18.Asaresult,areaswithhigh-stressconcentrationshaveonlya smallinfluence,andnothickeningorotherdesignchangesneedtobe madelocally.Thelocalhybridisationofthematerialavoidstheprob- lemoftheinfluenceofstressconcentrationsinthin-layerlaminatesso thatthepotentialofthethinlayerscanbeexploited.Therightbarof Fig.3displaystheresultsoftheThick-Plysampleswithalocalsteelcon- tentof25%.AdecreaseinstrengthisshownincontrasttotheThin-Ply sampleswith25%steelcontent.Thelowerstrengthcanbeexplainedby theformationofdelaminationsbetweenthemetallayersandthematrix.

DuetothehighershearstressesbetweenthelayerscomparedtoThin- Ply,thechosensurfacepre-treatmentisnotsufficient,anddelamina- tionsareformed.Highershearstressesresultpartlyfromthemechanical loadsintroducedandpartlyfromtheresidualstressesinthelaminate.In thecaseoftheinterfacebetweenstainlesssteelandCFRP,andthelarge differenceinthecoefficientofthermalexpansion,theresidualstresses betweenthemarehigher.Thisconsiderationfavourstheformationof delamination.Theformationofdelaminationscanbeseeninthestress- straindiagram(Fig.4)byadecreaseinstiffnessatabout340MPa.

On the abscissa, the near-field strain is plotted, which was ob- tainedusingtheDigitalImageCorrelationsystem.NearfieldStrainwas recordedoveralengthof35mm,sothatonlytheareawiththemaxi- mumstainlesssteelcontentdependingonthesampleismeasured.The measuringfieldisontheleftsideoftheholeandwaschosentoensure thatlocaleffectsoftheholehavenoinfluence(Fig.1).Exceptforthe Thick-Plyspecimenwithalocalsteelcontentof25%,allspecimensex- hibitbrittlefailureandnomajorsignificantpre-damage.Thedifference

Table3

NotchedstrengthreductionratiooftheThin-andThick-PlyFMLsamples.

Configuration (SF: Steel Foil) Strength in MPa NSR

Unnotched Open hole tension CFRP: 40 gsm; Reference 911.97 ± 34.43 392.41 ± 3.84 1.94 CFRP: 40 gsm; SF 6.25 %; ( t = 0.04 mm) 460.78 ± 9.23 1.65 CFRP: 40 gsm; SF 12.5 %; ( t = 0.04 mm) 521.41 ± 11.25 1.46 CFRP: 40 gsm; SF 25.0 %; ( t = 0.04 mm) 642.78 ± 20.67 1.18 CFRP: 160 gsm; Reference 857.21 ± 11.06 427.27 ± 1.67 1.67 CFRP: 160 gsm; SF 25.0 %; ( t = 0.16 mm) 428.02 ± 9.70 1.67

(5)

Fig.5.StrainintensiledirectionshortlybeforefinalfailurerecordedbyaDICsystem.

Table4

Theoreticalandmeasuredstiffnessofthehybridarea.Thestiffnessesofthe referencesamples(italics)weredeterminedbymeasurementsaccordingto ASTMD3039.

Configuration Measured stiffness in GPa Theoretical stiffness in GPa 40 gsm 43.57 ± 0.91 47.00 ± 0.67

40 gsm; 6.25% SF 51.38 ± 0.39 50.23 40 gsm; 12.5% SF 57.00 ± 1.04 56.89 40 gsm; 25.0% SF 69.43 ± 0.35 70.20 160 gsm 42.70 ± 0.37 47.87 ± 1.49 160 gsm; 25.0% SF 74.13 ± 4.06 70.20

inthestiffnesscanbeexplainedbythelocalsteelcontent.Thesteellay- ersreplace90layersofCFRP,whichhavealowertensilestiffnessthan thesteelfoil.Themeasuredstiffnessescorrespondtothetheoretically calculatedstiffnessesiftheruleofmixtureandthelocalsteelcontent areused.Thestiffnessesoftheindividualmaterialsisbasedontensile testsforquasi-isotropicCFRPsamplesaccordingtotheASTMD3039 [28]andtensiletestsforthesteelfoilaccordingtotheASTME345-16 [29].ThemeasuredandcalculatedstiffnessesareshowninTable4.

TheFar-Fieldstrainwasrecordedoutsidetheareaoflocalhybridiza- tionusingstraingauges, andthestiffnesses weredetermined.Asex- pected,no nearfieldstiffness differencesbetween theconfigurations canbedetected,sincethestiffnessisinfluencedbythefibresandresin andnotbythelayerthickness.Thestiffnessistheequivalenttothenear fieldstiffnessofthenotchedreferencesamples.

TheDICimagesin Fig.5show thesurfacestrainsof thetop45 layerintensiledirectionrightbeforefinalfailure.Exceptfortheright specimen(Thick-Ply,25%SF),allsamplesshowatypicalstresspattern neartheholeforquasi-isotropicopenholetensionspecimens.Astress concentrationpropagatesfromtheholein±45,furthermoreaboveand belowthehole,alocalstressminimumappears.

Furthermore,itisvisiblethatwithincreasingsteelcontent,thetran- sitionzonebetweenCFRPandstainlesssteelismoreclearlyvisibleand thestressconcentrationsatthetransitionzoneincrease.Thus,thetran- sitionzoneinadditiontotheholerepresentsasecondcriticalareawith respecttospecimenfailure.Fig.6illustratestwocurves,representing thestrainintensiledirectionasafunctionofposition.Thepositiondata isaverticalsectionthroughthesample,where0mmrepresentsthecen- treofthesample,i.e.thecentreofthehole(seeFig.6topright).The strainsinthediagrambelongtoafarfieldtensilestressof350MPaat whichdelaminationgrowthbeginsinthehybridThick-Plyspecimens.

Thestraincurve(orange)oftheThick-Plyspecimenwithalocalsteel contentof25%showstwostrongstresspeakssymmetricaltothemid- dle.These arelocatedatthetransitionbetween theoutermetallay- ersandthecorresponding90CFRPlayers.Thelocalincreaseofstress initiatesdelaminationgrowthandresultsinearlyfailure.Inthecase ofthehybridThin-Plyspecimenswithasteelcontentof25%(black), nostronglocalizedstressincreaseisobservable.Duetothelowlayer thickness,moremetallayers arerequired,which inturn canbe dis- tributedmoresmoothlyinsteps. Thisensuresthatthestressincrease isdistributedoveralargerarea,andthereforethelocalstressconcen- trationsdecreased.Thespecimenfailsatthehole,asdothereference specimens.

Fig.6. Nearfieldstrainintensiledirectionasafunctionofthepositiononthe specimen.

InadditiontotheDICimages,micrographsofthefracturesurfacesof thespecimenswereproduced.Theimagesa)tod)ofFig.7showmicro- graphsofThin-Plyspecimensnexttothehole.Asthecurvesofthestress- straindiagramhavealreadyshown,brittlematerialbehaviorcanalso beseenhere.EspeciallytheThin-Plyspecimenwithoutstainlesssteel foil(Fig.7a)showsaverystraightfracturesurface.Areaswithstainless steelfoilsshowarougherfracturesurface.Thelengthofthefracture surfaceincreasessignificantly.Fig.7eandfshowsdetailedimagesof thefractureedges.Anexplanationforthehigherfracturesurfacesin thehybridareasisthehigherfracturestrainandplasticdeformationof thestainlesssteel.Duetothehigherstrains,moreinter-fibrefractures intheCFRPlayersoccurbeforeultimatefailure.Thesefracturesdonot alwaysoccuratthesamelocationbutarestatisticallydistributed.Right beforeultimatefailure,theindividuallayersarepulledout,similarto thepull-outoffibres.Thisensuresthatadditionalenergyisdissipated andtheopenholetensilestrengthincreases.Acharacteristicoflocalized highplasticstrainsinmetalmaterialsisthefractureangleofthemetal.

InFig.7eitcanbeseenaductilefailurebehaviorofthemetalfoil.

Inordertobeabletoexaminetheinter-fibrefracturesmoreprecisely, sampleswereloaded uptoamaximumstressof95%oftheultimate strength,andfurthermicrographswereprepared.Theseareshownin Fig.7gandh.However,nodamagetothematerialhasyetbeende- tected.Nevertheless,itcanbeseenthatnoresin-richregionsorvoids areintroducedintomaterialduetotheintroductionofmetallayers.Fur- thermore,therearenodelaminationsinthelaminatebetweenthemetal andtheCFRPduetothethermalstresses.Delaminationsareonlyonthe mostoutermetallayers.However,sinceDICdetectednodeformation perpendiculartothesurfaceofthespecimen,theoutsidedelaminations arearesultofthecompressivestressesoccurringwithinthespecimen afterthefinalfracture.

(6)

Fig.7.AtoF:Micrographsofthefracturesurfacesoftheopenholetensilespecimens;GandH:Micrographsoftwospecimensloadedto95%ofthemaximum strength.

Fig.8. Resultsofthemaximumbearingstrengthregardinglayerthicknessand steelcontent.

3.2. Bearingstrength

Inthefollowingsection,theresultsfromthebearingtestsarepre- sented.Fig.8demonstratesthebearingstrengthsofthesixconfigura- tions.Aswiththeopenholetensiontests,threesamplesweretestedper configurationsincetheresultsshowedasignificantdifference.Higher bearing strengths areachieved with decreasing layerthickness. The bearingstrengthincreasesby15.3%from849.85MPa(Thick-Ply)to 979.61MPa(Thin-Ply)withareductionoftheareaweightfrom160gsm to40gsm.PreviousstudiesbyMasaniaetal.andAmacheretal.show thattheuseof thinlayersinfluencesthebearingdamagemechanism [6,10].Theonsetoffirstdamageshiftstohigherstressesandstrainsand theinitiationandpropagationofdelaminationaswellasmatrixcracks aresuppressed.Furthermore,theintra-laminarshearstressesarelower duetothethinlayerthicknesses,whichaccordingtoGarboetal.[30], resultsinadelayintheinitiationofdamagemechanismssuchasmatrix breakage,fibrekinkingandthrough-thicknessshearcracking.Which,

asaresult,increasesthebearingstrength.However,thedisadvantageis thatprogressivebehaviorisnolongerpresentandthestressreduction afterinitialdamageisverylarge.Forsafety-relevantcomponents,such asinaircraftstructures,thisisparticularlycritical[6,31,32].

ThemicrographsinFig.9showthedamagepatternoftestedand embeddedsamples.Fig.9aanddshowsoverviewimagesoftheload- ingareaofthinlayer(a–c)andthick (d–f)specimens. Inthecaseof Thin-Plyspecimens,fewerdelaminationsoccur,andthesamplesshow lessdamageafterloading.Noticeableforthethinlayerthicknessesare thefibrebreakagewithinthe0layers(Fig.9b)and(globalkinkbands (Fig.9c),whichincreasefromthecentreoutwards.Theclampingarea ofthewasherisvisibleasaflatareabesidethehole(bluelinesinFig.9, directlybehindthisclampedareasglobalbucklingoccurs,whichresults infibrebreakageandfinalfailure.Fibrebreakswithinthe0layersin- dicatelargecompressivestresses.Duetothelowlayerthickness,the bendingstiffness ofthespecimen isonlyslightly reduced,withfrac- tureofasingle0layer.Duetotheremainingresidualstiffnessandthe clampingbythewasher,noglobalbucklingoccurs.Concerningregions farawayfromstressconcentrations,nodamageis spreadingfurther.

TheareaaffectedbydamageresultingfromtheBearingloaddamage isconsiderablysmallerintheThin-Plyspecimen.Incontrast,largede- laminationsbetween thelayerscan beseenin theThick-Plysample.

Althoughthesupportofthefirstarea(bluelinesinFig.9aandd)does notcauseanybucklingeither,thecompletesamplefailswithinthisarea.

Theindividuallayershavefracturedinnumerousfragmentsandhave shiftedduetothedelamination.Thisbehaviorcanalsobeseeninthe twodetailedimagesinFig.9eandf.Duetothefracturesandthedis- placements,noglobalKinkbandscanbeobserved.Regardingthemore distantareas,externaldelaminationhascontinued,andtheouter45 layerhasdetached.

Duetothehybridizationwithstainlesssteelfoils,significantlyhigher bearingstrengthscanbeobserved(seeFig.8).IncontrasttotheThin-Ply sampleswithabearingstrengthof979.6MPa,thestrengthofthesam- pleswithstainlesssteelfoilincreasesto1165.4MPainthecaseof6.25%

stainless steel,via1239.5MPa inthecase of12.5%,to1513.9MPa MPaifall90layersarereplacedbystainlesssteel(25%),whichcorre- spondstoanincreaseof54.6%.InthecaseoftheThick-Plyfibremetal specimens,thebearingstrengthincreasesto1470.6MPa,anincreaseof 73%.Inadditiontotheincreasedbearingstrength,however,theoccur- ringdamagemechanismchanges.Thecorrespondingstress-straindia- gramsareshowninFig.10.Onerepresentativesampleisshownforeach configuration.Inadditiontothefactdescribedabove thattheThick-

(7)

Fig. 9. Micrographs of bearing Thin- (up- permicrographs)andThick-Ply(lowermicro- graphs)specimen.

Fig.10. Stress–strain-diagramofThin-Ply,Thick-Plyandtheirhybridconfigu- rations.

Plyspecimens(magenta)showaprogressivedamagebehaviorandthe Thin-Plyspecimens(red)abrittlefailure,stressreductionscanbeseen withinthecurvesofthehybridspecimenswithinthetest.Forexample, thecurveoftheThin-Plysamplewithasteelcontentof25%(lightblue) showsthreestressreductions.Thefirstoccursat31.8%,thesecondat 37%andthethirdjustbeforeultimatefailureat44.9%.

Thisdevelopmentindicatesthatthematerialhasbeendamaged.In ordertoinvestigatethedamageprocessmoreindetail,sampleswere testedandstoppedwhenthefirstdecreaseinstresswasreachedsothat micrographscouldbepreparedandthedamagemechanismresponsi- bleforthefirstdropintensilestresscouldbeobserved.Thesemicro- graphsareshowninFig.11.Fig.11ashowsaThick-Plysamplewith 25%stainlesssteel.Globalbucklinghasformed,wherebythestainless steellayershavealreadydeformedplastically.Fig.11bshowsadetailed viewofthesample.Theradiiofthebucklingaresmallwhichresultsin fibrefracture.Besides,theFMLThick-Plysamplesshowdelamination attheinterfacesbetweenstainlesssteelandmatrix.Ononehand,de- laminationscanbecausedbyhighshearstressesattheinterface due tothehighstrainofthestainlesssteel.Ontheotherhand,thestressin combinationwithinitialdamagecanleadtoout-of-planestressesand

thusenhancedelaminationgrowth.Besidesthedelaminationsandthe fibrebreaksinthe0layers,inter-fibrefracturesoccurinthe±45lay- ers.Largerradiishowanintactfibre-matrixstructure.Fig.11dande showaThin-Plysamplewitha25%stainlesssteelcontent.Again,the firstloaddropindicatesthefirstbuckling.Thisbucklingspreadsout symmetricallyfromthecentreofthesampletotheoutsideandforms akindofV-shapedwedge,asalreadyobservedwiththeFMLThick-Ply samples.AsinFig.11b,fibrebreakscanbeobservedinthe0layers inFig.11e.Also,some±45layersofinter-fibrebreaksshowregions withplasticdeformations.However,nodelaminationbetweenstainless steelandmatrixisvisible.Duetothelowerlayerthicknessesandthe associatedhighernumberofinterfaces,theshearstressesbetweenthe layersdecrease,anddelaminationgrowthissuppressed.Fig.11cand fshowaThick-PlysamplewithoutstainlesssteelandaThin-Plysam- plewith12.5%ofstainlesssteel.Bothsamplesshowthetypicalfailure behaviordescribedabove,globalbucklingexhibitsfromthemid-plane.

WiththeThick-Plysample,itappearsasifthe0layersinthemiddleof thesamplewouldfailundercompression,initiatingintheformationof bucklingtotheoutside.Thisassumptionconfirmswiththesymmetrical damage.

Concerningthequestionofwhetheritmakessensetousefibremetal laminatesforstructuralapplications,itisnotsufficientonlytoconsider themaximumbearingstrength.Inthecaseofconventionalconstruction materialssuchasmetals,anoffsetbearingstrengthof2%strainisthe evaluationcriterion.Therefore,threeparametersareofparticularim- portanceinthecaseofbearingtests.Themaximumbearingstrength,the offsetbearingstrengthandthestressatthefirstloaddrop,whichisthe firstsignificantdamage.AllthreeparametersareshowninFig.12.The bluebarsrepresentthestrengthatthetimeofthefirstmeasurabledam- age,thegreybarsrepresenttheoffsetbearingstrength,andtheblack barsrepresentthemaximumbearingstrength.TheThick-Plysamples withoutstainlesssteelserveasreferencematerialsincetheyhavethe thicknesses commonlyused today.However,the160 gsmplies were laminatedbyblock-scaling(four40gsmlayers),sothatthespreading processofthefibresalsoresultsingoodqualityintermsoffibrevol- umecontent,resin-richregionsandfibreangledeviation,whichhasa positive effectoncompressivebehavior[6,8].TheThick-Plysamples show small differences between thefirst damage,theoffsetand the maximumbearingstrength,butThick-Plysamplesexhibitaprogressive damagebehavior,sothatevenaftertheultimatebearingstrength,there isnoriskofsuddenfailure.Incomparison,theThin-Plysampleswith- outstainlesssteelhaveahigheroffsetandmaximumbearingstrength, butthe stressof thefirstdamage is atthe samelevel astheThick- Plysamples. Therefore,ifthedesignguide toleratesno damage,the

(8)

Fig.11. Micrographsofsamplestesteduntil thefirstdamage;a)Thick-Plywith25%local steelcontent,b)Detailedviewofmicrograph a),c)Thin-Plyreference,d)Thin-Plywith25%

localsteelcontent,e)Detailedviewsofmicro- graphd),f)Thin-Plywith12.5%local steel content.

Fig.12. Firstfailure(blue),offset(grey)andmaximumbearing(black)strength forneatandfibremetallaminates.

maximumallowablestressisequaltotheThick-Ply.However,afterthe firstdamageahighresidualsafetyfactorexists,asthemaximumbear- ingstrengthis26.96%higher.Thehybridlaminatesshowsignificantly higherstrengthsregardlessoftheselectedparameter.Itisnoticeable thatthestressatthepointsofthefirstdamageinallthreeFMLThin-Ply configurationshaveasimilarvalueduetothehighscattering.Also,the offsetstress,whichisabovethestressofthefirstdamage,isthesame forallthreeconfigurations.Adifferenceisvisibleinthemaximumbear- ingstrength,whichincreasessignificantlywithincreasingsteelcontent.

ComparedtotheThin-Plysampleswithoutsteel,themaximumbearing strengthoftheThin-Plysampleswith6.25%steelincreasesby19.0%, with12.5%by26.5%andthethinFMLsampleswith25%by54.6%.

Thedifferencebetweenthesampleconfigurationsresultsintheresidual safetyfactorafterdamage.Withincreasingsteelcontent,thesafetyfac- torincreasessignificantly.Whetherfirstdamagesaretolerablewould havetobecheckedinafurtherstudyundercyclicload.TheThick-Ply samplesreinforcedwithstainlesssteelshowthebestresultsintermsof bearingstrength.Themaximumbearingstrengthisinthesamerange asthe25%Thin-Plysamples,buttheparametersoftheoffsetandthe

firstdamageincreasesignificantly.Thedifferentdamagemechanisms canbeinterpretedbasedonmicrographsinFig.13.

Finalfailureofallconfigurationsisduetobucklingbehindthespeci- men’ssupportBucklingintheareaoftheclampinghasalocalloaddrop asaconsequencebutisnotcriticalregardingthefinalfailure.Theselo- caldamagescanbeassignedtothestressreductionsinthestress-strain diagrams.However,duetotheside-wisesupportbythewashers,the specimensdonotfailatthefirstbucklingandreceivehighercompres- sivestresses.TheThin-PlyFMLspecimensallhaveseveralglobalkink bands.Itisnoticeablethatintheregionswherethestainlesssteelfoils replacedthe90layers,thecarbonlayersaresupportedandshowminor damage.Evenathighdeformationsofthestainlesssteel,thesupporting effectismaintained.

Especiallythemiddlelayersofthe6.25%(Fig.13a–c)andthe12.5%

(Fig.13d–f)samplesshowsignificantdamagesintheareaofneatCFRP.

Brokenfibresinthe0layersindicatethatthefibreshavefaileddueto highcompressivestresses.Duetothesupportingeffectofthestainless steelaswellasthehigherresidualbendingstiffnessinthecaseofthe thinlayerthicknesses(seeabove),alocalbucklingdoesnotresultin aglobalfailure.TheresultsfortheThick-PlyFMLsamplesshowthat thefinalfailureresults alsoinabucklingaftertheclampedarea.In contrast,thebucklingcannotbeseensymmetricallyfromthemiddle, butthewholespecimenbucklestooneside.Nobucklingisfoundinthe regionoftheclampingbythewashes,asisthecasewiththinnerlayers.It canbeseenthatthefirstmeasurabledamage,asshowninthebarchart, appliesbyhigherstresses.Thisdamageisprobablythebeginningofthe finalbucklingbehindtheclampingarea.However,smallerkinkbands canbefoundinthe0layers,whicharecausedbythehighcompressive loads.Due tothehighbendingstiffnessof thethickerstainlesssteel foils,the0layersarestillsupportedsothatnoglobalbucklingoccurs.

Inthefrontareaofthesample,asshowninfigurek),fibresbrokeand displacedlocallythattheyformakindofcircle.Thesefibresarebroken intosmallpiecesandshiftedintoeachother.Especiallyinterestingare the±45layers,whichinsomelayersshownovisibledamageandthey arestronglydeformed.Thisbehaviorwouldindicatethatthematrixhas deformedplastically,whichisunusualforafullycuredepoxyresin.

Inadditiontothebearingstrength,theweightandthegeometryof thejointisanimportantfactor.Animprovedstrengthtakingintoac- countfourtimes theweight, asis thecasewithpure stainlesssteel, for example, would be practically meaningless. Forthis reason, the strengthsshouldbeviewedinrelationtotheirweight,orinthiscase in relationtotheirdensity. Fig.14 showstheglobalspecificbearing strength.Theglobalspecificbearingstrengthisthequotientofthebear- ingstrengthandtheglobaldensityofthetestedsample.Itcanbeseen

(9)

Fig. 13. Micrographs of hybrid fibre metal compositespecimensafterbearingtests;a–c) Thin-Plywith6.25%localsteelcontent,d–f) Thin-Ply12.5%localsteelcontent,g–i)Thin- Plywith25%localsteelcontent,j–l)Thick-Ply with25%localsteelcontent.

thattheparametersofthethreeFMLconfigurationsapproximatetothe maximumspecificbearingstrength,butarestillhigherthanthoseofthe conventionalspecimens.Withregardtothefirstfailure,theresultsof theThick-Plysampleswith25%stainlesssteelexhibitthehighestval- ues,wherebythesecorrespondtothevalueoftheoffsetandshouldbe takenasthemaximumfordesign.Duetotheformationofdelamina- tions,thepropagationofdamageisnotascriticalinstaticbearingtests, butprobablyhaveastrongeffectonthefatiguebearingproperties.This hastobeclarifiedinfurtherinvestigations,relatedtotheThin-PlyFML samples,thesampleswithasteelcontentof6.25%showthehighest specificstrengthsinfirstfailure.Thevaluesare35.5%abovethespe- cificfirstfailurestrengthoftheThin-Plysamplesand26.0%abovethe Thick-Plysamples.Inrelationtotheindustrialapplicationofthehybrid compositesinvestigatedhere,itisshownthathybridisationwith6.25%

stainlesssteelachievesthesamespecificmaximumbearingstrengthand thehighestspecificoffsetbearingstrengthastheconfigurationswitha highersteelcontent.Therefore,althoughthebearingstrengthincreases withahighersteelcontent,thisdoesnotofferanyfurtheradvantage concerningthelightweightdesignduetotheincreasedweight,andthus inpractice.

4. Conclusion

ThisstudyshowsthatthehybridisationofThin-PlyCFRPlaminates withstainlesssteelpatchesinareasofstressconcentrationssignificantly increases openhole tensile andbearingstrength.The previous limi- tation of thegapbetween unnotchedstrength andopenholetensile strength orratherbearingstrength canbe reduced,allowingthepo- tentialofthinpliestobeappliedinstructurallightweightapplications.

InthecaseoftheThin-Plysampleswithalocalsteelcontentof25%, theopenholetensionstrengthwasincreasedby64%andthebearing strengthby54.6%comparedtotheThin-Plysamplewithoutstainless steel.Ifthestrengthsarenormalisedtotheglobaldensityofthesam- ple,theincreasesare36%forthespecificopenholetensionstrengthand 14%forthespecificbearingstrength.Micrographsofsamplesfromboth loadcasesshowthatthesteeldeformedplasticallyunderhighstrains andwasabletodissipateenergy.Duetotheplasticdeformationand thesupportingeffectofthestainlesssteelagainstbuckling,thespecific strengthisincreased.AnotherlimitingfactorinthecaseofThick-Ply FMLlaminatesisthetransitionzonebetweenstainlesssteelandCFRP.

Duetothedifferentstiffnessesandcoefficientsofthermalexpansion,

(10)

Fig.14. Specificfirstfailure,offsetandmaximumbearingstrength.

stressconcentrationsoccur,whichinitiatedelaminationinthickerlay- ersandleadtoprematurefailure.Theuseofthin-layerstainlesssteel foilsandastep-wisearrangementofthese foilsleadstoasmoothin- creaseinstiffnessoveralargerareasothatthestressconcentrationsare belowthecriticalvaluefortheformationofdelamination.Thushigher openholetensilestrength isachieved.Inthecaseof bearingperfor- mance,itwasshownthatconcerningthedensityofthesample,anideal localsteelvolumecontentof6.25%wasfiguredout.However,thebear- ingstrengthincreaseswithhighersteelcontent,butthedensityspecific bearingstrengthdoesnotincreasebecauseofthehigherweight.Overall, theperformanceofCFRPThin-Plysamplescouldbeimprovedbyusing stainlesssteelfoilsaspatchesatstressconcentrationsandintheareaof loadintroduction,demonstratinghighpotentialforhighperformance structures.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

References

[1] M.C.-Y. Niu , Composite Airframe Structures: Practical Design Information and Data, 3rd, Conmilit Press, Hong Kong, 2000 .

[2] K. Kawabe , S. Tomoda , T. Matsuo , A pneumatic process for spreading reinforc- ing fiber tow, in: Proceedings of the 42nd International SAMPE Symposium, 1997, pp. 65–76 .

[3] S. Sihn, R. Kim, K. Kawabe, S. Tsai, Experimental studies of thin-ply laminated composites, Compos. Sci. Technol. 67 (6) (2007) 996–1008, doi: 10.1016/j.compscitech.2006.06.008 .

[4] A. Arteiro, C. Furtado, G. Catalanotti, P. Linde, P.P. Camanho, Thin-ply polymer com- posite materials: a review, Compos. Part A: Appl. Sci. Manuf. 132 (2020) 105777, doi: 10.1016/j.compositesa.2020.105777 .

[5] M.R. Wisnom, B. Khan, S.R. Hallett, Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites, Compos. Struct. 84 (1) (2008) 21–28, doi: 10.1016/j.compstruct.2007.06.002 .

[6] R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith, C. Dransfeld, Thin ply composites: experimental characterization and modeling of size-effects, Compos. Sci.

Technol. 101 (101) (2014) 121–132, doi: 10.1016/j.compscitech.2014.06.027 .

[7] J. Cugnoni, R. Amacher, S. Kohler, J. Brunner, E. Kramer, C. Dransfeld, W. Smith, K. Scobbie, L. Sorensen, J. Botsis, Towards aerospace grade thin- ply composites: effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance, Compos. Sci. Technol. 168 (2018) 467–477, doi: 10.1016/j.compscitech.2018.08.037 .

[8] T. Yokozeki, Y. Aoki, T. Ogasawara, Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates, Compos. Struct. 82 (3) (2008) 382–389, doi: 10.1016/j.compstruct.2007.01.015 . [9] J. Studer, A. Keller, F. Leone, D. Stefaniak, C. Dransfeld, K. Masania, Local reinforce-

ment of aerospace structures using co-curing RTM of metal foil hybrid composites, Prod. Eng. 12 (2) (2018) 195–201, doi: 10.1007/s11740-018-0794-3 .

[10] K. Masania, R. Geissberger, D. Stefaniak, C. Dransfeld, Steel Foil Reinforced Compos- ites: Experimental and Numerical Study of Strength, Plasticity and Ply Size Effect, 2015.

[11] B. Kötter, J. Karsten, J. Körbelin, B. Fiedler, Cfrp thin-ply fibre metal laminates:

influences of ply thickness and metal layers on open hole tension and compression properties, Materials 13 (4) (2020), doi: 10.3390/ma13040910 .

[12] B. Bosbach, M. Baytekin-Gerngross, E. Sprecher, J. Wegner, M.-D. Gerngross, J. Carstensen, R. Adelung, B. Fiedler, Maximizing bearing fatigue lifetime and CAI capability of fibre metal laminates by nanoscale sculptured al plies, Compos. Part A:

Appl. Sci. Manuf. 117 (2019) 144–155, doi: 10.1016/j.compositesa.2018.11.017 . [13] G. Kolks, K.I. Tserpes, Efficient progressive damage modeling of hybrid compos-

ite/titanium bolted joints, Compos. Part A: Appl. Sci. Manuf. 56 (2014) 51–63, doi: 10.1016/j.compositesa.2013.09.011 .

[14] J. Both , M. Wedekind , H. Baier , Simulation and experimental characterization of the bearing behaviour of CFRP-metall laminates, in: Proceedings of the 15th European Conference on Composites, 2012, pp. 1–7 . Venice

[15] P.P. Camanho , F.L. Matthews , Stress analysis and strength prediction of mechani- cally fastened joints in FRP: a review, Compos. Struct. 28 (1997) 529–547 . [16] P.P. Camanho, C. Tavares, R. de Oliveira, A.T. Marques, A. Ferreira, Increasing the

efficiency of composite single-shear lap joints using bonded inserts, Compos. Part B:

Eng. 36 (5) (2005) 372–383, doi: 10.1016/j.compositesb.2005.01.007 .

[17] G. Catalanotti, P.P. Camanho, A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates, Compos. Sci. Technol. 76 (2013) 69–76, doi: 10.1016/j.compscitech.2012.12.009 .

[18] A. Fink, P.P. Camanho, J.M. Andrés, E. Pfeiffer, A. Obst, Hybrid CFRP/titanium bolted joints: performance assessment and application to a spacecraft payload adaptor, Compos. Sci. Technol. 70 (2) (2010) 305–317, doi: 10.1016/j.compscitech.2009.11.002 .

[19] A. Crosky, D. Kelly, R. Li, X. Legrand, N. Huong, R. Ujjin, Improvement of bear- ing strength of laminated composites, Compos. Struct. 76 (3) (2006) 260–271, doi: 10.1016/j.compstruct.2006.06.036 .

[20] R. Li, N. Huong, A. Crosky, A.P. Mouritz, D. Kelly, P. Chang, Improving bearing performance of composite bolted joints using z-pins, Compos. Sci. Technol. 69 (7-8) (2009) 883–889, doi: 10.1016/j.compscitech.2008.12.005 .

[21] E. Petersen, D. Stefaniak, C. Hühne, Experimental investigation of load car- rying mechanisms and failure phenomena in the transition zone of lo- cally metal reinforced joining areas, Compos. Struct. 182 (2017) 79–90, doi: 10.1016/j.compstruct.2017.09.002 .

[22] 3M Aerospace and Aircraft Maintanance Division, 3M Surface Pre-Treatment AC- 130, 2012.

[23] W.-H. Chen , S.-S. Lee , J.-T. Yeh , Three-dimensional contact stress analysis of a com- posite laminate with bolted joint, Compos. Struct. 30 (1995) 287–297 .

[24] P.P. Camanho, M. Lambert, A design methodology for mechanically fastened joints in laminated composite materials, Compos. Sci. Technol. 66 (15) (2006) 3004–3020, doi: 10.1016/j.compscitech.2006.02.017 .

[25] C. Cooper , G.J. Turvey , Effects of joint geometry and bolt torque on the structural performance of single bolt tension joints in pultruded GRP sheet material, Compos.

Struct. 32 (1995) 217–226 .

[26] D30 Committee, Test Method for Open-Hole Tensile Strength of Polymer Matrix Composite Laminates, ASTM D 5766-02, 2002, 10.1520/D5766_D5766M-11R18 [27] D30 Committee, Test Method for Bearing Response of Polymer Matrix Composite

Laminates, ASTM D 5961-01, 2001, 10.1520/D5961_D5961M-17

[28] D30 Committee, Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM D 3039-00, 2000, 10.1520/D3039_D3039M-17

[29] E28 Committee, Test Methods of Tension Testing of Metallic Foil, ASTM e345-16, 2016, 10.1520/E0345-16

[30] S.P. Garbo , J.M. Ogonowski , Effect of variances and manufacturingtolerances on the design strength and life of mechanically fastenedcomposite joints, Tech. Rep.

AFWAL-TR-81-3041, vol. 1, McDonnell Aircraft Company, 1981 . Final Report AFWAL-TR-81-3041.

[31] A. Arteiro, G. Catalanotti, J. Xavier, P.P. Camanho, Notched response of non-crimp fabric thin-ply laminates: Analysis methods, Compos. Sci. Technol. 88 (2013) 165–

171, doi: 10.1016/j.compscitech.2013.09.003 .

[32] P.P. Camanho , Application of Numerical Methods to the Strength Prediction of Me- chanically Fastened Joints in Composite Laminates, Imperial College of Science, Lon- don, 1999 Dissertation .

Referenzen

ÄHNLICHE DOKUMENTE

The exercises were a sign that Russia is not only ready to defend its territory, but wants to have the full spectrum of political and military tools focused on the

The political campaign before Germany’s parliamentary elections to be held on 22 September has in all its glory reflected the trends visible during the last four years of

Figure 4.10: Residual stresses in the parallel (dash-dotted line) and transverse (dashed line) directions caused by turning of SAE 1045 for different cutting feeds. It can be seen

The breakdown strength decreases with increasing porosity of the samples and in contrast to literature results an effect of the porosity below 5 vol% on the breakdown strength is also

In this study, the Taylor-Quinney coefficient β is shown as a function of strain and being influenced by the test specific strain rate and stress state.. The tested material is

1.. One reason for the difference between relative weights and power is that a weighted game permits different representations. If there are two normalized representations whose

The empirical part lists the results of the conducted survey regarding the current state of the Montessori schools in the Czech Republic and language education, with special focus

The fibre failure occurring at elevated temperatures on the impacted side has no significant influence on the residual com- pressive strength, but the tensile properties change,