• Keine Ergebnisse gefunden

Exercises in Differential Geometry

N/A
N/A
Protected

Academic year: 2021

Aktie "Exercises in Differential Geometry"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Exercises in Differential Geometry

Universit¨at Regensburg, Winter Term 2015/16

Prof. Dr. Bernd Ammann / Dipl.-Math. Manuel Streil Exercise Sheet no. 4

1. Problem (4 points)

We consider again the hyperbolic plane (H, ghyp).

a) Compute explicitly the parallel transport Pc,t :T(0,1)H →T(t,1)H along the curve c: [0,1]→H with c(s) = (st,1).

b) Let x0 ∈ R and a ∈ R\ {0}. Show that R 3 t 7→ (x0, eat) is a geodesic of (H, ghyp).

2. Problem (4 points)

Let (M, g) be a semi-Riemannian manifold with associated Levi-Civita connec- tion ∇. For a diffeomorphism f : M → M and a vector field X ∈ X(M) we define fX ∈ X(M) by (fX)p = df−1(p)f(Xf−1(p)) and fX ∈ X(M) by fX = (f−1)X.

a) Let f ∈Isom(M, g).We define ˜∇:X(M)×X(M)→X(M) by

∇˜XY =f(∇fX fY). Show that ˜∇=∇.

b) Let f ∈ Isom(M, g) and c: (−ε, ε)→M be geodesic. Use a) to show that f ◦c: (−ε, ε)→M is also a geodesic.

c) Show that every isometryf of Rk+`, g(k,`)

is affine, i.e there exists a linear map A:Rk+` →Rk+` and a constantb ∈Rk+` such thatf(x) =Ax+b for all x∈Rk+`.

3. Problem (4 points)

Let (M, g) be a semi-Riemannian manifold. For a map ψ : M → M we denote by Fix(ψ) the set of fixed points of ψ, i.e. Fix(ψ) ={p∈M |ψ(p) = p}.

a) Let ψ ∈ Isom(M, g). Prove that for p ∈ Fix(ψ) and ξ ∈ TpM such that dpψ(ξ) =ξ the geodesic c: (−ε, ε)→M with c(0) =p and c0(0) = ξ takes all its values in Fix(ψ).

b) Use a) to the determine the geodesics of

Hn={X ∈Rn+1 |g(n,1)(X, X) =−1}.

(2)

4. Problem (4 points)

We continue discussing SU(n) =

A ∈Cn×n | AA = Id and detA= 1 . Recall that the tangential space at X ∈SU(n) is given byLXsu(n) with

su(n) =

A∈Cn×n|A+A = 0 and Tr(A) = 0 and LX :Cn×n →Cn×n, Y 7→XY. For V, W ∈TXSU(n) we define

gX(V, W) =−1

2Tr (((dXLX−1)V)◦((dXLX−1)W)), where◦ denotes matrix multiplication.

a) Show that g :SU(n)3X 7→gX is a Riemannian metric on SU(n).

b) Prove that SU(2) = a −¯b b a¯

a, b∈C with |a|2+|b|2 = 1

. c) Use b) to show that S3 =

x∈R4 | kxkeucl= 1 , geucl

and (SU(2), g) are isometric.

• Submission deadline: Thursday 12.11.2015 at the beginning of the lecture

• Please write your name and the number of your exercise class on every sheet of your proposal for solution.

• Each participant should hand in his own solution. A joint solution of a working group is not allowed.

Referenzen

ÄHNLICHE DOKUMENTE

c) Geben Sie eine Relation T auf M mit folgender Eigenschaft durch Auflisten der Elemente in T explizit an: T ist eine partielle Ordnung, die nicht total ist.

Dies ist ein zus¨ atzliches Blatt, das nicht mehr besprochen wird. Es k¨ onnen aber noch zus¨ atzliche Bonuspunkte erzielt werden, wobei nur Aufgaben 1) und 2) relevant f¨ ur