• Keine Ergebnisse gefunden

oo C[ / ] 13 o 2 CO [ppmv]

N/A
N/A
Protected

Academic year: 2022

Aktie "oo C[ / ] 13 o 2 CO [ppmv]"

Copied!
113
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Alfred Wegener Institute Helmholtz Centre for

Polar and Marine Research Bremerhaven, Germany

A model-based interpretation of

glacial/interglacial changes in atmospheric CO 2 during the last 740 000 years

Peter K¨ohler

OLB Foundation Fellowship 2006 for Prof. Dr. Wallace S. Broecker Hanse Institute for Advanced Study, Delmenhorst — 19 September 2006

In cooperation with:

Hubertus Fischer, Alfred Wegener Institute, Bremerhaven, Germany Richard E. Zeebe, University of Hawaii, USA

Guy Munhoven, Universit´e de L`ıege, Belgium

Raimund Muscheler, NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA

(2)

Outline

The global record of atmospheric CO

2

EPICA — European Project for Ice Coring in Antarctica The global carbon cycle and the box model BICYCLE

Time-dependent processes: motivations and simulation results Combined scenarios

Open questions

Conclusions

(3)

200 250 300 350

CO

2

[ppmv]

700 400 100 Time [kyr BP]

13C CO2

10 7 4 1 Time [kyr BP]

1000 1500 2000 Time [yr AD]

2000 198019902000 Time [yr AD]

-8.5 -8.0 -7.5 -7.0 -6.5 -6.0

13

C [

o

/

oo

]

(4)

200 250 300 350

CO

2

[ppmv]

700 400 100 Time [kyr BP]

13C CO2

10 7 4 1 Time [kyr BP]

1000 1500 2000 Time [yr AD]

2000 198019902000 Time [yr AD]

-8.5 -8.0 -7.5 -7.0 -6.5 -6.0

13

C [

o

/

oo

]

20 y:

seasonal

Point Barrow

Keeling and Whorf, 2005; Keeling et al., 2005.

(5)

200 250 300 350

CO

2

[ppmv]

700 400 100 Time [kyr BP]

13C CO2

10 7 4 1 Time [kyr BP]

1750 AD

1000 1500 2000 Time [yr AD]

2000 198019902000 Time [yr AD]

-8.5 -8.0 -7.5 -7.0 -6.5 -6.0

13

C [

o

/

oo

]

20 y:

seasonal

1 kyr:

anthrop.

Point Barrow Law Dome

Francey et al., 1998; Trudinger et al., 1999

(6)

200 250 300 350

CO

2

[ppmv]

700 400 100 Time [kyr BP]

13C CO2

10 7 4 1 Time [kyr BP]

1750 AD

1000 1500 2000 Time [yr AD]

2000 198019902000 Time [yr AD]

-8.5 -8.0 -7.5 -7.0 -6.5 -6.0

13

C [

o

/

oo

]

20 y:

seasonal

1 kyr:

anthrop.

10 kyr:

Holocene

Point Barrow Law Dome

Taylor D.

Smith et al., 1999

(7)

200 250 300 350

CO

2

[ppmv]

700 400 100 Time [kyr BP]

13C CO2

10 7 4 1 Time [kyr BP]

1750 AD

1000 1500 2000 Time [yr AD]

2000 198019902000 Time [yr AD]

-8.5 -8.0 -7.5 -7.0 -6.5 -6.0

13

C [

o

/

oo

]

20 y:

seasonal

1 kyr:

anthrop.

10 kyr:

Holocene 700 kyr:

glacial/

interglacial

Point Barrow Law Dome

Taylor D.

Vostok

EPICA DC

Petit et al., 1999; Siegenthaler et al., 2005

(8)

The global record of atmospheric CO

2

EPICA — European Project for Ice Coring in Antarctica

The global carbon cycle and the box model BICYCLE

Time-dependent processes: motivations and simulation results Combined scenarios

Open questions

Conclusions

(9)

EPICA drilling sites:

Dome C (EDC): low accumulation rate; long time series (∼8 glacial cycles) Dronning Maud Land (EDML): high accumulation rate, high resolution

(10)

Kohnen station in Dronning Maud Land

(11)

Drilling team 2005/06 with last section of EDML (from 2774 m depth)

(12)

Scientific lab in Kohnen station

(13)

200 250 300 350

CO

2

[ppmv]

700 400 100 Time [kyr BP]

13C CO2

10 7 4 1 Time [kyr BP]

1750 AD

1000 1500 2000 Time [yr AD]

2000 198019902000 Time [yr AD]

-8.5 -8.0 -7.5 -7.0 -6.5 -6.0

13

C [

o

/

oo

]

20 y:

seasonal

1 kyr:

anthrop.

10 kyr:

Holocene 700 kyr:

glacial/

interglacial

Point Barrow Law Dome

Taylor D.

Vostok

EPICA DC

(14)

The EPICA challenge

Predicting pCO2 prior to Vostok (Wolff et al., 2004, 2005, EOS) 8 contributions: from regression analysis to full carbon cycle model

-450 -420 -390 -360

D(o /oo)

EDC D

1 5

7 9

11 13

15 17

MIS

0 500 1000

dust(ppbv) 1500

EDC dust

700 600 500 400 300 200 100 0

Time (kyr BP)

160 200 240 280

pCO 2(ppmv)

Vostok pCO

2

I II

III

?

IV

EPICA, 2004; Petit et al., 1999

(15)

The EPICA challenge

Predicting pCO2 prior to Vostok (Wolff et al., 2004, 2005, EOS) 8 contributions: from regression analysis to full carbon cycle model

-450 -420 -390 -360

D(o /oo)

EDC D

1 5

7 9

11 13

15 17

MIS

0 500 1000

dust(ppbv) 1500

EDC dust

700 600 500 400 300 200 100 0

Time (kyr BP)

160 200 240 280

pCO 2(ppmv)

Vostok pCO

2

EDC pCO

2

I II

III IV

V VI

VII

EPICA, 2004; Petit et al., 1999 Siegenthaler et al., 2005

(16)

The EPICA challenge

Our contribution to the EPICA challenge:

Carbon cycle model simulations based on results for Termination I

-450 -420 -390 -360

D(o /oo)

EDC D

Termination I

1 5

7 9

11 13

15 17

MIS

0 500 1000

dust(ppbv) 1500

EDC dust

700 600 500 400 300 200 100 0

Time (kyr BP)

160 200 240 280

pCO 2(ppmv)

Vostok pCO

2

EDC pCO

2

I II

III IV

V VI

VII

EPICA, 2004; Petit et al., 1999 Siegenthaler et al., 2005

(17)

Atmospheric carbon during Termination I

Interprete the temporal evolution of atmospheric CO2, δ13C, 14C records

by carbon cycle simulations.

Smith et al., 1999; Monnin et al., 2001;

Stuiver et al., 1998; Hughen et al., 2004

-7.0 -6.8 -6.6 -6.4 -6.2

13 C[o / oo]

Interval I II III IV H1 BA YD 13

C

180 200 220 240 260 280

pCO 2[ppmv]

pCO

2

20 18 16 14 12 10 GISP2 Age [kyr BP]

0 100 200 300 400 500

14 C[o /oo]

14

C

(18)

The global record of atmospheric CO

2

EPICA — European Project for Ice Coring in Antarctica The global carbon cycle and the box model BICYCLE

Time-dependent processes: motivations and simulation results Combined scenarios

Open questions

Conclusions

(19)

THC

THC

The global

carbon cycle

60 PgC/yr 60 PgC/yr

1 PgC/yr 10 PgC/yr

ATMOSPHERE (600 PgC)

ROCK

TERR. BIOSPHERE (2200 PgC)

0.8 PgC/yr

0.2 PgC/yr

0.2 PgC/yr

DEEP OCEAN (38000 PgC)

SEDIMENT

soft tissues | hard shells marine biosphere SURFACE OCEAN (700 PgC)

preindustrial reservoir sizes and annual fluxes

(20)

Carbonate System in the Ocean

Dissolved Inorganic Carbon (DIC) = CO2 + HCO3 + CO=3

Atmosphere

CO2 + H20 K1 HCO3 + H+ K2 CO=3 + 2H+

1% 89% 10%

m

K0

CO2(g)

m

CO2(g)

Ocean

K0, K1, K2 = f(temperature,salinity,depth)

after Zeebe and Wolf-Gladrow, 2001

(21)

000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111

00000 00000 00000 00000 00000 00000 00000 00000 00000

11111 11111 11111 11111 11111 11111 11111 11111 11111 0000

0000 1111 1111

00000000 00000000 00000000 11111111 11111111 11111111

Box model of the Isotopic Carbon cYCLE BICYCLE

Rock

C3

FS SS

NW W D

C4

Atmosphere

Atlantic Indo−Pacific

Sediment SO

Biosphere

mediate inter−

surface

deep

water carbon

ohler, et al., 2005, Global Biogeochemical Cycles.

(22)

000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111

00000 00000 00000 00000 00000 00000 00000 00000 00000

11111 11111 11111 11111 11111 11111 11111 11111 11111 0000

0000 1111 1111

00000000 00000000 00000000 11111111 11111111 11111111

Box model of the Isotopic Carbon cYCLE BICYCLE

Rock

C3

FS SS

NW W D

C4

Atmosphere

Atlantic Indo−Pacific

Sediment SO

Biosphere

water carbon

Prognostic variables:

10 oceanic boxes: DIC,

7 terrestrial boxes: C, 13C, 14C 1 atmospheric box:

14C, ALK, PO4, O2 13C,

CO2, 13C, 14C

ohler, et al., 2005, Global Biogeochemical Cycles.

(23)

000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111

00000 00000 00000 00000 00000 00000 00000 00000 00000

11111 11111 11111 11111 11111 11111 11111 11111 11111 0000

0000 1111 1111

00000000 00000000 00000000 11111111 11111111 11111111

Box model of the Isotopic Carbon cYCLE BICYCLE

Rock

C3

FS SS

NW W D

C4

Atmosphere

Atlantic Indo−Pacific

Sediment SO

Biosphere

water carbon

Prognostic variables:

10 oceanic boxes: DIC,

7 terrestrial boxes: C, 13C, 14C 1 atmospheric box:

14C, ALK, PO4, O2 13C,

CO2,

DIC + ALK −> CO2, HCO3, CO3, 13C, 14C

pH

ohler, et al., 2005, Global Biogeochemical Cycles.

(24)

The global record of atmospheric CO

2

EPICA — European Project for Ice Coring in Antarctica The global carbon cycle and the box model BICYCLE

Time-dependent processes: motivations and simulation results

Combined scenarios Open questions

Conclusions

(25)

Overall objective and procedure for time-dependent simulations

Novelty:

• BICYCLE runs forward in time (no inverse studies)

• Transient simulations based on and forced with available paleo records

Three steps:

1. Which time-dependent processes were changing the carbon cycle on glacial/interglacial timescales?

2. How can we prescribe / force these processes in BICYCLE?

3. What are the impacts on CO2?

(26)

Time-dependent processes:

Which How What ?

Physics (without ocean circulation) 1 Temperature

2 Sea level / salinity

3 Gas exchange / sea ice Ocean circulation

4 NADW formation

5 Southern Ocean ventilation Biogeochemistry

6 Marine biota / iron fertilisation 7 Terrestrial carbon storage

8 CaCO3 chemistry

(27)

1 Temperature

Simulation with the climate model CCSM3 LGM–Preindustrial: light blue: –(2-4)K

Otto-Bliesner et al., 2006

(28)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity

3 Gas exchange / sea ice Ocean circulation

4 NADW formation

5 Southern Ocean ventilation Biogeochemistry

6 Marine biota / iron fertilisation 7 Terrestrial carbon storage

8 CaCO3 chemistry

(29)

2 Sea Level / Salinity

Sea level rose during Termination I by 125 m; salinity dropped by 3%

50 100 150 200 250 300 350

Longitude [o]

-90 -60 -30 0 30 60 90

Latitude[o ]

Area flooded from LGM to present

Bathymetry from Scripps Institiute of Oceanography from ICE-5G, Peltier, 2004

(30)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice Ocean circulation

4 NADW formation

5 Southern Ocean ventilation Biogeochemistry

6 Marine biota / iron fertilisation 7 Terrestrial carbon storage

8 CaCO3 chemistry

(31)

3 Gas Exchange / Sea Ice

Annual mean sea ice area shrunk by ∼50% (Termination I)

Dynamics coupled to temperature in the high latitude surface boxes

Arctic (present): The Cryosphere Today (www) Antarctic (LGM) Gersonde et al., 2005

(32)

3 Gas Exchange / Sea Ice

Model comparions came to ambiguous results

Box models: full sea ice cover in SO reduces CO2 GCMs: only small changes

Archer et al., 2003 BICYCLE

(33)

3 Gas Exchange / Sea Ice

BICYCLE: Sea ice change in N and S N is sink for CO2; S is source for CO2

S as in box models, but N dominates over S

700 600 500 400 300 200 100 0 Time (kyr BP)

250 260 270 280

CO 2(ppmv)

S only (90% coverage) S only (60% coverage) S only (30% coverage) N and S

Archer et al., 2003 BICYCLE

(34)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice –50% –15 ?

Ocean circulation 4 NADW formation

5 Southern Ocean ventilation Biogeochemistry

6 Marine biota / iron fertilisation 7 Terrestrial carbon storage

8 CaCO3 chemistry

(35)

4 NADW Formation

Conveyor belt Changes in Atlantic THC

Rahmstorf, 2002

(36)

4 NADW Formation

Preindustrial circulation: WOCE data

Temporal changes: NADW reduce from 16 Sv to 10 Sv (0 Sv)

Box model of the Isotopic Carbon cYCLE

BICYCLE

100 m

1000 m

DEEP SURFACE

MEDIATEINTER−

Rock

carbon

water

C3

FS SS

NW W D

C4

Atmosphere

Atlantic Indo−Pacific

Sediment

40°N

50°N 40°S 40°S

SO

Biosphere

16

22 5

10 1

4 16

9 6

3 30

9 16

20 1

18 19

15

6

9 9

16

12 5 2 1

3

Circulation after Ganachaud & Wunsch, 2000

(37)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice –50% –15 ?

Ocean circulation

4 NADW formation +6 Sv +15 !

5 Southern Ocean ventilation Biogeochemistry

6 Marine biota / iron fertilisation 7 Terrestrial carbon storage

8 CaCO3 chemistry

(38)

4 Indirect effects of shutdown of NADW (not in BICYCLE)

Additionally, a NADW shutdown would lead to cooling in Eurasia Temperature anomalies simulated with ECBILT-CLIO

ohler et al., 2005, Climate Dynamics (after Knutti et al., 2004)

(39)

4 Indirect effects of shutdown of NADW (not in BICYCLE)

Reduction of marine export production (blue) in North Atlantic by 50%

Schmittner ,2005

(40)

4 Indirect effects of shutdown of NADW (not in BICYCLE)

Cooling leads to southwards shift of treeline (LPJ-DGVM) Competing effect of soil respiration and vegetation growth

275 280 285 290 295 300

CO 2 (ppmv)

CO2 fert. feedbacks off CO2 fert feedbacks on

230 235 240 245 250

CO 2 (ppmv)

195 200 205 210 215

CO 2 (ppmv)

0 1000 2000 3000 Simulation time (yr) 175

180 185 190 195 200

CO 2 (ppmv)

1 kyr BP

13 kyr BP

21 kyr BP 17 kyr BP

ohler et al., 2005, Climate Dynamics

(41)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice –50% –15 ?

Ocean circulation

4 NADW formation +6 Sv +15 !/? (off)

5 Southern Ocean ventilation Biogeochemistry

6 Marine biota / iron fertilisation 7 Terrestrial carbon storage

8 CaCO3 chemistry

(42)

5 Southern Ocean Ventilation

How to explain ∆δ13C(PRE-LGM)=+1.2/◦◦ in deep Southern Ocean?

SO mixing reduced by 2/3 coupled to SO SST = f(EDC δD) Different hypotheses on the physical cause behind this process

20 18 16 14 12 10 Time [kyr BP]

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

13

C in deep SO [

o

/

oo

]

SO stratification breakdown

at 17 kyr BP no SO stratification breakdown

Hodell et al, 2003 ohler, et al., 2005, Global Biogeochemical Cycles

(43)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice –50% –15 ?

Ocean circulation

4 NADW formation +6 Sv +15 !/? (off)

5 Southern Ocean ventilation +20 Sv +35 o

Biogeochemistry

6 Marine biota / iron fertilisation 7 Terrestrial carbon storage

8 CaCO3 chemistry

(44)

6 Marine Biota / Iron fertilisation

Marine biological productivity might be Fe limited

in high nitrate low chlorophyll (HNLC) areas (Martin, 1990)

Ridgwell, 2002

(45)

6 Marine Biota / Iron fertilisation

Aeolian dust input to Antarctica LGM export production: + 20%

(12 PgC yr1)

Dust/iron input is reduced before rise in CO2 starts

Monnin et al., 2001;

othlisberger et al., 2002

Interval I II III IV

180 200 220 240 260

CO 2[ppmv]

EPICA Dome C CO2

20 18 16 14 12 10

GISP2 age [kyr BP]

0 10 20 30 40 50 nss-Ca2+ [ppb]

EPICA Dome C nss-Ca2+

iron limitation no iron limitation

(46)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice –50% –15 ?

Ocean circulation

4 NADW formation +6 Sv +15 !/? (off)

5 Southern Ocean ventilation +20 Sv +35 o

Biogeochemistry

6 Marine biota / iron fertilisation –2 PgC yr1 +20 ? 7 Terrestrial carbon storage

8 CaCO3 chemistry

(47)

7 Terrestrial carbon storage

Model and data-based estimates range from 300 to 800 PgC Example from LPJ-DGVM (Preindustrial–LGM)

ohler et al., 2005, Climate Dynamics

(48)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice –50% –15 ?

Ocean circulation

4 NADW formation +6 Sv +15 !/? (off)

5 Southern Ocean ventilation +20 Sv +35 o

Biogeochemistry

6 Marine biota / iron fertilisation –2 PgC yr1 +20 ? 7 Terrestrial carbon storage +500 PgC –15 ! 8 CaCO3 chemistry

(49)

8 Carbonate compensation

Dissolution / accumulation of CaCO3 depends on deep ocean [CO2−3 ]

Zeebe and Westbroeck, 2003

(50)

8 Carbonate compensation

Anomalies in deep ocean [CO2−3 ] caused by carbon cycle variations relax to initial state with an e-folding time τ of 1.5 to 6 kyr

100 80 60 40 20 0

Depth (cm) -20

-10 0 10 20 30

CO 32- (molkg-1 )

-20 -10 0 10 20 30

CO 32- (molkg-1 )

25 20 15 10 5

Time (cal kyr BP)

= 6.0 kyr

= 1.5 kyr

8.314 CkyrBP 9.4calkyrBP 3.314 CkyrBP 3.5calkyrBP

τ = 6.0 kyr:

process-based sediment model

(Archer et al., 1997) τ = 1.5 kyr:

reconstruction of deep ocean [CO23 ]

(Marchitto et al., 2005)

after Marchitto et al., 2005

(51)

Time-dependent processes:

Which How (T I) What (ppmv) ?

Physics (without ocean circulation)

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice –50% –15 ?

Ocean circulation

4 NADW formation +6 Sv +15 !/? (off)

5 Southern Ocean ventilation +20 Sv +35 o

Biogeochemistry

6 Marine biota / iron fertilisation –2 PgC yr1 +20 ? 7 Terrestrial carbon storage +500 PgC –15 !

8 CaCO3 chemistry τ=1.5 kyr +20 ?

(52)

Time-dependent processes:

Which How (T I) What (ppmv) ?

1 Temperature +(3–5) K +30 !

2 Sea level / salinity +125 m –15 !

3 Gas exchange / sea ice –50% –15 ?

4 NADW formation +6 Sv +15 !/? (off)

5 Southern Ocean ventilation +20 Sv +35 o

6 Marine biota / iron fertilisation –2 PgC yr1 +20 ? 7 Terrestrial carbon storage +500 PgC –15 !

8 CaCO3 chemistry τ=1.5 kyr +20 ?

Sum +75

Sum (without sea ice) +90

Vostok (incl. Holocene rise) +103

(53)

The global record of atmospheric CO

2

EPICA — European Project for Ice Coring in Antarctica The global carbon cycle and the box model BICYCLE

Time-dependent processes: motivations and simulation results Combined scenarios

Open questions

Conclusions

(54)

Atmospheric carbon during Termination I

Interprete the temporal evolution of atmospheric CO2, δ13C, 14C records

by carbon cycle simulations.

Smith et al., 1999; Monnin et al., 2001;

Stuiver et al., 1998; Hughen et al., 2004

-7.0 -6.8 -6.6 -6.4 -6.2

13 C[o / oo]

Interval I II III IV H1 BA YD 13

C

180 200 220 240 260 280

pCO 2[ppmv]

pCO

2

20 18 16 14 12 10 GISP2 Age [kyr BP]

0 100 200 300 400 500

14 C[o /oo]

14

C

(55)

Atmospheric carbon during Termination I

Not only the amplitudes but also the timing of the changes in CO2, δ13C,

14C seems to be appropriate.

Smith et al., 1999; Monnin et al., 2001;

Stuiver et al., 1998; Hughen et al., 2004 ohler et al., 2005,

Global Biogeochemical Cycles

-7.0 -6.8 -6.6 -6.4 -6.2

13 C[o / oo]

Interval I II III IV H1 BA YD 13

C

180 200 220 240 260 280

pCO 2[ppmv]

pCO

2

20 18 16 14 12 10 GISP2 Age [kyr BP]

0 100 200 300 400 500

14 C[o /oo]

20 18 16 14 12 10 GISP2 Age [kyr BP]

0 100 200 300 400 500

14 C[o /oo]

14

C

(56)

14

C cycle

Atmospheric ∆14C reconstructions are highly scattered especially before 25 kyr BP

-200 0 200 400 600 800 1000 1200 1400 1600

0 10000

20000 30000

40000 50000

14 C [‰]

Age [years BP]

Voelker et al., 1998 Bard et al., 1998 Schramm et al., 2000

Kitagawa & van der Pflicht, 2000 Goslar et al., 2000

Hughen et al, 2000, 2004

Beck et al., 2001 Reimer et al., 2004 Fairbanks et al., 2005

IntCal04

ohler, Muscheler, Fischer, G-Cubed, in press

(57)

14

C cycle

14C highly depends on the chosen 14C production rate

GBC paper used coarsly resolved paleo magnetic stack SINT-200 below new paleo magnetic GLOPIS-75 or 10Be are used

0.0 0.5 1.0 1.5 2.0 2.5

70 60 50 40 30 20 10 0 Time [kyr BP]

0.0 0.5 1.0 1.5 2.0 2.5

relative14 Cproductionrate[-]

S4: f(GLOPIS-75) S3: f(10Be)

S2: constant at 2 modern level S1: constant at modern level

-100 0 100 200 300 400 500 600 700 800 900

50 40 30 20 10 0

Time [kyr BP]

-100 0 100 200 300 400 500 600 700 800 900

14 C[o /oo]

S4x: f(GLOPIS-75) S3x: f(10Be)

S1: constant (modern)

INTCAL04

Reimer et al (2004)

ohler, Muscheler, Fischer, G-Cubed, in press

(58)

The EPICA challenge

Working hypothesis:

Our findings for Termination I are of general nature.

Approach:

Use same assumptions and extend forcing data set back in time.

-450 -420 -390 -360

D(o /oo)

EDC D

1 5

7 9

11 13

15 17

MIS

0 500 1000

dust(ppbv) 1500

EDC dust

700 600 500 400 300 200 100 0

Time (kyr BP)

160 200 240 280

pCO2(ppmv)

Vostok pCO2 EDC pCO2

I II

III IV

V VI

VII

(59)

0 20 40 60 80 100

IRD(%) (a)

5 10 15

SST(o C)

(b)

5 4 3 2

18 O(o /oo)

(c)

0 -1 -2

18 O(o /oo)

(d)

-15 -10 -5 0

T(K)

(e)

1.0 0.5 0.0

18 O(o /oo)

(f)

-100 -50 0

sealevel(m)

(g)

-450 -420 -390 -360

D(o /oo)

(h)

1 5

7 9

11 13

15 17

500 400 300 200 100 0

Feflux(gm-2 yr-1 )

(i)

700 600 500 400 300 200 100 0

Time (kyr BP)

180 200 220 240 260 280

CO2(ppmv)

700 600 500 400 300 200 100 0

Time (kyr BP)

180 200 220 240 260 280 300

CO2(ppmv)

(j)

S6.0k S1.5k S0.0k

I II

III IV

V VI

VII VIII

a: Heinrich b: N-SST c: NADW d: EQ-SST

e: NH ∆T

f: deep sea ∆T g: sea level

h: SO SST i: Fe fert.

j: CO2

ohler and Fischer, 2006, Climate of the Past

(60)

The EPICA challenge

800 700 600

180 200 220 240 260 280 300

CO2(ppmv) S6.0k

S1.5k S0.0k

800 700 600

180 200 220 240 260 280 300

CO2(ppmv)

(a)

VII

"VIII"

17

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

(b)

V VI

11 13

15

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

(c)

III IV

7 9

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

(d)

I II

1 5

ohler and Fischer, 2006, Climate of the Past

(61)

The EPICA challenge

800 700 600

180 200 220 240 260 280 300

CO2(ppmv) S6.0k

S1.5k S0.0k

800 700 600

180 200 220 240 260 280 300

CO2(ppmv)

(a)

VII

"VIII"

17

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

(b)

V VI

11 13

15

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

(c)

III IV

7 9

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

(d)

I II

1 5

1. Terminations I, III, IV, V

ohler and Fischer, 2006, Climate of the Past

(62)

The EPICA challenge

800 700 600

180 200 220 240 260 280 300

CO2(ppmv) S6.0k

S1.5k S0.0k

800 700 600

180 200 220 240 260 280 300

CO2(ppmv)

(a)

VII

"VIII"

17

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

(b)

V VI

11 13

15

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

(c)

III IV

7 9

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

(d)

I II

1 5

1. Terminations I, III, IV, V 2. Maximum peaks

ohler and Fischer, 2006, Climate of the Past

(63)

The EPICA challenge

800 700 600

180 200 220 240 260 280 300

CO2(ppmv) S6.0k

S1.5k S0.0k

800 700 600

180 200 220 240 260 280 300

CO2(ppmv)

(a)

VII

"VIII"

17

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

(b)

V VI

11 13

15

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

(c)

III IV

7 9

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

(d)

I II

1 5

1. Terminations I, III, IV, V 2. Maximum peaks

3. Timing inconsistencies

ohler and Fischer, 2006, Climate of the Past

(64)

The EPICA challenge

800 700 600

180 200 220 240 260 280 300

CO2(ppmv) S6.0k

S1.5k S0.0k

800 700 600

180 200 220 240 260 280 300

CO2(ppmv)

(a)

VII

"VIII"

17

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

600 500 400

180 200 220 240 260 280 300

CO2(ppmv)

(b)

V VI

11 13

15

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

400 300 200

180 200 220 240 260 280 300

CO2(ppmv)

(c)

III IV

7 9

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

200 100 0

Time (kyr BP) 180

200 220 240 260 280 300

CO2(ppmv)

(d)

I II

1 5

1. Terminations I, III, IV, V 2. Maximum peaks

3. Timing inconsistencies

Solutions:

A: Synchronisation errors?

B: Missing processes?

C: Are our findings for Termination I

of general nature?

ohler and Fischer, 2006, Climate of the Past

(65)

Terminations I-VIII

combined simulation vs. ice core data

∼20 ppmv per Termination are missing

VIII VII VI V IV III II I Number of Termination

0 10 20 30 40 50 60 70 80 90 100 110 120 130

CO 2rise(ppmv)

Vostok and EDC data scenario S1.5K

sum of one-at-a-time sum of all-but-one

Vostok pre-Vostok

ohler and Fischer, 2006, Climate of the Past

(66)

Terminations I-VIII

combined simulation vs. ice core data

Termination VI, VII: smaller contributions from OCEAN CIRCULATION and SST

VIII VII VI V IV III II I Number of Termination

0 10 20 30 40 50 60 70 80 90 100 110 120 130

CO 2rise(ppmv)

Vostok and EDC data scenario S1.5K

sum of one-at-a-time sum of all-but-one

Vostok pre-Vostok

ohler and Fischer, 2006, Climate of the Past

(67)

pH

pH from δ11B in surface waters of equatorial Atlantic only pH reconstruction available so far

700 600 500 400 300 200 100 0 Time (kyr BP)

8.1 8.15

8.2 8.25 8.3 8.35

pH

S6.0k S1.5k S0.0k

1 5

7 9

11 13

15 17

pH from H¨onisch & Hemming 2005

(68)

The global record of atmospheric CO

2

EPICA — European Project for Ice Coring in Antarctica The global carbon cycle and the box model BICYCLE

Time-dependent processes: motivations and simulation results Combined scenarios

Open questions

Conclusions

(69)

Missing: process-based sediment model; variation in riverine input

THC

THC

The global

carbon cycle

60 PgC/yr 60 PgC/yr

1 PgC/yr 10 PgC/yr

ATMOSPHERE (600 PgC)

ROCK

TERR. BIOSPHERE (2200 PgC)

0.8 PgC/yr

0.2 PgC/yr

0.2 PgC/yr

DEEP OCEAN (38000 PgC)

SEDIMENT

soft tissues | hard shells marine biosphere SURFACE OCEAN (700 PgC)

(70)

Coral reefs

CO2 and sea level

Coral reef growth started after MWP 1A (14 kyr BP)

sea level > 70 m below present

main coral growth in the Holocene

Vecsei & Berger , 2004

(71)

The global record of atmospheric CO

2

EPICA — European Project for Ice Coring in Antarctica The global carbon cycle and the box model BICYCLE

Time-dependent processes: motivations and simulation results Combined scenarios

Open questions

Conclusions

(72)

Take Home Messages

1. There are reasonable data- and model-based evidences which processes were influencing the global carbon cycle on glacial/interglacial timescales.

2. The way how they are treated in a model depends on its architecture.

Prescribing climate (box models) vs. internally calculated climate variability (climate models). More important is the agreement with paleo data sets.

3. Not only the amplitudes, but also the timing of changes need to be addres- sed to quantify what impacts individual processes have on CO2.

4. Simulation results are always model-dependent, but the amplitudes of indivi- dual contributions can be estimated with simple models such as BICYCLE.

5. Are our findings for Termination I of general nature?

(73)

Take Home Messages

1. There are reasonable data- and model-based evidences which processes were influencing the global carbon cycle on glacial/interglacial timescales.

2. The way how they are treated in a model depends on its architecture.

Prescribing climate (box models) vs. internally calculated climate variability (climate models). More important is the agreement with paleo data sets.

3. Not only the amplitudes, but also the timing of changes need to be addres- sed to quantify what impacts individual processes have on CO2.

4. Simulation results are always model-dependent, but the amplitudes of indivi- dual contributions can be estimated with simple models such as BICYCLE.

5. Are our findings for Termination I of general nature?

(74)

Take Home Messages

1. There are reasonable data- and model-based evidences which processes were influencing the global carbon cycle on glacial/interglacial timescales.

2. The way how they are treated in a model depends on its architecture.

Prescribing climate (box models) vs. internally calculated climate variability (climate models). More important is the agreement with paleo data sets.

3. Not only the amplitudes, but also the timing of changes need to be addres- sed to quantify what impacts individual processes have on CO2.

4. Simulation results are always model-dependent, but the amplitudes of indivi- dual contributions can be estimated with simple models such as BICYCLE.

5. Are our findings for Termination I of general nature?

(75)

Take Home Messages

1. There are reasonable data- and model-based evidences which processes were influencing the global carbon cycle on glacial/interglacial timescales.

2. The way how they are treated in a model depends on its architecture.

Prescribing climate (box models) vs. internally calculated climate variability (climate models). More important is the agreement with paleo data sets.

3. Not only the amplitudes, but also the timing of changes need to be addres- sed to quantify what impacts individual processes have on CO2.

4. Simulation results are always model-dependent, but the amplitudes of indivi- dual contributions can be estimated with simple models such as BICYCLE.

5. Are our findings for Termination I of general nature?

(76)

Take Home Messages

1. There are reasonable data- and model-based evidences which processes were influencing the global carbon cycle on glacial/interglacial timescales.

2. The way how they are treated in a model depends on its architecture.

Prescribing climate (box models) vs. internally calculated climate variability (climate models). More important is the agreement with paleo data sets.

3. Not only the amplitudes, but also the timing of changes need to be addres- sed to quantify what impacts individual processes have on CO2.

4. Simulation results are always model-dependent, but the amplitudes of indivi- dual contributions can be estimated with simple models such as BICYCLE.

5. Are our findings for Termination I of general nature?

(77)

Take Home Messages

1. There are reasonable data- and model-based evidences which processes were influencing the global carbon cycle on glacial/interglacial timescales.

2. The way how they are treated in a model depends on its architecture.

Prescribing climate (box models) vs. internally calculated climate variability (climate models). More important is the agreement with paleo data sets.

3. Not only the amplitudes, but also the timing of changes need to be addres- sed to quantify what impacts individual processes have on CO2.

4. Simulation results are always model-dependent, but the amplitudes of indivi- dual contributions can be estimated with simple models such as BICYCLE.

5. Are our findings for Termination I of general nature?

(78)

Future δ13C data might verify or falsify our approach.

200 250 300 350

CO 2[ppmv]

700 400 100 Time [kyr BP]

13C CO2

10 7 4 1

Time [kyr BP]

1750 AD

1000 1500 2000 Time [yr AD]

2000 198019902000 Time [yr AD]

-8.5 -8.0 -7.5 -7.0 -6.5 -6.0

13 C[o / oo]

20 y:

seasonal

1 kyr:

anthrop.

10 kyr:

Holocene 700 kyr:

glacial/

interglacial

Point Barrow Law Dome

Taylor D.

Vostok

EPICA DC

(79)

The End of an Ice Core (EDML): refrozen water entering borehole from below

Referenzen

ÄHNLICHE DOKUMENTE

„Essentially, all models are wrong, but some

Simulation results are always model-dependent, but the amplitudes of indivi- dual contributions can be estimated with simple models such as BICYCLE.. Are our findings for Termination

The magnitude and evolution of global terrestrial carbon storage in response to abrupt THC changes depends sensitively on the initial climate conditions which are here varied

For the first time in history, the majority of the world’s population lives in cities. On the one hand, urban areas are vibrant hubs of innovation, culture, and economic

It is restricted to a very simple structure and allows one to determine the number of sick days, the hospital stays and the resources needed on the basis of a definite demo-

Effect of Cisplatinum on the hormone-sensitive human breast cancer cell line MCF-7 plotted as in Figure 2.. difference between binuclear diamine cis and trans complexes (in

In the course of systematic investigations on the for- Coproporphyrins of the series I and III are the prin- mation of the atypical coproporphyrins II and IV by cipal isomers to

• Whether the researcher critically examined their own role, potential bias and influence during analysis and selection of data for presentation Can’t