• Keine Ergebnisse gefunden

On the Minimal Information Necessary to Stabilize a Linear System

N/A
N/A
Protected

Academic year: 2022

Aktie "On the Minimal Information Necessary to Stabilize a Linear System"

Copied!
16
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ON THE MINIMAL INFORMATION NECESSARY

TO STABILIZE A LINEAR SYSTEM

J . C a s t i September 1974

R e s e a r c h R e p o r t s a r e p u b l i c a t i o n s r e p o r t i n g on t h e work o f t h e a u t h o r . Any views o r c o n c l u s i o n s a r e t h o s e of t h e a u t h o r , and do n o t n e c e s s a r i l y r e f l e c t t h o s e o f IIASA.

(2)
(3)

On t h e Minimal I n f o r m a t i o n N e c e s s a r y t o S t a b i l i z e a L i n e a r S v s t e m

J . C a s t i *

I n t r o d u c t i o n

A s h a s o f t e n b e e n p o i n t e d o u t i n t h e s c i e n t i f i c l i t e r a - t u r e , a b a s i c r e q u i r e m e n t f o r t h e s u c c e s s f u l o p e r a t i o n o f a n y s y s t e m i s s t a b i l i t y , i . e . t h a t t h e s y s t e m b e i n s e n s i t i v e t o s m a l l p e r t u r b a t i o n s away f r o m i t s d e s i r e d o r e q u i l i b r i u m p o s i t i o n s . V i o l a t i o n s o f t h i s r e q u i r e m e n t l e a d t o " c a t a s t r o p h e s "

i n t h e s e n s e o f Zeeman and Thom [1-31 w h i c h g e n e r a l l y i n d i c a t e u n s a t i s f a c t o r y s y s t e m p e r f o r m a n c e o r , a t l e a s t , some t y p e o f e x t r e m e b e h a v i o r . I n a c o n t r o l l e d s y s t e m , w h e r e t h e c o n t r o l l i n g a c t i o n i s g e n e r a t e d upon t h e b a s i s o f m e a s u r e m e n t s made upon t h e s t a t e o f t h e s y s t e m , s o - c a l l e d " f e e d b a c k c o n t r o l " , o n c e i t i s e s t a b l i s h e d t h a t i t i s p o s s i b l e t o s t a b i l i z e t h e s y s t e m by

-

some c o n t r o l l a w , t h e n e x t q u e s t i o n t o a s k is w h a t k i n d o f m e a s u r e m e n t s a r e n e c e s s a r y . I n o t h e r w o r d s , how many c o m p o n e n t s o f t h e s t a t e n e e d b e m e a s u r e d t o g e n e r a t e a s t a b i l i z i n g f e e d - b a c k l a w . The o b j e c t i v e o f t h i s r e p o r t i s t o a n s w e r t h i s q u e s t i o n i n t h e c a s e o f a l i n e a r , c o n s t a n t c o e f f i c e n t s y s t e m u t i l i z i n g l i n e a r f e e d b a c k l a w s . A s w i l l b e s e e n , t h i s v e r s i o n o f t h e p r o b l e m w i l l t u r n o u t t o b e s u f f i c i e n t l y r o m p l e x t o r e - q u i r e some new r e s u l t s i n l i n e a r c o n t r o l t h e o r y f o r t h e s o l u - t i o n , t h e p r i m a r y o b s t a c l e b e i n g , o f c o u r s e , t h a t t h e p r o b l e m

* I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a .

(4)

s o l u t i o n i s n o t i n v a r i a n t u n d e r c o o r d i n a t e t r a n s f o r m a t i o n s . A p p a r e n t l y t h e f i r s t f o r m a l s t a t e m e n t o f t h e g e n e r a l

"miniinal measurement" problem was i n t h e a r t i c l e [4]

,

a l t h o u g h v a r i o u s v e r s i o n s o f t h e problem have been t r e a t e d i n [5-71.

The r e s u l t s of t h e c u r r e n t r e p o r t c o m p r i s e a s u b s t a n t i a l ex- t e n s i o n of t h o s e p r e s e n t e d i n 18-101, a l t h o u g h t h e r e s u l t s of

[lo]

a r e n o t i n c l u d e d due t o t h e l i n e a r i t y a s s u m p t i o n s on t h e f e e d b a c k laws. I n s p i r i t , t h e c u r r e n t work i s most c l o s e l y r e l a t e d t o t h a t o f [ l l - 1 2 1 , t h e b a s i c ( a n d impor-

t a n t ) d i f f e r e n c e b e i n g t h a t o n l y s t a b i l i t y and n o t p r e - a s s i g n m e n t o f t h e c l o s e d - l o o p s y s t e m c h a r a c t e r i s t i c v a l u e s i s r e q u i r e d . A s would b e e x p e c t e d , t h e weakened a s s u m p t i o n s o f t h i s p a p e r d r a s t i c a l l y a l t e r t h e n a t u r e o f t h e s o l u t i o n i n t h a t , i n g e n e r a l , l e s s i n f o r n ~ a t i o n a b o u t t h e system i s n e c e s s a r y f o r s t a b i l i z a t i o n t h a n t h a t r e q u i r e d f o r p o l e a s s i g n m e n t .

11. Problem S t a t e m e n t

We b e g i n w i t h t h e l i n e a r s y s t e m

where x i s a n n-dimensional v e c t o r , F a n nxn c o n s t a n t m a t r i x , and G i s a n nxm c o n s t a n t m a t r i x . The b a s i c problem i s t o f i n d a c o n s t a n t mxn m a t r i x ( c o n t r o l law) K p o s s e s s i n g t h e f o l l o w i n g p r o p e r t i e s :

i ) t h e m a t r i x ( F

-

GK) h a s i t s c h a r a c t e r i s t i c v a l u e s i n t h e l e f t h a l f - p l a n e ( c l o s e d l o o p a s y m p t o t i c s t a b i l i t y ) and

(5)

ii) the matrix K has as many identically zero columns as possible (the minimal number of components of x appear in the feedback law -Kx) .

To avoid complicating the exposition, in this paper we treat only the single-input case (m

=

l), deferring discussion of the multiple-input problem to a future work. Basically the same results are obtained, but under somewhat more re- strictive algebraic assumptions. As it stands, the foregoing statement of the minimal measurement problem is a difficult question of linear algebra due to the lack of any computa- tionally "clean" linear algorithms for characterizing a stability matrix. To make progress, it is necessary to re- formulate the problem in a more tractable form. We accomplish this task by stating an equivalent linear regulator problem.

Consider minimizing the functional

over all u where u and y are connected by the relations

F, g, and

S

being constant matrices of sizes, nxn, nxl, and

pxn, respectively. It is well known that the minimizing u

is given by the expression

(6)

where P i s t h e p o s i t i v e s e m i - d e f i n i t e s o l u t i o n o f t h e a l g e - b r a i c R i c c a t i e q u a t i o n

S ' S

+

PG

+

G'P

-

Pgg'P = 0

.

( 3 )

To s e e t h e e q u i v a l e n c e between t h e above r e g u l a t o r p r o b l e m and t h e m i n i m a l measurement p r o b l e m , we n o t e t h a t g i v e n any s t a b l e law K , i f w e c a n f i n d a p o s i t i v e s e m i - d e f i n i t e P s a t i s - f y i n g t h e r e l a t i o n g ' P = K , t h e n we may u s e P i n Eq. ( 3 ) t o g e n e r a t e t h e m a t r i x S ' S w h i c h , i n t u r n , g i v e s t h e m a t r i x S . T h i s w i l l a l w a y s b e p o s s i b l e w i t h o u t f u r t h e r a s s u m p t i o n s f o r s i n g l e - i n p u t s y s t e m s . The n e c e s s a r y and s u f f i c i e n t c o n d i t i o n s f o r s o l v a b i l i t y o f t h e P , K r e l a t i o n i n t h e m u l t i - i n p u t

q a s e a r e g i v e n i n [13]. T h u s , i f we c a n c h a r a c t e r i z e t h e number o f z e r o components i n t h e law g ' P f o r t h e r e g u l a t o r p r o b l e m , t h e n by i m p o s i n g t h e a d d i t i o n a l a s s u m p t i o n s o f s t a b i - l i t y o f ( F , g ) and d e t e c t a b i l i t y o f ( F 1 S ) , s t a n d a r d r e s u l t s w i l l i n - s u r e t h a t t h e law w i l l b e s t a b l e . T h e key i s s u e w i l l be t o s e l e c t a measurement m a t r i x S w h i c h h a s t h e d u a l p r o p e r t i e s o f d e t e c t -

a b i l i t y o f t h e u n s t a b l e modes o f and p o s s e s s i o n o f a s many z e r o columns a s p o s s i b l e .

111. D i a g o n a l S y s t e m s

F i r s t o f a l l , we g i v e t h e s o l u t i o n t o t h e m i n i m a l m e a s u r e - ment p r o b l e m i n t h e c a s e o f a d i a g o n a l s y s t e m , t h e n show t h a t t h i s s o l u t i o n s u f f i c e s t o a n s w e r t h e g e n e r a l c a s e . To s o l v e t h e d i a g o n a l p r o b l e m , we s h a l l employ some new r e s u l t s f i r s t g i v e n i n [14]. The r e s u l t s f o r t h e d i a g o n a l c a s e v a l i d a t e

(7)

o n e ' s i n t u i t i v e f e e l i n g t h a t t h e number o f components o f t h e s t a t e w h i c h m u s t b e m e a s u r e d e q u a l s , i n g e n e r a l , t h e number o f c h a r a c t e r i s t i c r o o t s o f t h e s y s t e m m a t r i x h a v i n g n o n - n e g a t i v e r e a l p a r t s .

C o n s i d e r t h e s y s t e m

w h e r e we now assume F i s a n o r m a l m a t r i x , g and x b e i n g a s

d e f i n e d i n s e c t i o n 11. Yake t h e c h a n q e o f s t a t e c o o r d i n a t e s z = Tx, w h e r e T i s t h e n o n s i n g u l a r m a t r i x d i a g o n a l i z i n g F . We m u s t

now i n v e s t i g a t e t h e s y s t e m

where 2 1 is t h e d i a g o n a l m a t r i x A = TFT-l a n d b = Tg. R e c a l l i n g t h e d i s c u s s i o n o f s e c t i o n 11, we form t h e e q u i v a l e n t r e g u l a t o r p r o b l e m f o r

( 7 ' )

w h i c h l e a d s t o t h e a l g e b r a i c R i c c a t i e q u a t i o n

w h e r e Q = S ' S i s a s y e t u n d e t e r m i n e d . To s i m p l i f y E q . ( 4 ) , w e u t i l i t z e t h e f o l l o w i n g r e s u l t from [14]:

Theorem 1. C o n s i d e r t h e a l s e b r a i c R i c c a t i e a u a t i o n Q + F ' P

+

PF

-

PGG'P = 0

,

w h e r e F i s a m a t r i x h a v i n g no p u r e l y i m a g i n a r y complex r o o t s . Then t h e q u a n t i t y H = PG i s c h a r a c t e r i z e d by t h e e q u a t i o n

(8)

where J&? i s t h e " s t a c k i n g " o p e r a t o r whose a c t i o n i s t o s t a c k t h e columns o f an nxm m a t r i x i n t o a s i n g l e nmxl v e c t o r .

Applying Theorem 1 t o t h e a l g e b r a i c R i c c a t i e q u a t i o n ( 4 ) ( a f t e r imposing t h e a d d i t i o n a l c o n s t r a i n t t h a t F have no p u r e l y i m a g i n a r y r o o t s ) , it i s s e e n t h a t t h e o p t i m a l f e e d b a c k law h = Pb i s c h a r a c t e r i z e d by t h e e q u a t i o n

Next, we n o t e t h a t t h e nrnxn2 m a t r i x

113s t h e s t r u c t u r e

(9)

I t w i l l be c o n v e n i e n t t o compress t h e n non-zero e l e m e n t s of L A i n t o a new nxn m a t r i x , d = [a.

.I,

where

1 I

We may now s t a t e t h e f i r s t b a s i c r e s u l t :

Theorem 2 . L e t A and b be a s above. Then a n e c e s s a r y c o n d i t i o n f o r E q . ( 6 ) t o have a s o l u t i o n h whose i t h component h = O i s

-i

P r o o f . L e t hi = 0. Forming t h e column v e c t o r & ( h h l

-

Q )

,

i t i s e a s i l y v e r i f i e d t h a t t h e e q u a t i o n

may o n l y b e s a t i s f i e d i f t h e f o r e g o i n g o r t h o g o n a l i t y r e l a t i o n h o l d s .

Remark. Theorem 2 imposes c o n s t r a i n t s on t h e c h o i c e of t h e measurement m a t r i x S which w i l l be u t i l i z e d below.

The q u e s t i o n which now a r i s e s i s t o what e x t e n t c o n d i t i o n ( 9 ) i s s u f f i c i e n t f o r Eq. ( 6 ) t o have a s o l u t i o n whose i t h component i s z e r o . The f o l l o w i n g r e s u l t shows t h a t c o n d i t i o n

( 9 ) i s " s e n e r i c a l l y s u f f i c i e n t " i n t h a t i t i s s u f f i c i e n t f o r " a l m o s t e v e r y " s y s t e m :

Theorem 3 . The c o n d i t i o n ( 9 ) i s s u f f i c i e n t f o r t h e i t h component o f a s o l u t i o n t o E q . ( 6 ) t o be z e r o f o r a l m o s t e v e r y

(10)

l i n e a r s y s t e m , i . e . t h e s e t o f s y s t e m s f o r w h i c h i t f a i l s t o s u f f i c e form a n u l l s e t i n t h e s p a c e o f a l l l i n e a r s y s t e m s .

P r o o f . I f t h e c o n d i t i o n h o l d s , we m u s t s o l v e t h e s e t o f n o n l i n e a r e q u a t i o n s

From t h e i t h e q a a t i o n , we s e e t h a t e i t h e r hi = 0 o r t h e r e e x i s t s a s o l u t i o n v e c t o r h l y i n g o n t h e h y p e r p l a n e a

lihl + " 2 i h 2

+ .-. +

a . h = 1. S i n c e t h e s y s t e m h a s o n l y a f i n i t e number n l n

o f s o l u t i o n s , s h o u l d t h e s e c o n d c a s e h o l d , a n a r b i t r a r i l y s m a l l p e r t u r b a t i o n o f t h e m a t r i x 0 , A , o r b w i l l i n s u r e t h a t it f a i l s t o h o l d w i t h o u t c h a n g i n g t h e number o f u n s t a b l e modes o f t h e s y s t e m ( s i n c e t h e c h a r a c t e r i s t i c r o o t s a r e con-

t i n u o u s f u n c t i o n s o f t h e m a t r i x e l e m e n t s ) . H e n c e , g e n e r i c a l l y c o n d i t i o n ( 9 ) i m p l i e s h = 0.

i

(11)

Theorems 2 a n d 3 now a l l o w u s t o r e s o l v e t h e measurement p r o b l e m f o r a l m o s t e v e r y d i a g o n a l s y s t e m . The t a s k is t o f i n d a measurement m a t r i x S w i t h t h e f o l l o w i n g p r o p e r t i e s :

i ) The p a i r ( S , A ) i s d e t e c t a b l e ( t h e u n s t a b l e modes o f

r'

a r e c o n t a i n e d i n t h e s p a c e g e n e r a t e d b y t h e columns o f t h e

(

2

o b s e r v a b i l i t y m a t r i x 0 = S ' , A S ' , A S ' ,

...,

A ~ - ~ S ' ) )

,

a n d ii) row k o f t h e m a t r i x Q = S ' S i s o r t h o g o n a l t o column k o f t h e m a t r i x d f o r a s many i n d i c e s k a s p o s s i b l e , 1

2

k

2

n

( c o n d i t i o n ( 9 ) ) . The r e s o l u t i o n o f t h i s q u e s t i o n i s g i v e n by Theorem 4 . L e t t h e s y s t e m

1'

b e s t a b i l i z a b l e ( i . e . t h e

2 An- 1

c o l u m n s o f t h e m a t r i x (b,Ab,A b ,

...,

b ) s p a n t h e s p a c e g e n e r a t e d by t h e u n s t a b l e modes o f

1 ' )

and l e t e v e r v u n s t a b l e mode c o n t a i n z e r o s i n t h e same m c o m p o n e n t s . Then a l a w h

1

s t a b i l i z i n g

1

w i l l m e a s u r e n-m components o f t h e s t a t e f o r a l m o s t e v e r y s y s t e m

12

P r o o f . F i r s t o f a l l , n o t e t h a t t h e u n s t a b l e modes o f

1'

c o m p r i s e a s u b s e t o f t h e u s u a l b a s i s v e c t o r s e l t e 2 t - .

-

en

s i n c e A i s d i a g o n a l . T h u s , m e q u a l s t h e number o f c h a r a c t e r i s - t i c v a l u e s o f Pt w i t h n e g a t i v e r e a l p a r t s . Assume t h a t t h e

I

l t 1 2 , . - - i

.

u n s t a b l e modes o f

1

c o n t a i n common z e r o s i n rows i '

m We c h o o s e t h e same rows o f S ' e q u a l z e r o , t h e r e m a i n i n g rows b e i n g c h o s e n t o s a t i s f y t h e d e t e c t a b i l i t y r e q u i r e m e n t . S l n c e A i s d i a g o n a l , i t i s c l e a r t h a t no f u r t h e r rows o f S f may b e c h o s e n z e r o a n d s t i l l h a v e t h e p a i r ( A , S ) b e d e t e c t a b l e . B u t , t h e a b o v e c h o i c e o f S ' i m p l i e s t h a t m rows o f Q = S ' S a r e

(12)

i d e n t i c a l l y z e r o , t h e r e b y s a t i s f y i n g c o n d i t i o n ( 9 ) f o r t h e m i n d i c e s i l , i 2 ,

...,

im. Hence, by Theorems 2 and 3 , m com- p o n e n t s o f h a r e z e r o a n d , by s t a b i l i z a b i l i t y and d e t e c t a b i l i t y o f

I',

s u c h a n h w i l l be a s t a b l e f e e d b a c k law f o r a l m o s t

e v e r y

1 ' .

Theorem 4 c h a r a c t e r i z e s t h e s o l u t i o n o f t h e measurement problem f o r a l m o s t e v e r y d i a g o n a l s y s t e m . L e t u s r e c a p i t u - l a t e t h e a s s u m p t i o n s and t h e s t e p s o f t h e s o l u t i o n :

Assumptions: (1) A i s d i a g o n a l , i . e . F i s normal, ( 2 ) A h a s no p u r e l y i m a g i n a r y e n t r i e s on

t h e d i a g o n a l ,

( 3 ) t h e p a i r ( h , b ) i s s t a b i l i z a b l e . Urider t h e s e a s s u m p t i o n s , we c o n s t r u c t a minimal measurement m a t r i x by t h e p r o c e d u r e :

i ) d e t e r m i n e t h e u n s t a b l e modes of A ,

i i ) l e t i 1 , 1 2 , . . . , i ' b e t h e i n d i c e s where t h e u n s t a b l e modes m

a l l have z e r o e n t r i e s and s e l e c t t h e m a t r i x S s u c h t h a t a ) row k o f S i s z e r o , k = i 1 I l 2 ' I • •

-

I i m p

h) t h e non-zero e l e m e n t s o f S a r e chosen s o t h a t ( h , S ) i s d e t e c t a b l e and g e n e r i c .

I V . An Example

To i l l u s t r a t e t h e f o r e g o i n g r e s u l t s , l e t t h e s y s t e m be g i v e n by

(13)

The relevant diagonalizing transformation is

giving the diagonal system k = A z + b u ,

where

A

=

diag (15 5 5 -1) b = % ( l l l l ) ' .

The system 1 is stabilizable (in fact, controllable) since the unstable modes are

which are contained in the space generated by the matrix

[ b Ab h2b h3b], and 1'' satisfies the other. assumptions (1) and

(2) . Since the three unstable modes have only the fourth

entry as a common zero, we have m

=

1 and i

=

4. Let us as-

sume that 1 has two o u t ~ u t terminals. Then we choose an S of

the form

(14)

The s i x i n d e p e n d e n t c o n s t a n t s a r e t o b e c h o s e n s u c h t h a t (A,S) i s d e t e c t a b l e and g e n e r i c . I t ' s e a s y t o s e e t h a t t h e c h o i c e ( o n e o f many p o s s i b l e ) Sll = S21 - - S31 = S12 = S 3 2 = 1 ,

S,2 = 2 s a t i s f i e s a l l c o n d i t i o n s .

The a b o v e example i s i n t e r e s t i n g s i n c e i t i l l u s t r a t e s t h e f a c t t h a t t h e number o f o u t p u t t e r m i n a l s ( p ) may b e c r i - t i c a l s i n c e , f o r e x a m p l e , a s i n g l e o u t p u t c h a n n e l ( p = 1) w i l l n o t s u f f i c e i n t h e a b o v e example a s i n t h a t c a s e

no

c h o i c e

I

o f S w i l l make

1

d e t e c t a b l e . T h i s i s due t o t h e m u l t i p l e r o o t

X

= 5 . However, i f A h a s d i s t i n c t r o o t s , t h e n a s i n g l e o u t p u t w i l l a l w a y s s u f f i c e .

V . The G e n e r a l S i n g l e - I n p u t C a s e

L e t u s now r e t u r n t o t h e o r i g i n a l s y s t e m

1:

1

R e c a l l t h a t

1

and

1

a r e r e l a t e d t h r o u g h t h e c o o r d i n a t e t r a n s f o n o a t i o n z = Tx. T h u s , i f we know which components of z a p p e a r i n a s t a b i l i z i n g l a w , t h e n f o r a l m o s t e v e r y

1

we

w i l l a l s o know which components o f x o c c u r s i n c e

However, it s h o u l d b e n o t e d t h a t we may h a v e c a n c e l l a t i o n i n some p a r t i c u l a r c o n t r o l law. T h a t i s , i F we h a v e a law

t h e n t h e c h o i c e o f t h e y ' s may r e s u l t i n c a n c e l l a t i o n s when

(15)

s u b s t i t u t e d b a c k i n t o ( 1 0 ) . B u t , s i n c e t h e y ' s a r e d e t e r m i n e d by t h e c h o i c e o f S , a s l i g h t p e r t u r b a t i o n o f t h e components o f S w i l l e l i m i n a t e c a n c e l l a t i o n s w h i l e s t i l l p r e s e r v i n g t h e o t h e r r e q u i r e m e n t s . Thus, g e n e r i c a l l y t h e number o f compo- n e n t s o f x which a p p e a r i s d e t e r m i n e d by which components o f z a p p e a r and t h e z e r o s which a p p e a r i n t h e t r a n s f o r m a t i o n T.

F o r e x a m p l e , i n t h e p r o b l e m o f t h e p r e v i o u s s e c t i o n , e v e n t h o u g h z 4 d i d n o t a p p e a r i n t h e d i a g o n a l s y s t e m , s i n c e T h a s n o z e r o s i n rows 1-3, a l l components o f x o c c u r i n t h e g e n e r i c c o n t r o l l a w g e n e r a t e d by t h e d i a g o n a l s y s t e m .

V I . D i s c u s s i o n

I n t h i s work, we h a v e g i v e n c o n d i t i o n s f o r s o l u b i l i t y o f t h e m i n i m a l measurement p r o b l e m f o r l i n e a r , s i n g l e - i n p u t , c o n s t a n t c o e f f i c i e n t s y s t e m s . The r e s u l t s h a v e r e l i e d o n v a r i o u s a s s u m p t i o n s w h i c h a r e o f t e n m e t i n p r a c t i c e . U n f o r t u - n a t e l y , a s i s o f t e n t h e c a s e i n m a t h e m a t i c s , t h e r e s u l t c o u l d o n l y b e e s t a b l i s h e d f o r a l m o s t e v e r y s y s t e m which i s

s a t i s f a c t o r y a s l o n g a s o n e i s n ' t i n o n e o f t h e s i n q u l a r c a s e s However, f o r p r a c t i c a l p u r p o s e s , it i s s u f f i c i e n t s i n c e no p h y s i c a l s y s t e m i s known w r e c i s e l v enough t h a t it c o u l d n o t be p e r t u r b e d by a s m a l l amount t o make i t g e n e r i c .

I n s u b s e q u e n t a r t i c l e s , v a r i o u s e x t e n s i o n s and m o d i f i c a - t i o n s o f t h e a b o v e r e s u l t s w i l l b e i n v e s t i g a t e d , a m o n g them t h e m u l t i p l e - i n p u t c a s e , t h e c a s e o f a n i n f i n i t e - d i m e n s i o n a l s t a t e v e c t o r , and some n u m e r i c a l a s p e c t s .

(16)

R e f e r e n c e s

[l] Thom, R. ~ t a b i l i t 6 S t r u c t u r e l l e e t M o r ~ h o g & n 8 s e , W.A. B e n j a m i n C o . , R e a d i n g , M a s s . , 1 9 7 2 .

[2] Zeeman, E.C. "The G e o m e t r y o f C a t a s t r o p h e " , Time L i t e r a r y S u p p l e m e n t , London, December 1 0 , 1 9 7 1 .

[3] Zeeman, E .C. " A p p l i c a t i o n s o f C a t a s t r o p h e T h e o r y " , B u l l . London Math. S o c . ( t o a p p e a r 1 9 7 4 ) .

4 L e t o v , A. "Some U n s o l v e d P r o b l e m s i n C o n t r o l T h e o r y " , D i f f . E q s . ,

4

( 1 9 7 0 ) , 592-615.

5 F e r g u s o n , J . a n d Z . R e k a s i u s . " O p t i m a l L i n e a r C o n t r o l S y s t e m s w i t h I n c o m p l e t e S t a t e Y e a s u r e m e n t s " , IEEE T r a n . A u t o . C o n t . ,

14

( 1 9 6 9 ) , 1 3 5 - 1 4 0 .

[6] L u e n b e r g e r , D . " O b s e r v i n g t h e S t a t e o f a L i n e a r S y s t e m " , IEEE T r a n s . M i l i t a r y E l e c t r o n i c s , MIL-8 ( 1 9 6 4 ) , 74-80.

7 L u e n b e r g e r , D. " O b s e r v e r s f o r M u l t i v a r i a b l e S y s t e m s " , IEEE T r a n . A u t o . C o n t r o l ,

11

( 1 9 6 6 1 , 1 9 0 - 1 9 7 . [8] C a s t i , J . " M i n i m a l C o n t r o l F i e l d s a n d P o l e - S h i f t i n g b y

L i n e a r F e e d b a c k " , J . O p t i m . Th. a n d A p p l i c . , ( t o a p p e a r 1 9 7 5 ) .

[9] C a s t i , J . " N e c e s s a r y a n d S u f f i c i e n t C o n d i t i o n s i n t h e M i n i m a l C o n t r o l F i e l d P r o b l e m f o r L i n e a r S y s t e m s " , I n t ' l . J . S y s t . E n q . , ( t o a p p e a r 1 9 7 5 ) .

[lo]

C a s t i , J . a n d A. L e t o v . "P4inimal C o n t r o l F i e l d s " , J . Math. A n a l y . A p p l i c . , 43 ( 1 9 7 3 ) , 15-25.

[ll] P o r t e r , B. a n d R. C r o s s l e y . Modol C o n t r o l : T h e o r y a n d A p p l i c a t i o n s , B a r n e s a n d N o b l e Pub. C o . , New Y o r k , 1 9 7 2 .

1 2 S i m c n , J . a n d S. Y i t t e r . "A T h e o r y o f Modol C o n t r o l " , I n f o r . a n d C o n t r o l , - 1 3 ( 1 9 6 8 )

,

3 1 6 .

i13] J a m e s o n , A. a n d E. K r e i n d l e r . " I n v e r s e P r o b l e m o f ine ear O p t i m a l C o n t r o l " , SIAM C o n t . J . ,

11

( 1 9 7 3 1 , 1 - 1 9 . 1 4 C a s t i , J . "A New E q u a t i o n f o r t h e L i n e a r R e g u l a t o r

P r o b l e m " , SIAM C o n t . J . ( t o a p p e a r 1 9 7 5 ) .

Referenzen

ÄHNLICHE DOKUMENTE

Bereanu, The continuity of the optimum in parametric programming and applications to stochastic programming, J.Optim.Theory Applic. Robinson, A characterization of stability

(where at and at,b are actual and nominal parameter vectors) and to define a so-called sensitivity function S which relates the elements of the set of the parameter deviations Aat

The government's planning problem is one of choosing consumer prices, a poll subsidy, and public production t o maximize social welfare, subject t o the constraint

THE MINIMAL CONTROL FIELD PROBLEM FOR LINEAR

However, the semi-definiteness and controllabilitv reauirements may reduce this to a lesser number, depending upon the structure

This information can be used for the MiniBacillus project and the biosynthesis pathways of serine and threonine can be deleted in the final strain.. Furthermore, BcaP

He was a postdoctoral research associate at the Institute for Studies in Theoretical Physics and Mathematics (IPM) in Tehran.. He is now an assistant professor in the Department

The same statistics are reported for the benchmark portfolios based on composite forecasts (i.e., the single assets of which the portfolios are constructed and the equally