• Keine Ergebnisse gefunden

Classification of air ions

N/A
N/A
Protected

Academic year: 2022

Aktie "Classification of air ions"

Copied!
51
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

OBSERVATION ON ION DYNAMICS Urmas Hõrrak, Hannes Tammet

Institute of Environmental Physics, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia.

E-mail: Urmas.Horrak@ut.ee

(2)
(3)

ESTONIA

T a l l i n n

Location of Tahkuse Observatory

(4)

Measurements

Location: Tahkuse Observatory (58°31'N 24°56'E), a sparsely populated rural region.

Instrumentation: three original multichannel aspiration spectrometers (second-order differential mobility analyzers). Method: particle classification by electrical mobilities.

Mobility range: 0.00041–3.14 cm2V–1s–1,

logarithmically divided into 20 intervals.

Mobility spectra of positive and negative ions are measured in every 5 minute.

Height of measurements: 5 m above the ground.

The database consists of 8900 hourly average spectra measured during the period Sept. 1993 – Oct. 1994.

(5)

Diagram of the measuring system

and the small air ion spectrometer (cross-section).

E is electrometer,

HVS is high voltage supply VS is voltage supply.

External dimensions of the cylindrical aspiration

spectrometer:

height 695 mm, diameter 122 mm.

(6)

Classification of air ions

Average spectra of air ions at Tahkuse. Sept.1993 - Oct.1994.

Particle diameter (nm)

Mobility of fractions (cm 2 V -1 s -1 )

Fraction concentration (cm-3 ) 79 52 34 22 15 11 7.4 4.8 3.2 2.3 2.0 1.8 1.60 1.42 1.24 1.03 0.85 0.70 0.56 0.45 0.36

1 2 46 10 20 4060 100 200 400600 1000

0.00041 0.00087 0.00192 0.0042 0.0091 0.016 0.034 0.074 0.15 0.25 0.32 0.40 0.50 0.63 0.79 1.02 1.28 1.60 2.01 2.51 3.14

Small ions Intermediate ions

Large ions

Positive ions Negative ions

Cluster ions Aerosol ions

(7)

Classification of air ions and aerosol particles

Class of air ions Mobility range cm2 V–1 s–1

Diameter range*

Class of particles Small cluster ions 1.3 – 3.2 0.36 – 0.85 Clusters Big cluster ions 0.5 – 1.3 0.85 – 1.6 Clusters Intermediate ions 0.034 – 0.5 1.6 – 7.4 Nanometer

particles Light large ions 0.0042 – 0.034 7.4 – 22 Ultrafine

particles Heavy large ions 0.00087 – 0.0042 22 – 79 Aitken

particles

* Estimates of equivalent diameter ranges assume single charged particles.

Hõrrak, U., Salm, J. and Tammet, H. (2000) Statistical characterization of air ion mobility spectra at Tahkuse Observatory: Classification of air ions. J. Geophys. Res.

Atmospheres 105, 9291–9302.

(8)

Small or cluster ions

Particle diameter (nm)

Electrical mobility (cm 2 V -1 s -1 )

Fraction concentration (cm-3 )

90 26 7.6 2.0 0.36

0 100 200 300 400 500 600

0.00032 0.0032 0.032 0.32 3.2

Positive ions Negative ions

Small ions Large ions

Intermediate ions

Aerosol ions Cluster ions

Average spectra of air ions. Sept. 1993 - Oct. 1994. Tahkuse Observatory

(9)
(10)

Average characteristics of small ions (means and standard deviations) Parameter Small ions,

cm–3 Mean mobility, cm2 V 1 s1

Conductivity of small ions, fS m1 Polarity (+) 274 96 1.36 0.06 6.0 2.1 Polarity (–) 245 88 1.53 0.10 6.0 2.1 Ratio (+/–) 1.13 0.07 0.89 0.04 1.00 0.05

Particle diameter (nm)

Mobility (cm 2 V -1 s -1 ) Fraction concentration (cm -3 )

2.3 2.0 1.8 1.6 1.4 1.24 1.0 0.85 0.7 0.56 0.45 0.36

0 10 20 30 40 50 60 70 80

0.25 0.50 0.79 1 1.3 1.6 2 2.5 3.14

Positive ions Negative ions

Average mobility spectra of small ions. Sept. 1993 – Oct. 1994. Tahkuse.

(11)

The frequency distributions (histograms) of the mean mobility of positive and negative small ions

Mean mobility (cm 2 V -1 s -1 )

No of obs

0 200 400 600 800 1000 1200

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Small negative ions Small positive ions Normal approximation

(12)

Diurnal variation in the concentration of small ions (0.5–

3.14 cm2V1s1) and wind speed. August 21 – August 30, 1994.

Day

Small ions (cm-3 ) Wind speed (m s-1 )

0 2 4 6 200

400 600 800 1000 1200

21 22 23 24 25 26 27 28 29 30

Positive ions Negative ions

(13)

Average diurnal variation in small (or cluster) ion concentration

Average diurnal variation of positive cluster ion concentration in the warm season (Sept.1993, May – Sept. 1994) and in the cold season (Nov. 1993 – April 1994).

Statistics: median, box (25% and 75%) and whiskers (10% and 90% quantiles).

LST (hour)

Small ions (cm-3 ) Small ions (cm-3 )

200 300 400 500 600 700

100 200 300 400

0 2 4 6 8 10 12 14 16 18 20 22 24

median, warm season median, cold season

(14)

Variation in the activity concentration of radon at Tahkuse.

August 19 - September 18, 1998.

Day Radon activity concentration (Bq m -3 )

0 5 10 15 20 25 30 35

19/08 20/08 21/08 22/08 23/08 24/08 25/08 26/08 27/08 28/08 29/08 30/08 31/08 1/09 2/09 3/09 4/09 5/09 6/09 7/09 8/09 9/09 10/09 11/09 12/09 13/09 14/09 15/09 16/09 17/09 18/09 19/09

Radon, Tahkuse 19.08 - 18.09.1998

(15)

Correlation coefficients (in percent) between positive air ion mobility fractions. November 1, 1993 – Aprill 30, 1994.

Diameter (nm)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P1: 0.360.45 100 67 64 59 49 38 33 29 24 19 20 20 21 20 16 8 -5 -17 -24 -32 P2: 0.450.56 67 100 95 85 66 47 36 16 4 2 3 3 2 -1 -7 -16 -30 -43 -52 -60 P3: 0.560.70 64 95 100 94 79 61 45 19 2 -1 0 -1 -2 -5 -13 -22 -38 -52 -61 -69 P4: 0.700.85 59 85 94 100 94 81 62 29 8 3 2 1 0 -3 -11 -21 -38 -54 -64 -73 P5: 0.851.03 49 66 79 94 100 95 77 43 17 12 8 8 7 4 -4 -14 -32 -49 -59 -68 P6: 1.031.24 38 47 61 81 95 100 89 57 29 20 16 16 15 12 6 -4 -22 -39 -51 -60 P7: 1.241.42 33 36 45 62 77 89 100 79 54 43 37 37 37 36 30 19 0 -21 -36 -45 P8: 1.421.60 29 16 19 29 43 57 79 100 81 69 66 66 67 67 62 51 31 9 -8 -18 P9: 1.61.8 24 4 2 8 17 29 54 81 100 79 80 80 82 82 77 66 47 26 10 1 P10: 1.82.0 19 2 -1 3 12 20 43 69 79 100 79 80 78 74 65 53 37 21 10 4 P11: 2.02.3 20 3 0 2 8 16 37 66 80 79 100 99 93 83 69 51 32 17 6 1 P12: 2.13.2 20 3 -1 1 8 16 37 66 80 80 99 100 95 84 68 50 31 16 6 1 P13: 3.24.8 21 2 -2 0 7 15 37 67 82 78 93 95 100 95 81 61 39 21 9 3 P14: 4.87.4 20 -1 -5 -3 4 12 36 67 82 74 83 84 95 100 93 76 51 29 13 6 P15: 7.411.0 16 -7 -13 -11 -4 6 30 62 77 65 69 68 81 93 100 91 71 44 24 15 P16: 9.714.8 8 -16 -22 -21 -14 -4 19 51 66 53 51 50 61 76 91 100 91 67 43 29 P17: 1522 -5 -30 -38 -38 -32 -22 0 31 47 37 32 31 39 51 71 91 100 89 66 51 P18: 2234 -17 -43 -52 -54 -49 -39 -21 9 26 21 17 16 21 29 44 67 89 100 89 75 P19: 3452 -24 -52 -61 -64 -59 -51 -36 -8 10 10 6 6 9 13 24 43 66 89 100 91 P20: 5279 -32 -60 -69 -73 -68 -60 -45 -18 1 4 1 1 3 6 15 29 51 75 91 100 The absolute value of critical correlation coefficient at a confidence level of 95% is 3%.

(16)

Scatterplot: the concentrations of small positive ions (0.5–3.2 cm2 V1 s1) versus heavy large ions (52 –79 nm).

Heavy large ions (cm -3 )

Small ions (cm -3 )

0 100 200 300 400 500 600

0 400 800 1200 1600 2000 2400

Nonlinear regression coeff. - 0.77

n = 3306 * N - 0.4226

n - small ion concentration N - large ion concentration

Heavy large ions (cm -3 )

Small ions (cm -3 )

0 200 400 600 800 1000 1200

0 400 800 1200 1600 2000 2400

Linear correlation Correlation coeff. - 0.23

Cold season (Nov. 1993 – April 1994),

Warm season (May–Sept. 1994).

(17)

Evolution of cluster ion mobility spectra

in wintertime

Evolution of negative air ion mobility spectra. January 9, 1994.

Mobility of fractions (cm 2 V -1 s -1 )

Fraction concentration (cm-3 )

1 2 46 10 20 4060 100 200 400600 1000

0.00041 0.00087 0.00192 0.0042 0.0091 0.016 0.034 0.074 0.15 0.25 0.32 0.40 0.50 0.63 0.79 1.02 1.28 1.60 2.01 2.51 3.14

4 - 5 LST 6 - 7 LST 8 - 9 LST 16 - 17 LST

Evolution of positive air ion mobility spectra. January 9, 1994.

Mobility of fractions (cm 2 V -1 s -1 )

Fraction concentration (cm-3 )

1 2 46 10 20 4060 100 200 400600 1000

0.00041 0.00087 0.00192 0.0042 0.0091 0.016 0.034 0.074 0.15 0.25 0.32 0.40 0.50 0.63 0.79 1.02 1.28 1.60 2.01 2.51 3.14

4 - 5 LST 6 - 7 LST 8 - 9 LST 16 - 17 LST

The effect of aerosol particle concentration on the mobility distribution of cluster ions

(18)

Evolution of cluster ion mobility spectra

in summertime

Evolution of negative air ion mobility spectra. August 17, 1994.

Mobility of fractions (cm 2 V -1 s -1 )

Fraction concentration (cm-3 )

1 2 46 10 20 4060 100 200 400600 1000

0.00041 0.00087 0.00192 0.0042 0.0091 0.016 0.034 0.074 0.15 0.25 0.32 0.40 0.50 0.63 0.79 1.02 1.28 1.60 2.01 2.51 3.14

5 - 6 LST 8 - 9 LST 14 - 15 LST 20 - 21 LST

Evolution of positive air ion mobility spectra. August 17, 1994.

Mobility of fractions (cm 2 V -1 s -1 )

Fraction concentration (cm-3 )

1 2 46 10 20 4060 100 200 400600 1000

0.00041 0.00087 0.00192 0.0042 0.0091 0.016 0.034 0.074 0.15 0.25 0.32 0.40 0.50 0.63 0.79 1.02 1.28 1.60 2.01 2.51 3.14

5 - 6 LST 8 - 9 LST 14 - 15 LST 20 - 21 LST

The combined effect of the concentration aerosol particles and radon (Rn 222)

on the mobility

distribution of cluster ions

(19)

Small and big cluster ions

It is rational to subdivide cluster ions (0.5–0.14 cm2V1s1) into two classes of small and big cluster ions

(with the boundary at 1.3 cm2V–1s–1 for negative ions and 1.0 cm2V1s1 for positive ions).

• Subdividing leads to more distinct shape of the diurnal variation in the concentration of these ion classes.

• The ratio of the concentrations of small and big cluster

ions is closely correlated with the mean mobility of cluster ions (the correlation coefficients are 97% and 95% for

positive and negative small ions, respectively).

(20)

Diurnal variation in the median concentration of positive and negative small cluster ions and big cluster ions in

the warm season (Sept. 1993, May – Sept. 1994).

LST (hour)

Small cluster ions (cm-3 ) Big cluster ions (cm-3 )

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 2 4 6 8 10 12 14 16 18 20 22 24

Small positive clusters

Small negative clusters

Big positive clusters Big negative clusters

(21)

Average diurnal variation of the natural mean mobility of small positive and negative ions in the warm season (Sept. 1993, May – Sept. 1994).

Statistics: median, box (25% and 75%) and whiskers (10% and 90% quantiles).

LST (hour) Mean mobility (cm2 V-1 s-1 )

1.2 1.3 1.4 1.5 1.6 1.7

0 2 4 6 8 10 12 14 16 18 20 22 24

Negative ions Positive ions

(22)

Variations in the mean mobility of negative and positive small ions and air temperature at Tahkuse, September 1–30, 1993.

Negative ions Positive ions

Day

Mean mobility ( cm2 V-1 s-1 ) Temperature (°C)

0 10 20

1.1 1.2 1.3 1.4 1.5 1.6 1.7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

(23)

Variations in the mean mobility of negative and positive small ions and air temperature at Tahkuse. December 23, 1993 - January 31, 1994

Day

Mean mobility ( cm2 V-1 s-1 ) Temperature (°C)

-16 -8 0 8

1.3 1.4 1.5 1.6 1.7 1.8

23 25 27 29 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Negative ions Positive ions

(24)

Variations in the mean mobility of negative and positive small ions and accumulation mode aerosol particle (100–500 nm)

concentration at Tahkuse from April 14 to May 16, 1994.

Negative ions Positive ions

Day

Mean mobility ( cm2 V-1 s-1 ) Aerosol (cm-3 )

0 1000 2000 3000 4000

1.1 1.2 1.3 1.4 1.5 1.6 1.7

14 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14 16

(25)

Conclusions

• The average diurnal variation of cluster ions at Tahkuse had the ordinary shape for the continental stations of high latitude.

• The results are in accordance with the hypothesis that radon is the main ionizing agent, which causes the variation in the ionization rate, and therefore in the concentration of cluster ions near the ground.

• The different behavior of small and big cluster ions during diurnal cycle causes the diurnal variation in the natural mean mobility of small ions.

• The diurnal variation of the mean mobility was considerable only in the warm season while

in the cold season the mean mobility was mainly correlated with the changes in air masses.

(26)

The factors of the mobility distribution of cluster ions

We suppose that the changes in the mobility distribution of cluster ions are due to the changes in

• the chemical composition and the concentration of some trace gases or vapors in the air, probably

generated by photochemical reactions;

• the changes in the ionization rate and

• the concentration of aerosol particles.

The last two factors have an effect on the lifetime of cluster ions.

(27)

Burst events of intermediate ions (charged nanometer particles ) in the atmospheric air

Average spectra of air ions. Sept. 1993 - Oct. 1994. Tahkuse Observatory

Particle diameter (nm)

Electrical mobility (cm 2 V -1 s -1 )

Fraction concentration (cm-3 )

90 26 7.6 2.0 0.36

0 100 200 300 400 500 600

0.00032 0.0032 0.032 0.32 3.2

Positive ions Negative ions

Small ions Large ions

Intermediate ions

Aerosol ions Cluster ions

(28)

Variation in the concentration of positive intermediate ions, air temperature, and relative humidity at Tahkuse, Sept. 11–27, 1993.

Day

Intermediate ions (cm-3 ) Temperature C)

0 10 20

0 100 200 300 400

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Relative humidity (%)

40 60 80 100

Rainy days Rainy days

(29)

Time series of the concentration of positive intermediate ions, air temperature, relative and absolute humidity. Tahkuse, Oct. 10 - 28, 1994.

Day

Intermediate ions (cm-3 ) Relative humidity (%)

20 40 60 80 100

0 100 200 300 400 500

10 12 14 16 18 20 22 24 26 28

Day

Air temperature (°C) Absolute humidity (g m-3 )

0 2 4 6 8 10

-5 0 5 10 15 20

10 12 14 16 18 20 22 24 26 28

Temperature Abs. humidity

(30)

Variation in the concentration of positive intermediate ions, air temperature, relative and absolute humidity. Tahkuse, November 5 - 18, 1993 relative

and

Day

Intermediate ions (cm-3 ) Relative humidity (%)

20 40 60 80 100

0 100 200 300 400 500

5 6 7 8 9 10 11 12 13 14 15 16 17 18

Day

Air temperature (°C) Absolute humidity (g m-3 )

0 1 2 3 4 5 6

-20 -16 -12 -8 -4 0 4

5 6 7 8 9 10 11 12 13 14 15 16 17 18

Temperature Abs. humidity

(31)

Time variation of the concentration of aerosol particles (100 - 560 nm) and intermediate ions (1.6 - 7.4 nm). Tahkuse 14.04 - 16. 05. 1994. and

Date

Aerosol particles (cm-3 ) Intermediate ions (cm-3 )

0 200 400 600 800 0

1000 2000 3000 4000 5000

14/04 16/04 18/04 20/04 22/04 24/04 26/04 28/04 30/04 02/05 04/05 06/05 08/05 10/05 12/05 14/05 16/05

Aerosol particles (100 - 560 nm) Intermediate ions (1.6 - 7.4 nm)

(32)

Variation in the concentration of positive intermediate ions, the mean mobility of negative and positive small ions and relative humidity. Sept. 11–27, 1993.

Day

Intermediate ions (cm-3 ) Small ion mobility (cm2 V -1 s-1 )

1.2 1.3 1.4 1.5 1.6 1.7

0 100 200 300 400

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Negative ions Positive ions

Rel. humidity (%)

40 60 80 100

Rainy

days Rainy

days

(33)

Scatterplot of the mean mobility of small ions versus intermediate ion concentration. Sept. 1993 – Oct.1994.

Concentration of intermediate (-) ions (cm -3 )

Mean mobility of (-) small ions (cm2 V-1 s-1 ) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0 100 200 300 400 500 600 700 800 900 1000

Concentration of intermediate (+) ions (cm -3 )

Mean mobility of (+) small ions ( cm2 V-1 s-1 ) 1.1 1.2 1.3 1.4 1.5 1.6

0 100 200 300 400 500 600 700 800 900

(34)

Contour plot of the evolution of air ion spectrum at Tahkuse. October 20, 1994

10 20 60 80 100 200 300 400 500 600 above

LST (hour)

Particle diameter (nm)

0.36 0.45 0.56 0.70 0.85 1.03 1.24 1.421.6

1.8 2.0 2.3 3.2 4.8 7.4 11 15 22 34 52 79

6 8 10 12 14 16 18 20 22 24 2 4 6 8 -3 Air ion concentration in cm

(35)

Evolution of positive air ion mobility spectra. Oct. 20, 1994

.

Particle diameter (nm)

Mobility of fractions (cm 2 V -1 s -1 )

Fraction concentration (cm-3 ) 79 52 34 22 15 11 7.4 4.8 3.2 2.3 2.0 1.8 1.60 1.42 1.24 1.03 0.85 0.70 0.56 0.45 0.36

1 4 8 20 60 100 400 800

0.00041 0.00087 0.00192 0.0042 0.0091 0.016 0.034 0.074 0.15 0.25 0.32 0.40 0.50 0.63 0.79 1.02 1.28 1.60 2.01 2.51 3.14

10 - 11 LST 11 - 12 LST 12 - 13 LST 13 - 14 LST 14 - 15 LST 15 - 16 LST

(36)

Evolution of positive ion mobility spectra at Tahkuse. March 22, 1994.

Particle diameter (nm)

Mobility of fractions (cm 2 V -1 s -1 )

Fraction concentration (cm-3 ) 79 52 34 22 15 11 7.4 4.8 3.2 2.3 2.0 1.8 1.60 1.42 1.24 1.03 0.85 0.70 0.56 0.45 0.36

1 4 8 20 60 100 400 800

0.00041 0.00087 0.00192 0.0042 0.0091 0.016 0.034 0.074 0.15 0.25 0.32 0.40 0.50 0.63 0.79 1.02 1.28 1.60 2.01 2.51 3.14

9 - 10 LST 10 - 11 LST 11 - 12 LST 12 - 13 LST 13 - 14 LST 14 - 15 LST

(37)

Contour plot of the evolution of air ion spectrum at Tahkuse. May 22, 1996.

10 20 60 80 100 200 400 600 800 1000 1200 1400 above

LST (hour)

Particle diameter (nm)

0.36 0.45 0.56 0.70 0.85 1.03 1.24 1.421.6

1.8 2.0 2.3 3.2 4.8 7.4 11 15 22 34 52 79

0 2 4 6 8 10 12 14 16 18 20 22 24

Air ion concentration in cm-3

(38)

Contour plot of positive air ion spectrum. 19.11 - 20.11.1995, Tahkuse

10 20 60 80 100 200 300 400 500 600 above

Local time (hour)

Particle diameter (nm)

0.36 0.45 0.56 0.70 0.85 1.03 1.24 1.421.6

1.8 2.0 2.3 3.2 4.8 7.411 15 22 34 52 79

6 8 10 12 14 16 18 20 22 0 2 4 6 -3 Air ion concentration in cm

(39)

Average diurnal variation of positive air ion concentration during the burst events. Tahkuse 1.09.1993 - 27.10.1994.

Local time (hour) Ion fraction concentration (cm-3 )

2 46 10 20 4060 100 200 400600 800

0 2 4 6 8 10 12 14 16 18 20 22 24

Diameter range of fractions

(nm) 2.0 - 2.3 2.1 - 3.2 3.2 - 4.8 4.8 - 7.4 7.4 - 11 9.7 - 15 15 - 22 22 - 34 34 - 52 52 - 79

Local time (hour) Ion fraction concentrations (cm-3 )

0 100 200 300 400 500 600 700

0 2 4 6 8 10 12 14 16 18 20 22 24

Diameter range of fractions

(nm) 2.0 - 2.3 2.1 - 3.2 3.2 - 4.8 4.8 - 7.4 7.4 - 11 9.7 - 15 15 - 22 22 - 34 34 - 52 52 - 79

(40)

Diurnal variation in the median concentration of intermediate ions (diameter 2.1–7.4 nm), light large ions (7.4–22 nm) and heavy large

ions (22–79 nm) in the warm season. Sept. 1993, May – Sept.

1994.

LST (hour)

Intermediate ions (cm-3 ) Light large ions (5 cm-3 ) Heavy large ions (cm-3 )

1000 1200 1400 1600 1800

0 50 100 150 200

0 2 4 6 8 10 12 14 16 18 20 22 24

Intermediate ions, bursts Light large ions, bursts Heavy large ions, bursts

Heavy large ions, without bursts

Referenzen

ÄHNLICHE DOKUMENTE

Reduction of the number of variables in the equation of ion evolution In principle, each solution to Equation (1.10) can be preceded by a procedure resulting in the

Nach einer solchen Einführung wird allerdings –a für viele Lernenden selbst dann negativ bleiben, wenn a für eine negative Zahl stehen kann.. Eine Addition und eine

Considering the days with the nucleation bursts of nanometer particles (intermediate ions), the diurnal variation in the concentration of big cluster ions showed the maximum at noon;

Replacement of the particle radius by the collision distance δ is a precondition for perfect conversion of the Millikan equation to the free molecule regime equation as the

Distribution of balloelectric ions according to the number of water molecules A, B, C ja D are levels of neutralizing ionization in the laboratory experiment.. Distribution

The overall shape of the average spectra in the range of large ions (aerosol ions) is in accord with calculations based on the theory of bipolar charging of aerosol particles by

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under

The following are the most significant positive impacts of dams: electricity generation, recreation and tourism, water and water sports, moderating greenhouse gas emission, fish