• Keine Ergebnisse gefunden

Vorbereitung: spezifische Wärmekapazität

N/A
N/A
Protected

Academic year: 2022

Aktie "Vorbereitung: spezifische Wärmekapazität"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Vorbereitung: spezifische Wärmekapazität

Axel Müller & Marcel Köpke Gruppe: 30

03.06.2012

(2)

Inhaltsverzeichnis

1 spezifische Wärmekapazität von Metallen 3

1.1 Allgemeines . . . 3 1.2 Fragen . . . 4 2 Temperaturabhängigkeit der spezifischen Wärmekapazität 5

(3)

1 spezifische Wärmekapazität von Metallen

1.1 Allgemeines

Um die Temperatur eines Körpers zu erhöhen muss man ihm Energie in Form von Wär- me zuführen. Man findet dabei, dass die zugeführte Wärmemenge∆Q proportional zur Temperaturänderung∆T und der Massem des Körpers ist:

∆Q=c·m·∆T

Die Proportionalitätskonstantecwird spezifische Wärmekapazität genannt. Sie bezeich- net diejenige Wärmemenge, die man einem Körper der Masse m = 1kg zuführen muss um seine Temperatur um ∆T = 1K zu erhöhen. Im allgemeinen ist sie jedoch keine Konstante sondern selbst abhängig von der absoluten Temperatur des Körpers:

c=c(T)

Im Bereich von Raumtemperatur kann sie jedoch in guter Nährung für Metalle und Wasser als konstant angenommen werden.

Im Versuch bestimmen wir die spezifische Wärmekapazität cM eines Metalls auf fol- gende Art und Weise:

Wir befüllen ein gut gegen die Umgebung isoliertes Gefäß (Kalorimeter) mit Wasser bekannter Temperatur TW,0 und Masse mW. Dann geben wir ein Metallstück mit be- kannter AnfangstemperaturTM,06=TW,0 umd MassemM hinzu. Nach den Gesetzen der Thermodynamik wird sich im Gefäß eine Mischtemperatur einstellen, die im thermody- namischen Gleichgewicht konstant ist. Es gilt dann also TW,1 = TM,1 = TE = const.

Da das Gefäß gegen die Umgebung isoliert ist, kann keine Wärmemenge «abfließen». Die vom Wasser aufgenommene/abgegebene Wärmemenge ist gleich der vom Metall abgege- benen/aufgenommenen Wärmemenge:

∆QM = −∆QW

⇐⇒

cM·mM ·∆TM = −cW ·mW ·∆TW

⇐⇒

cM = −cW ·mW

mM ·∆TW

∆TM

⇐⇒

cM = cW ·mW m ·

TE −TW,0 T −T

(4)

Die spezifische WärmekapazitätcW von Wasser wird dabei als bekannt vorrausgesetzt:

cW = 4,182 kJ kg·K

1.2 Fragen

• Metallform:

Granulat eignet sich besser, da es eine größere Oberfläche besitzt und sich so das thermodynamische Gleichgewicht schneller einstellt. Damit wird weniger Energie an die Umgebung abgegeben (Stichwort: nicht perfektes Kalorimeter).

• Anfangstemperatur:

Da Wasser eine höhere spezifische Wärmekapazität besitzt als die meisten Metalle bietet es sich an die Anfangstemperatur des Wassers auf Raumtemperatur zu set- zen und die Temperatur des Metalls knapp unterhalb des Siedepunkts von Wasser anzusetzen. Dadurch wird ein möglichst kleiner Temperaturgradient zwischen dem Inneren des Kalorimeters und der Umgebung gewährleistet (geringerer Fehler durch Leckwärme). Durch die Wahl der Anfangstemperatur des Metalls wird zudem ge- währleistet, dass keine Wärme in Form von latenter Wärme (durch Verdampfen des Wassers) «verloren» geht und die Messung verfälscht.

• Flüssigkeit:

Es bietet sich an Wasser zu benutzen, da die spezifsiche Wärmekapazität von Was- ser im Bereich von Raumtemperatur als konstant angesehen werden kann.

• Masse des Wassers:

Begrenzt durch die Füllmenge des Kalorimeters. Sollte aber nicht zu groß gewählt werden, da fürTM,0 undmM konstant die zu messende Temperaturdifferenz∆TW mit steigendemmW immer geringer wird. Die Schwankungen des Temperaturmess- geräts wirken sich für kleine Temperaturdifferenzen stärker auf den Fehler der Mes- sung aus als für große Differenzen.

• Art der Temperaturmessung:

Da keine konstante Durchmischung des Wassers im Kalorimeter gewährleistet wer- den kann ist eine Messung des Temperaturverlaufs sinnlos. Es wird so nur die Messung von lokalen Temperaturen ermöglicht. Erst nachdem sich das thermody- namische Gleichgewicht eingestellt hat, kann eine globale Systemgröße, die Endtem- peraturTE, gemessen werden. Es sollte also eine Messung der Temperatur genügen.

• Vorexperimente:

Bestimmte Vorexperimente könnten sich als nützlich erweisen. Zum Beispiel kann man durch eine Wasser-Wasser-Mischung die Wärmekapazität des Kalorimeters und seine Energieaufnahme bei bestimmenten Temperaturen bestimmen. Dadurch lässt sich ein weiterer Fehler minimieren.

(5)

2 Temperaturabhängigkeit der spezifischen Wärmekapazität

In diesem Versuch soll die Temperaturabhängigkeit der spezifischen Wärmekapazität von Aluminium im TemperaturbereichT = 100K...300Kbestimmt werden. Dazu kühlen wir einen Alu-Zylinder mit flüssigem Stickstoff auf100Kab und isolieren ihn dann gegen die Umgebung (so gut wie möglich) mit Styropor. Bei konstanter Heizleistung messen wir die Temperaturzunahme des Zylinders über die Zeit.

Die Temperaturmessung geschieht durch ein Thermoelement, welches eine temperatu- rabhängige Spannung mist. Geeicht wird das Thermoelement mit Eiswasser, sodass eine absolute Temperaturmessung möglich wird.

Es gilt:

∂Q(t)

∂T = ∂Q

∂t

∂t

∂T = ∂(PH ·t)

∂t

∂t

∂T =PH(∂T

∂t)−1

mit PH der konstanten Heizleistung. Setze dabei α(T) := ∂T∂t der momentanen Stei- gung des zeitlichen Temperaturverlaufs (dabei wurde angenommen, dass ∂T∂t und T(t) zumindest lokal invertierbar sind, was im Fall von T auf jeden Fall gegeben ist, da T(t) idealerweise streng monoton steigend ist). Dann also:

∂Q

∂T = PH

α(T) Außerdem gilt:

∂Q

∂T =c(T)·m Damit erhalten wir schließlich:

c(T) = PH

α(T)·m

Dabei haben wir allerdings noch nicht die zusätzliche Erwärmung des Alu-Zylinders durch die Umgebung berücksichtigt. Diese können wir durch eine (im allgemeinen nicht zeit- lich konstante) zusätzliche HeizleistungPU modellieren und durch eine Referenzmessung (ohnePH) bestimmen.

PU =c(T)·m·∂TU

∂t =c(T)·m·β(T) mit β(T) = ∂T∂tU. Analog erhalten wir damit:

∂Q = (PH +PU)

(6)

Und somit schließlich:

c(T) = (PH +PU)

m·α(T) = (PH +c(T)·m·β(T)) m·α(T)

⇒c(T) = PH

m · 1

α(T)−β(T)

Referenzen

ÄHNLICHE DOKUMENTE

Man kann jedoch gut erkennen, dass die Messung der spezischen Wärmekapazität bei tiefen Temperaturen ( ∼ 100K) sehr schwierig ist, da allein der statistische Fehler enorm

Insbesondere die Wechselwirkung der Partikel untereinander in den Pellets scheint ungeklärt. Zwar weisen diese Proben ein hohes Oberfläche-Volumen-Verhältnis auf, sodass der

Die molare Wärmekapazität C v (bei konstantem Volumen) kann berechnet werden, wenn die Temperaturabhängigkeit der inneren Energie bekannt ist.. Diese Abhängigkeit kann mit Mitteln

Dieses Blatt sowie die eingetragenen Angaben sind geistiges Eigentum des Lehrstuhls für Eisen und Stahlmetallurgie und dürfen nicht ohne schriftliches Einverständnis an

Abbildung 93: Vergleich der MPI-Verzugsmodelle der 3D-Berechnung mit dem gemessenen Spritzteil, links: konstanter c p -Wert, rechts: c p -Kurve -20 K/min.. Abbildung 94: Vergleich

Nach Evakuieren der Apparatur wird aus der Analysensubstanz- lösung das Lösungsmittel Wieder verdrängt und schließlich die Apparatur im Vakuum zugeschmolzen. Nach erfolgter

(iii) Skizzieren Sie die Abkühlkurve einer binären flüssigen Mischung mit eutektischem Punkt und erläutern Sie den Verlauf. ( 12 Punkte ) (iv) Schildern Sie möglichst knapp,

Führt man über einen elektrischen Heizregler bei 10 W Leistung für 1 Minute elektrische Energie zu, so steigt die Temperatur des Gases um 272 K... Aufgabe