• Keine Ergebnisse gefunden

Approximating Convex Bodies by Cephoids

N/A
N/A
Protected

Academic year: 2022

Aktie "Approximating Convex Bodies by Cephoids"

Copied!
28
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Oktober 2020 640

Approximating Convex Bodies by Cephoids

Joachim Rosenm¨ uller

Center for Mathematical Economics (IMW) Bielefeld University

Universit¨ atsstraße 25 D-33615 Bielefeld · Germany e-mail: imw@uni-bielefeld.de http://www.imw.uni-bielefeld.de/wp/

ISSN: 0931-6558

This work is licensed un- der a Creative Commons

“Attribution 4.0 Interna-

tional” license.

(2)

? ?

!

"# $ % &'(') *

+ , -

.) / 01

# 2 3

)

%

4 5 6

)

)6

# 2 )

) 3

)

7)

(

)

%

6

5

6

6

#

6

Γ

4 5 * ) 4

%

Π

(

Γ

#

$ 7) 4 % (

8

6 (

9) :

#

% ;

< ,;

+

=

>?@

4

= A

@1

4 &

B , C

2

= D

@

4 = E

@1

4

%

. 2 ,

&

F

3 )

= G

@1

#

& 5

%

. 2 4

%

)

-

)

0

-

) 0

6 5 56

F

5 ,=

H

@1

#

2

4

)

) )

)

%

5

6 #

(3)

?

?

$ %

*

(

5

n

# ( 6

=

>?@

4 = A@

4 =

@

#

I := {1, . . . , n}

n

4

n

+ := {x = (x 1 , . . . , x n ) | x i ≥ 0 , i ∈ I}

#

e i

i th

)

n

e := (1, . . . , 1) = P n

i=1 e i

n

- 5 0 # C

min

max

x, y ∈

n

( (

,

>

#

>1

x ∧ y = (min{x i , y i }) (i∈I) , x ∨ y = (max{x i , y i }) (i∈I ) .

2

CovH C

) !"#$% & '(( )6

C

n +

#

.

a = (a 1 , . . . , a n ) > 0 ∈

n +

4(

n

)

a i := a i e i (i ∈ I)

) # 2

,

>

#

)1

a := CovH

a 1 , . . . , a n

*+ ,"-,.- * /0

1($%

4

* /0

1($% )

5

a

,(

)

1

# C

5)

>

#

>

/

3

+

#

a 1 a 2

a 2

a

C

5)

>

#

>2

2 /

3

+

5

6

a = (a 1 , a 2 , a 3 )

3

4

J ⊆ I

( (

n J := {x ∈

n x i = 0 (i / ∈ J )}

# $54(

6

*+ ,"-,.- *'45 /0

1($% 6)

*'45 /0

1($%

,

>

# A1

a J := {x ∈ ∆ a x i = 0 (i / ∈ J )} = ∆ a

n J = CovH

a i i ∈ J .

2

( (

(

a ∈

n +

# 2 6

a i

)

0 ∈

n +

4

(4)

?

?

,

>

#

1

Π a := CovH

0 , a 1 , . . . , a n .

5) 6

6 (

Π a

- $', */01($%

a

4 5 5 #3# .) & =

>@

(5 +

3

5

# %

( (

4

J ⊆ I

5 - $', *'45/01($%

Π a

Π a J := {x ∈ Π a x i = 0 (i / ∈ J )}

= Π a

n J = CovH

{ 0 }{a i i ∈ J } .

,

>

# 1

$

A ⊆

n +

!01.$&$"5 /

#$

4

x ∈ A

y ∈

n +

5

y ≤ x

, 7) 6 ( 6

( 1

# 2 ! 0

1.$&$"5 /

#$ )

A ⊆

n +

5 6

CmpH A :=

y ∈

n + ∃x ∈ A : y ≤ x .

(

Π a = CmpH ∆ a , Π a J = CmpH ∆ a J ,

C

5)

>

# )

.) /

Π a

5 6

a

# $

6 (

a

)5

0 ∈

3 +

) #

a 1

a 2

a 3

Π a 0

C

5)

>

# )2

2 .) /

Π a

a = (a 1 , a 2 , a 3 )

5

% $ 4

a

0,%/0,( !' +,.-

, $

Π a

# 9 ( & B 4 5

a

,.$+! , $

Π a

#

$ "!.

0

,(

C

x ¯ ∈ ∂ C

5

5 #

$

F

C

F

F

#

(5)

?

?

$ .) /

Π a

n a :=

1

a 1 , . . . , 1 a n

.

a

# $

a

) 4 # #4

"!.

0

,( !"$

a

N a := {t n a t > 0} .

)

5

a

-)7) )

)

0

-

)7) 0

#

2 6

n a

n

J+

6

n a

J := n a

|

n J +

# 2 )6

a J

3

N a

J

5

6

{ n a

J 0 J ⊆ J 0 ⊆ I } .

%

% .

# C

( )6

A, B ⊆

n +

,($4.,/ /"!5/ )

A + B := {x + y x ∈ A, y ∈ B}

λ ∈

+

)

A

*

λA := {λx x ∈ A} .

A

B

4

A + B

λA

A

B

4

A + B

λA

#

3

((

*

)66

# $ $1&!

/

-

" "

!

"# & 4)5

K := {1, . . . , K}

5

K

4( 2

a (k)

k∈K

,

>

#

G1

Π = X

k∈K

Π a (k) =: X

k∈K

Π (k)

6

&'(' )# 2

Π

$1&!/-#

• eeeeee

2 )

6 6 6

6

#

)

"

% #

C

4(

(5

>

# $

F

%

Π

0,%/0,( 4

F 0

Π

(

F ⊆ F 0

(

F = F 0

) #

(6)

?

?

)

# 2 , !' +,.- 1

,.$+! 5'. , $

,

8

2

%

Π

1

,

>

#

D1

∂Π := {x ∈ Π 6 ∃y ∈ Π, 6 ∃i ∈ I : y ≥ x, y i > x i } .

A

#

2

3

)

,.$+! $ /

$" +

#

# &

3

)

,.$+! , $5#

• eeeeee

% 4

a

3

Π a

a J

Π a J

#

2

0

( %

n

6)

3

# $

% 3

#$. + /

$5#

Π = P

k∈K Π a (k)

6 %

i ∈ I

# *

,

>

#

E1

Π (−i) := Π ∩

I\{i} .

2

Π (−i)

)

Π

6) 3 #

Π (−i)

i

F , $

Π

#

• eeeeee

4

Π (−i)

6) 3 )

Π (−i)

3 , * >#)1# $

%

Π

3

Π

(

I\{i}

,

>

# E1

# ;

4

Π (−i)

n I \{i}+

%

( 5

45

6

n

a (k) I \{i} o

k∈K .

)

)

% 6

(#

Π = P

k∈K Π a (k)

6 %

k ∈ K

# *

,

>

#

H1

Π [−k] = X

k∈K\{k}

Π a (k)

2

Π [−k]

0/55/" %

Π

# 2 %

n +

#

• eeeeee

2

(5 ( '(

, #5#

= )

@

@1

(7)

?

?

A

!

B

"" !

x ∈ A

!

y ∈ B

"

A

!

B

"

x + y

"

A + B

!

A x

!

B y

" " !

A

!

B

!

x

!

y

"

!

z

A + B

" "

z = x + y

"

x ∈ A

!

y ∈ B

" "

"

x, y, z

" "

• eee eee

/ 4(

(

(5

A

!

B

"" !

F 1 ∈ A

!

F 2 ∈ B

"

A

!

B

"

F 1 + F 2

"

A + B

!

F 1

"

A

!

F 2

"

B

" " !

A

!

B

!

F 1

!

F 2

"

!

F

A + B

" "

F = F 1 + F 2

"

F 1

A

!

F 2

B

" " "

F , F 1 , F 2

"

• eee eee

(8)

?

?

-

0

% :

#

2 -

0

,

2

=>?@1 66

3

)

%

Π

)6 )

e

# 2

( )

, -

3 ; 01

3

# 2

) =

>?@

#

% ,

% 1

#

(

*

:

2

=>?

@

#

a2

a 2 + Π b + c 1 Π b x ¯

a 2 + b 3 + Π c

a 1 + b 1 + c 1

a 2 + b 2 + c 2 a 3 + b 3 + c 3

C

5) )

#

>2

2

C

5) )

#

>

( %

Π = Π a + Π b + Π c ;

( '

a

6) 4

b

4

c

5 # 2 .) /

Π b

, 1

5#

∂Π

a 2 + Π b + c 1 .

2)4

3

)

∂Π

C5) ,)#>1# 2 %

(

x ¯ = a 2 + b 3 + c 1

2 % <

C

5) )

# )

#

2

*

5)

3 ;

(

.)

6

5

6 5

*

)

9∆ e

(9)

?

?

3 e 1 3 e 2

3e 3

∆ b b

∆ b a Λ b ab {13}{12}

C

5) )

# )2

2

2

% <

9

+

) 3

4

6)

# 2

)

)

3 ;

#

(

*

*

6 5

.) /

6#

◦ eeeeee

2

-

)

0

,

1

% , 1

8

6

*

=

>?

@

#

2 % )

.) 46)

3

)

6 ( , C

5) )

# A1

# C

5) )

#

(

#

e

x 1 x e 2

e x 3

f 1

f 2 f 3

h 2 h 1

h 3

e

x ( x e 2 + e a (3) 2 )e 2 Π (2)

Π (3)

C

5) )

# A2

2 3

2

,

)7)

1

x e

# ;6)

(10)

?

?

(

e

x = a e (1)2 + e a (2)3 + a e (3)1 .

2

.)

-

0

(# B#5#4

6) .) / ,# #

e a (1)

1

3

)

, )

#

>1

a e (1) + e a (2)3 + a e (3)1 = ∆ e a {123} (1) + ∆ a {3} e (2) + ∆ a {1} e (3) .

2 5 .) / ,# #

a e (3)

1

, )

#

)1

e a (1)2 + a e (2)3 + ∆ e a (3) = ∆ e a {2} (1) + ∆ e a {3} (2) + ∆ a {123} e (3) .

2

3

, )

#

A1

Π (3) = a e (1)2 + e a (2)3 + Π a e (3) .

9( 4

.) / ,# #4

a e (2)

1 6

, )

# 1

e a (1)2 + ∆ a e (2) + e a (3)2 .

$4

( 6

(

'

e x

e a (1)

Λ a {12}{13} e (1) a e (2)

Λ a {13}{12} e (2) a e (3)

C

5) )

# 2

$

)

2

F

% <

, )

#

1

Λ e a {12}{13} (1) e a (2) = ∆ a {12} e (1) +∆ a {13} e (2) +∆ e a {1} (3)

Λ e a {13}{12} (2) e a (3) = ∆ a {2} e (1) +∆ a {13} e (2) +∆ a {12} e (3) .

2

, )

#

>1

4 , )

# )1

4, )

# 1

)7)

a {2} e (1) + ∆ e a {3} (2) + ∆ e a {1} (3) = a e (1)2 + a e (2)3 + e a (3)1 = x e .

◦ eeeeee

(11)

?

?

Γ

6 ( 6)

∂Γ

#

(

t i := max{t te i ∈ ∂Γ} (i ∈ I)

)

f i = t i e i

Γ

i

F #

5 52 2

2

f i (i ∈ I)

4(/551!/" +5

Γ

#

• eeeeee

x b ∈ Γ

# 2

, A

#

>1

Γ x b := (Γ − x) b ∩

3 +

,(!++$

*

6

x b

# *

b a = ( b a 1 , . . . , b a n )

)

b

a i e i (i ∈ I )

6

Γ x b

# 2

.) /

8

Π a b

#,"$ * 6

x b

,6

Γ x b

1

#

• eeeeee

C

5) A

#

>

(

6

Γ

( )

∂Γ

Γ x b

# 2 '

(

b x + Γ x b

)

∂Γ x b

6

)

∂Γ

# 2

Π a b

, 14

x b

)

, A

#

)1

x b + b a i e i

∂Γ

#

b a 2

b a 1

b a 3

b

x + b a 2 e 2

b x

∂Γ

Γ x b

f 1

f 2 f 3

C

5) A

#

>2

2

5 %

Γ x b

◦ eeeeee

(12)

?

?

3

4

x e ∈ ∂Γ

6 )

Γ

# *

, A

#

A1

x e (−i) := x e

|

n I \{i}

.

C

i ∈ I

, A

#

1

Γ x e (−i)

(

)

∂Γ x e (−i)

# C

i ∈ I

5 6

, A

#

1

x e − x e (−i) = e x i e i

(

e a j e j (j ∈ I \ {i})

>

#

x e ∈ ∂Γ

#

∂Γ x e (−i)

6

i

F ,(!++$

x e

#

)

# 2 .) /

Π e (i) = Π e a (i)

5 6

a e = e a (i)

, A

#

G1

e a i = x e i , e a j (j ∈ I \ {i})

i

F#,"$ 5

x e

#

A

# 2 %

, A

#

D1

Π = Π e ( x) e := X

i∈I

Π e (i)

15$'- !

/

"- 0/

(( 5

x e

#

• eeeeee

5

)

4

) , A

# G1

i ∈ I

2

, A

#

E1

e a (i) i = x e i (i ∈ I )

(

e a (i) j (j ∈ I)

5 6 6 ) ,A#1 8

6

)

∂Γ x e (i)

,

∂Γ

1# ) ( 6

, A

#

H1

x e = ( e x 1 , . . . , e x n ) = ( e a (1) 1 , . . . , e a (n) n ) = X

i∈I

e a (i)i .

) # 9 4

e

x

)

.) /

Π a e (i) (i ∈ I )

# % 7) 4

x e

)4 # #4 ) (

Π = Π e (e x)

4 ! )

Π e (i)

5

a e (i)i

# / 2 >#4

) #5#4 2

>

#

4

=

>?@

# 2 ( 6

(

(5

#

◦ eeeeee

(13)

?

?

3

(

Γ x e (−i)

6

6 '

)

∂Γ e

x (−i)

# 2 6

, A

#

>?1

e

x

x e (−i) + e a j e j =: x e (−i+j) (j ∈ I ) .

2

.) /

F

i

F F

, A

#

>>1

e

x (−i) + Π e (i)

/)

*

4

5

Π e (i) x e (−i)

)

∂Γ

)55 ,

1

-

0

4

#

B )

#

>

#

+

6

3

)

%

, A

#

>)1

Π = Π e (e x) = X

i∈I

Π e (i) ,

6)

#

Π e

, 1 : 3

)

∂ e Γ

)4C5) A#) , 6 (1 6 5# 2 ( (

Π e

- )(0# 2 (5 5

#

e x (−2+3)

e x (−2+1)

e

x (−3+1) x e (−3+2) e x (−1+2) e

x (−1+3)

e x Π e (2)

∂Γ

e x (−2) e

a 1 e a 2 e a 3

f 1

f 2 f 3

C

5) A

# )2

%

)

5

i

F

x e ∈ ∂Γ

i

F

5

5

(

Π e (i) (i ∈ I)

# C4 ( )

∂Γ x e (−2)

4

6) , C

5) A

# )1

# 2

Π e (2) = Π a e (2)

.)

/

6

e a = ( e a 1 , e a 2 , e a 3 )

# 9 4

e a 2 = x e 2

(

e a 1

e a 2

6

)

6)

∂Γ

#

x e (−2)

5

Γ x e (−2)

#

C

5) A

# )

4

Π e (2)

)

∂Γ x e (−2)

4 (

e

x (−2) + Π e (2) .

3

e

x

x e (−2) + Π e (2)

# & 4/ 6

∂ Γ

4 (

n x e

∂Γ

x e

.)

(14)

?

?

/

Π e (2)

a e 2

# 2 ) ( 4

4(

, A

#

>A1

n x e

x e (−2) + Π e (2)

x e .

3

(

) 6 5

∂Γ x e (−1)

∂Γ x e (−3)

( )

5

(

)

.) /

∂Γ

# 2 )

C

5) A

# A

#

6

-

0

) B

)

#

>

)

#

)

, -

5

01

)

5

)

Π = Π e (e x) = P

i∈{1,2,3} Π e (i)

) )6 '5 )

3

)

∂ Π e

#

e x (−2+3)

e x (−2+1)

e

x (−3+1) x e (−3+2) e

x (−3) e x (−1+2) e

x (−1+3) e x (−1)

e x

h 2

h 1

h 3

e x 1

e x 2

e x 3

f 1

f 2 f 3

C

5) A

# A2

2 3 )

""

Π e

( , 6C5)

A

# A1

4( )

)

(

#

C

4

5 /

e

x (−1) + Π e (1)

*

, A

#

>1

(0, x e 2 , x e 3 ) + Π e (1) = (0, e a (2) 2 , e a (3) 3 ) + Π e (1) = Π e (1) + e a (2)2 + a e (3)3 .

2

Π e (1)

(

Π e (2)

Π (3)

#

$ 5) (

6) /

, A

#

>1

e

x (−2) + Π e (2) = a e (1)1 + Π e (2) + a e (3)3 .

, A

#

>G1

e

x (−3) + Π e (3) = a e (1)1 + a e (2)2 + Π e (3) .

$

, A

#

>1

4 , A

#

>1

4 , A

#

>G1

) )

Π e

# ;6)

(

, A

#

>D1

e

x = ( x e 1 , x e 2 , x e 3 ) = a e (1)1 + e a (2)2 + a e (3)3 .

(15)

?

?

) # 2)4

e

x

) .) /

)5)

Π e

# & 45( ( ,A#>A14( 6

n x e

x e (−i) + Π e (i) (i = 1, 2, 3)

x e

# 2 )

(a) x e

Π, e (b) n x e

Π e

x e .

, A

#

>E1

◦ eeeeee

$54 (

5)

6

) 5

2

x e

) (

Π ( x) e

n x e

%

Γ

x e

# 2 )

∂ Π e

,(

1

#

,&$ $" +.,( $. +$% &$!.$

01

Π = Π e (e x) = P

i∈I Π e (i)

"! ! !

x e

e

x

"

Π ( x) e

!

n x e

"

e

x

"

Π ( x) e

" ! "

• eee eee

2

(

F

5 #

(

)

:

5

#

C

i ∈ I

, A

#

>H1

e

K i = K e a (i)i

Π e (i)

Π e (i)

a e (i)i

# 2

Π e (i)

# 2

K e i

(

, A

#

)?1

X

j∈i∈I\{i}

e

a (j)j + Π e (i)

X

j∈I

e

a (j)j = x e ;

7)

(5

< ' A

#

4 C

) , A

# E1

#

2

P

j∈i∈I\{i} a e (j)j + Π e (i)

6

Γ

n

(

∂Γ

X

j∈i∈I\{i}

e

a (j)j + a e (i)l (l ∈ i ∈ I \ {i})

X

j∈I

e

a (j)j = x e

, A

# )>1

% 7)

4

K e i

n x e

∂Γ

x e

i ∈ I

# $ )

, #5#42

>

#

4

=

>?@1

4

, A

#

))1

x e = X

j∈I

e

a (j)j

(16)

?

?

Π e

# 4 )

n

n +

(

4

x e

#

2

e n = n (e x)

e a (i)i

Π e (i) (i ∈ I)

#

.) ,

)( 1

(#

x e ∈ ∂Γ

Π (0) = Π a (0)

6 .) / #

e n = n (e x)

x e

Π e

K (0)j

6

(0)

a (0)j

# *

, A

# )A1

I (0) { x} e :=

j ∈ I e n ∈ K (0)j .

2

4(

a (0)j

( (

e n

x e

∆ e

#

2 (

x e ∈ ∂Γ

#

Π = Π e (e x)

6 )(5

6

x e

Π (0)

6 .) / # 2

, A

# )1

I (0) {e x} 6= ∅

) #

• eee eee

2

*

6

5)

4

# 2

4.8

4

=

>?

@

# 2

K (0)j (j ∈ I )

)

n +

#

( 6

(

)

) (

)

∂Γ

#

x e ∈ ∂ Γ

Π = Π e (e x) = P

i∈I Π e (i)

"!

!

!

x e

i ∈ I

""

l ∈ I \ {i}

"

x e (−i+l)

"

Π e

x e (−i+l) ∈ ∂Γ (−i) = ∂Γ ∩ {x x i = 0}

e n

| I\{i}

"

Π e x e (−i+l)

2

4

∂ Γ

Π e

6)

∂ Γ (−i)

# 25 (

x e

( 4 4*

n + 1

(17)

?

?

∂Γ

Π e

6 6 # 8

) 4

Π e

(4 .)

Π e (i) (i ∈ I )

∂Γ

#

C

i ∈ I

6

x e (−i) := x e

| I−{i}

# 2

, A

#

)1

x e (−i) = X

l∈I\{i}

a (l)l .

2

e n (−i) := n x e

| I \{i}

a (l)l

a (l)

l ∈ I \ {i}

4

e

x (−i)

%

, A

#

)G1

X

l∈I\{i}

a (l) | I−{i}

2

K (i)l (l ∈ I \ {i})

a (i)l

a (i)

)

n I\{i}

4# #4

, A

# )D1

I (−i) x e := {l l ∈ I \ {i}, e n (−i) ∈ K (i)l } 6= ∅ .

2

4

c

)

, A

# )E1

C (−i) x e := CovH {a (i)l (l ∈ I (−i) x e )}

6

(

a (l)l (l ∈ I \ {i})

# 9 4 (

, A

# )1

(

*

, A

#

)H1

x e (−i) + c = X

l∈I\{i}

a (l)l + c

3

, A

#

A?1

X

l∈I\{i}

a (l) | I−{i} + ∆ a (i) | {I −{i}} = Π e | {I−{i}} = Π e (−i) .

) 4

C (−i) x e

, A

# A>1

e

x (−i+l) = x e (−i) + a (i)l (l ∈ I (−i) x e ) .

$

∂ Γ (−i)

6 )# %

e n (−i)

Π e (−i)

Π e

#

6

( (

)

6

) (

3

# 9 4

Π e

6

:

-

)

0

%

3

+

#

)

B )

# )

4

-

)

2 0

, 6 =

>?@1

#

2

%

Π e

4

AD

(18)

?

?

e

x 1 x e 2

e x 3

h 2 h 1

h 3

e x (−2+3)

e x (−2+1)

e x (−1+2) e

x (−1+3) e x (−1)

f 1

f 2 f 3

e

x x e (−1−3+2)

Π (3)

e x (−3+1)

e x (−3+2)

C

5) A

# 2

2 3 )

% C

5) A

#

(

C

5) )

# A

# 2

x e

6)

x e (−i+l)

Π e

# <

e

x = ∆ e a {2} (1) + ∆ e a {3} (2) + ∆ e a {1} (3)

(

3

)

4

( 6

Λ a {12}{13} e (1) a e (2)

Λ e a {13}{12} (2) e a (3)

( .) /

e a {123} (1)

a {123} e (3) .

,

.) /

1

e a (2)

#

('

2 A

# H

I (−3) x e = {1}

)

e

x (−3+1)

∂Γ

Π e

∂Γ (−3)

#

◦ eeeeee

(

( (

)

) (

-

( 0

4

4 ) (

*

(##

#

Γ x b

b x ∈ ∂Γ

#

x b ∈ Γ, x e ∈ ∂Γ

6 )

x b < x e

# 2 (! ,(

/

"- 0/

((

Π ( x b x) e

)(5 6

x e − x b

*A#

(

Γ x b

#

• eeeeee

C

5) A

#

5

(5 ) # C

(

Γ x b = Γ ∩ {x ≥ x} b x b

5# 2 ( ) )

(19)

?

?

e x b

x

e x (−i+1)

e x (−i+3) b

x + ( x e − x) b (−i)

∂Γ

Π e (i)

C

5) A

# 2

2

Π (e x b x)

((##

#

x e − x b ∈ ∂Γ x b

# C

4

)( 6 '

5

∂Γ

# 2 (

, A

#

A )1

x b + Π (e x b x)

Γ

#

2 ( )

n

.) /

, A

#

AA1

Π ( x b x) e =: X

i∈I

Π

e a (i) ;

( (

, A

#

A1

Π

e a (i)

=:

Π e (i)

2

e

a (i)

6 * A# , ) ,A#11 "

!

"# 2 5 6

6

Γ x b

5)

< '

A

#

#

)

( , A

# E1

, A

# A 1

e

a (i) i = x e i − x b i (i ∈ I )

4 5)

, A

# H1

, A

#

AG1

x e = x b + ( e a (1) 1 , . . . , e a (n) n ) = x b + X

i∈I

e a (i)i .

) # 2

4 )

5 (

x b

4

x e

)

.) /

Π

e

a (i) (i ∈ I )

#

2

.) /

, A

#

AD1

x b + ( x e − x) b (−i) + e ∧

Π (i) = x b + X

j∈I\−{i}

e a (j)j +

e ∧

Π (i) (i ∈ I )

(20)

?

?

(

, A

#

AE1

x e

(

x b + ( x e − x) b (−i) + e a j e j := x e (−i+j) (j ∈ I)

5

, A

#

>>1

# C

5) A

#

(

)

.) /

e ∧

Π (i)

) 6) # 2 *5) )

(

) ( (

#

$5 ( +

n x e

∂Γ x b

x e

(

n x e

∂Γ

x e

# $ .) /

Π e (i)

6

Γ x b

4( )

>

# C

i ∈ I

n x e

e ∧

Π (i)

a e (i)i

# 2 ) 2

n x e

, A

#

AH1

x b + X

j∈I\−{i}

e a (j)j +

Π e (i)

x b + X

j∈I

e

a (j)j = x e .

)

# % 7)

4

, A

#

?1

x b + X

j∈I

e

a (j)j = x e ;

Π e (i) (i ∈ I )

#

A

# 2)4

e

x

∂Γ

(

x b + Π (e x b x)

#

$4

n x e

∂Γ

Π ( x b x) e + x b

x e

#

• eee eee

C

(

2 A

# D

, A

#

>E1

#

Referenzen

ÄHNLICHE DOKUMENTE

Quelle: Fraunhofer IMW, in Anlehnung an Crowdfunding Berlin. Leistungsangebot: Tools-

Für weitergehende Fragen können Sie sich an den Datenschutzbeauftragten der Stadt Bielefeld

Chemischer Strukturbeweis für Photobilin c und ein Beitrag zu seinem Bildungsmechanismus Chemical Structure Determination for Photobilin c and a Contribution to the

cander Christina Ander cblome Christian Blome chuelsew Carolin Huelsewig cpearce Conny Pearce dhallau Dominic Hallau dkuehn Daniel Kuehn dvahrenh Dominik Vahrenhorst dwibberg

Die Ausdriicke werden berechnet, die Ergebnisse mit- einander verglichen und ihr Wahrheitswen gebildet. Liefen der gesamte Ausdruck den Wahrheitswen wabr , wird zur

- Falls vor dem Hamster ein Hindemis liegt, oder wenn er im Begriff ist, aus der Landschaft hinauszulaufen, wird das Programm mit entsprechender Fehlermeldung

– Für den zusätzlichen Beratungsaufwand im Zusammenhang mit der Außenprüfung konnte im Jahr 2012 noch keine Rückstellung gebildet werden. Insoweit ist das auslösende

a Lehrstuhl f¨ur Anorganische Chemie und Strukturchemie, Universit¨at Bielefeld, Universit¨atsstraße 25,. 33615