• Keine Ergebnisse gefunden

Microstructure of fluid systems

N/A
N/A
Protected

Academic year: 2022

Aktie "Microstructure of fluid systems"

Copied!
46
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

1

Microstructure of fluid systems

Gerhard Nägele

Research Centre Jülich, IFF, Soft Matter Division University of Duesseldorf

Modified version of my lecture at IFF Spring School „Soft Matter“ , Jülich, March 4, 2008 Adapted to Theoretical Soft Matter Course, U of Düsseledorf, summer term 2011

(2)

Outline

1. Introduction

- Model systems

2. Pair Distribution Function - Basic properties

- Potential of mean force

- Relation to scattering & thermodynamics 3. Ornstein-Zernike Integral Equations

- Direct correlations - Critical opalescence

- Various closure relations 4. Literature

(3)

3

1. Introduction

- Model systems: atomar and colloidal

(4)

Model systems: atomar

Lennard - Jones 6 - 12 potential of simple liquids: Ar, Xe, …

r

12 6

r r

u(r) = ε 4          σ −       σ   

electronic repulsion van der Waals attraction

σ

2

1/6

r [nm]

u(r)

σ

(5)

5

Colloidal Dispersions

Definition:

1 nm < ∅ < 5 µm Brownian erratic motion

Examples:

proteins Beispiele: viruses (fd)

Beispiele: inorganic particles:

(plexiglass, ...)

solvent: H2O, ...

Industrial products: paint / ink dairy products

Theory: particle interactions

microstructure

thermodynamics

(6)

 Colloids, proteins and most bacteria share: - inertia-free, laminar hydrodynamics - strong Brownian motion

granular media

atoms

1 nm 10 nm 100 nm 1 µ m

radius

bacteria, protozoa Colloidal dispersions (including proteins & viruses)

molecules

(0.1 – 800 µm)

human cell: ∼10 µm

Colloidal length scales

(7)

7

Length scales in micro - biology

P. Nelson, Biological Physics: Energy, Information, Life W.H. Freeman & Company, N.Y. (2008)

(8)

Model systems: colloidal

Charge-stabilized particles:

-20 0 20

1 2 3

40

4

r/ σ

u(r) ≈ u (r)

el for |

Z | >> 1

B

2

el 2

= B

exp[ a] exp[ r]

k T L 1 a r (r 2a

u (r)

Z κ −κ )

+ κ

 

 >

 

( )

2

B s

4 L n | Z | 2n

κ = π +

B

2

L = e /( k T) ε

B

≈ 0.7nm

r a

( )

vdW eff

1 6

2a 2a

r 2a r

u (r) A

r r

, ,

 − ≈

−  

 

u(r)

u (r)

el

u

vdW

(r)

vdW-attraction repulsion

[ ] µ m

r

(9)

9

r / σ

1 2 3

u(r)

r 2a

u(r) 0 r

, ,

< σ =

> σ

=  

Model systems: colloidal

Tuning of strength and range by changing solvent and salt content

Sterically stabilized particles:

• Pairwise additive N-particle potential energy (approximation for CS, not HS)

( )

N N

(

i j

)

N

( )

i j

i j i j

U u u r

< <

= ∑ − = ∑

r r r

r

N

= { r

1

,..., r

N

}

„hard spheres“

(10)

Phase behavior of colloidal hard - sphere dispersion

Pusey & van Megen, Nature 320, 1986

fcc

cp

π 18

φ =

sphere system

Nv φ= V

Kepler: 1611 Hales: 1998

(11)

11

2. Pair Distribution Function

- Basic properties

- Potential of mean force

- Relation to scattering & thermodynamics

(12)

Canonical NVT-ensemble: N >> 1 spherical particles in volume V at temperature T

( ) ( ) ( ) ( )

N

(n)

1 n n 1 N

N

N

e U

,..., N N -1 ... N - n 1 d ...d

+ Z

−β

ρ = +

r

r r r r





n out of N

probability d.f. of rN

joint d.f. for n << N

particles at

r

n

= { r

1

,..., r

n

}

( )

N

N 1 N ßU ßU

Z V, T =

d ...dr r e =

dr e

 N1

  r N

  V  

: average number density

   

N 1 2 N 1 2 N

g r r ,  g rr  g (r)

Define pair distribution function as:

( ) ( )

( ) ( )

(2)

1 2

N 1 2 (1)N (1)

1 2

N N

g , ρ , 1

= →

ρ ρ

r r r r

r r

for r = r12 → “∞”

Isotropic fluid state (no crystal or external field) :

: NVT radial distribution function

r

12

r

2

r

1

Basic properties

(13)

13

( )

(2)

( ) ( )

N

N N 2 2 3 N

N

N N -1 U

(r) e

g r d ...d

Z ρ −β

= =

ρ ρ

r

r r idN

( )

g r 1 1

= − N

ideal gas : U = 0 and ZN = VN

gN measures pair correlations relative to ideal gas

( ) ( )

( )

N

N 12 3 N N

N N -1 U

d g r d d ...d e−β / Z N 1

ρ = = −

r ρ

r

r r r

1 2

1

V

d dr r

4πr2ρ gN is average particle number in shell [r,r+dr] ( i.e. g(r) is conditional pdf )

r

dr

(14)

Thermodynamic limit for macroscopic system :

General behavior of g(r) :

( )

N

N,V

g r lim g (r)

=

→∞ ρ = N / V fixed

• g(r) ≥ 0, g (r → ∞ ) = 1

• g(r) ≅ 0,

when

β u ( r ) >> 1

• g(r) = exp [- β u ( r ) ]

for

ρ → 0

• g(r)

continuous where

u(r)

piecewise continuous

(15)

2. neighbor shell

( )

g r

1

1 2

r/σ

Correlation length ξ(T)

1. neighbor shell

Radial distribution function g(r) for soft pair potential (LJ, Ar, Xe, charged colloid)

2

N(r, r r) 4 r r

g (r) + ∆ 1

ρ π ∆ →

=

ideal gas

fluid near-field order

(16)

gas liquid crystal (T>0)

T = ε2 / kB T = ε/ kB T = 0.2 / kε B 0.026

φ = φ = 0.419 φ = 0.471

r /σ g(r)

uLJ(r)

g(r) ≈ e−β

Radial distribution function of a 2D Lennard - Jones system (MD simulation)

sphere

Nv φ = V

(17)

17

-

jump at

r = σ

- g (r < σ) = 0

since

u (r < σ) = ∞

- g (r ) = exp [- β u (r)] = θ (r - σ )

for

ρ = 0 r/σ

1

1 2

g(r) for soft pair potential

g(r) for hard-sphere dispersion

Oscillations in g(r) more pronounced for higher density and lower temperature

2. neighbor shell

r/σ

Correlation length ξ(T)

( )

g r

1

1 2

1. neighbor shell

(18)

( )

N 2

N

)

12 B 12 B 3 N ß U( V

w r k T ln g(r ) k T ln d ...d e lnZ 

= − = −  +  

 

r r r

r

12

r

2

r

1

Potential w(r) of mean force

derivative with respect to position vector of particle 1:

( )

3

( )

1,

N 1 N

1 12 1

3 N 2

ßU ßU

d ...d U e

w r U( )

d ...d e

−∇ =

−∇ = −∇

fixed

r r

r

r r

Potential of mean force between two particles held fixed at r12

Reversible work (free energy) to move two particles from infinity to distance r12 :

( )

12 12

w r = F(r ; N −2) − F( ; N∞ −2)

w(r)→ u(r) i.e. g(r) →e− βu(r) for ρ →0

(19)

Hard-sphere colloidal fluid

Effective attraction (“depletion force”)

r r/σ

g(r)

w(r) = - kT ln g(r)

1

0 1

(20)

Born-Green integral equation determining g(r) for given u(r)

N

1 1 1j

j 1

U( ) u(r )

>

−∇ r = ∑ ∇

assuming pairwise additivity of U

(3)

1 2

1 12 1 12 3 3 1 1

3 12

g ( ,

w(r ) u(r ) d 1 u(r )

g(r )

 , ) 

−∇ = −∇ − ρ  − ∇ 

 

 

r r r r

Yvon–Born–Green

hierarchy:

2

12 1

(3)

1 2 3

g(r ) g(r ) g(r

3 23

g ( , r r r , ) = ) + O( ρ )

Non-linear integro-differential equation relating g(r) to u(r)

probability for particle 1 at r1

given that 2 at r2 and 3 at r3 force on 1 due to 2 particle

(n) (n 1)

g ↔ g

(21)

21

0 46 . φ =

PY

Born- Green MD

BG equation gives poor predictions for dense fluids

(22)

22

• Scattering in homodyne mode: λL = λvac/ns = O(σ, ρ-1/3)

λ

L

k

i

ϑ L

q 4 sin 2

π ϑ

= λ laser

q k

f

• Assumptions in basic scattering theory (more rigorous: Maxwell equations)

→ point scatterers (Rayleigh) : σ << λL

→ single scattering (1. Born approximation)

→ no absorption

j

A 1

B

ϑ

Quasi-elastic : f i L ph

2

k k 2 / (h m M)

c ν

≈ = π λ = <<

Phase difference between j and 1 : B1 A1+ = kfrj1k rij1 = ⋅q rj1

Scattered el. field amplitude at detector : s 2 Nj 1

{ (

1

) }

L

j

E ( ) 1 exp i

R =

∝ λ

q r⋅ −r q

r

j1

Relation to scattering & thermodynamics

(23)

23

Time-averaged measured intensity : s s* T N

{ (

l j

) }

l, j 1 T

I(q) E E exp i

=

= ∝

q r⋅ −r

Ergodic system (fluid state) :

T N 1

T " "

lim ... ... >>

→ ∞ =

l j 12 12 N

N i i i ( N 2) U( )

12 N

l j

I(q) N e N N(N 1) e N N(N 1)V d e d e−β / Z

∝ +

q r = + − q r = + −

r q r

r r

N 12 2

1 g (r )

[ ]

V

{

i N

}

3

N 1 d e g (r) 1 N (2 ) ( )

= + ρ

r q r − + ρ π δq

forward contribution (no correlation information)

Static structure factor in T-limit : S(q) 1 d ei

[

g(r) 1

]

lim 1 ( ) ( ) 0

N

= + ρ

r q r − = δρ q δρ −q

l

N N

i i 3

l

l 1 l 1

( ) d e ( ) e (2 ) ( )

= =

 

 

δρ =  δ − − ρ = − π ρδ

 

q r q r

q r r r q

Osmotic compressibility equation :

( )

idT B

q 0

T T

lim S q k T

p

χ ∂ρ

= χ =  ∂ 

p p

s

(N → ∞, V → ∞ , ρ = N/V fixed)

(24)

 Point scatterers →

r

l

x

[

l

]

N i

s

l 1 x a

E ( ) d e ⋅ + ( )

= <

∑ ∫

q r x ψ

q x x

i l

x a

N i

l 1

d e ( ) e

<

=

 

 ψ 

 

x q x x

q r

p s

( ) ( ) ψ x = ε x − ε

P(q

I(q) ∝ N ) S(q )

a 2 i 0

a

0

d e ( )

d ( P( )

) q

ψ

=

ψ

x q x x

x x

local

scattering strength

Single-particle form factor

isotropic spheres

Rayleigh-Gans-Debye (RGD) regime :

no phase difference of light through particle and solvent, respectively, i.e

Inherent assumptions :

2 nπ −n a /λ <0.1

P(q =0) =1 P(q = ∞ =) 0

I(q) ∝ N S(q)

 Weakly scattering colloidal spheres with a = O(λ) :

(25)

25

Example: optically uniform colloidal spheres with Ψ = const

( )

2 1 2

3j (qa)

P(q) b(q)

qa

 

=  =

 

q σ ≈ 9

Large particles scatter more strongly in forward direction

q > 4.5/a not accessible by light scattering Formamplitude

(26)

Interpretation: diffusive Bragg scattering from particle density waves

4 ns

q sin

2

π ϑ

= λ

s

2d sin

n 2

λ = ϑ

1. order constructive interference

d 2

q

≈ π

typical spatial resolution for selected q

ϑ

/ 2

ϑ

/ 2

λ

d

(27)

27

S(q) and g(r) for a charge-stabilized dispersion

sphere

NV

φ = V

m m

q ≈ π 2 / r r

m

low compressibility

particle cage

r

m

(28)

Summary: relation to scattering & thermodynamics

2 / qπ

i (t) r

photomultiplier

k

i

k

f

laser

q ϑ

{ } ( ) [ ]

N

, 1

S(q) 1 cos (0) (0) 1 d cos g(r) 1

N =  

=

⋅ ij  = + ρ

⋅ −

i j

q r r r q r

P(q

I(q) ∝ N ) S(q )

: for single and quasi-elastic scattering

static

structure factor

1 S(q) 1 g(r) 1 FT

ρ

 

= +  

4

q π sin ϑ2 λ

=    

( )

idT B

q 0 T T

lim S q k T

p

χ ∂ρ

= χ =  ∂ 

(29)

29

Thermodynamic properties

Energy equation for internal energy E

Pressure equation for particle pressure p

( )

N N

( )

i j N 3

(

i j i k

)

i j i j k

U u r u , ...

< < <

= ∑ + ∑ +

r r r r

dr

2 (3)

B 3

3

2 2! 3!

E

N

= k T +

ρ

∫ d

rg(r)

u(r) +

ρ

∫ ∫ d

r

d ' g

r

( , ') u ( , ')

r r r r

+ ...

2 (3) 3

id 3 2! 3 3!

p p

u ( , ')

1 d

(r)

u(r) d d ' g ( , ') .. .

r r

ρ g ρ

⋅ ⋅

β∂

= − β∂ − +

∂ ∂

r

∫ ∫

r r r r r r

2 0

N

U

2

u(r)

g(r) 4 r dr

ρ

= ∫

π

2-body

Valid for state-independent, i.e., (

ρ

,T) – independent U only (one-comp.)

# particles in shell

(30)

Thermodynamic properties

(Osmotic) compressibility equation (Kirkwood and Buff, 1951)

( ) [ ]

{ }

B idT

q 0 T,N, ' T

lim S q 1 d g(r) 1 k T

µ

∂ρ χ

 

= + ρ ∫ r − =   ∂Π   = χ

Π

: osmotic pressure of N large particles

relative to reservoir of small particles & solvent

Valid also for non-pairwise additive & state-dependent U

T id T

0, 0, , χ   χ ≈   ∞

fluid near triple point ideal crystal

fluid at critical point

(31)

31

3. Ornstein - Zernike Integral Equations

- Direct correlations

- Critical opalescence

- Various closure relations

(32)

12 12 3 13 23

h(r ) = c(r ) + ρ ∫ d r c(r ) h(r )

Introduce total correlation function :

h(r ) : g(r ) 1

12

=

12

− h(r )

12

→ 0 ,

for

r

12

→ ∞

Define direct correlation function c(r) through Ornstein-Zernike equation :

total correlations of 1 and 2

direct correlations

indirect correlations of 1 and 2 through particles 3,4,…

+ +

= + ...

2 1

3 4

c

1 2

3 h c

1 2

c 2 1

i

ρ d

i

• = ∫ r

indirect correlations of 1 and 2 through two intermediate particles 3 and 4

General properties of c(r) :

c )

(r

= h(r) = e

−βu(r)

− + 1 O( ) ρ

Direct correlations

2 4

12 12 3 13 23 3 4 13 24 34

h(r ) = c(r ) + ρ ∫ d r c(r ) c(r ) + ρ ∫ ∫ d r d r c(r ) c(r )c(r ) + O(c )

(33)

33

Fourier-transformed OZ equation from convolution theorem :

S(q) = + ρ 1 ∫ d e r

iq r

h(r) = + ρ 1 h(q)

i

0

h(q) d e h(r) 4 dr r sin(qr) h(r) q

π

= ∫ r

q r

= ∫

h(q) = c(q) + ρ c(q) h(q)

Solving for Fourier-transformed c(r) gives S(q) in terms of c(q) :

S(q) 1 0

1 c(q)

= ≥

− ρ

c(r) is more amenable to approximations than g(r)

(34)

ρ T

fluid crystal

2-phase coex.

ρl

ρg ρl

critical point

triple point

Critical opalescence

c

c

T

T

1 p

∂ρ ρ ∂

 

χ =   = ∞

 

1

1 c(q 0)

S(q 0) 1 d h(r)

− ρ →

→ = + ρ ∫

r

= → ∞

c(q 0) d c(r) 1

→ =

r →ρ

System with attractive part in u(r)

Critical opalescence near Tc

fluid turns cloudy, opaque

slow dynamics

remains short-ranged

(35)

35

Hexane – Methanol mixture (0.67 mol C

6

H

14

: 0.44 mol CH

3

OH)

o

T 18 C T46 C

o

=

c

ο

T T 42 C

hexane–rich phase

demixed 2-phase state mixed fluid state

critical opalescence

http://www.physicsofmatter.com/NotTheBook/CriticalOpal/Frame_Index.html

strong scattering near forward direction

(36)

Near Tc, assume c(q) expandablein truncated series at q = 0 (Ornstein & Zernike, 1914)

2 4

0 2

c(q;T T )c c c q O(q )

ρ ≈ = − +

2 2 2

0 2 2

1 1 1

1 c c q c q

S(q) =

− + ξ +

 

≈  

 

( )

1/ 2 2 T id

T

c

c 0.62

(T)

χ

T T

χ

 

ξ =   ∝ − → ∞

 

( )

3

[ ]

2

i 1 r /

2 c

1 e

2 r

h(r) d e S(q) 1

− ξ

π ρ πρ

=

r q r − ≈

2 2

2

1 c

S(q)

1 q

I(q)

= 

∝ ζ + 

Correlation length

ξ

(T)

( )

u u

q R -1 r R

valid for and

Deviations from OZ - mean field close to Tc:

Tc 2

1 q S(q) ∝ −η

slope:

Intercept:

c2

2

c /2 ξ

η = 0.04 (3D-Ising)

1 I(q)

→∝q2 Tc =150.8 K

Argon

Tc

(37)

37 Deviations from OZ - mean field behavior very close to Tc:

Tc 2

1 q

S(q) ∝ −η η =0.04 (3D-Ising)

1 I(q)

→∝ q2

(38)

Various closure relations

Ornstein - Zernike equation

h(r) = c(r) ρ d 'c(| - '|)h(r') + ∫ r r r

+ approximate closure relation : + zero overlap condition (HC) :

c(r) =

Functional of

u(r)

&

h(r) g(r < σ = ) 0

Closed integral equation for

g(r) = h(r) 1 −

g(r) S(q) u(r)

p, E,

⇒  



micro-structure thermodynamics

&

(39)

39

Examples of important closure relations

Percus-Yevick approximation (PY):

( )

ind

1 d ' c(| ' |) g(r ') 1

c(r ) = g(r) −   + ρ ∫ r rr −   = g(r) − g (r )

g(r) = e

−βw(r)

[

w(r) u

]

nd

(r)

i

e

g (r) ≈

−β

c(r) ≈ g(r) 1 e   −

βu(r)

  = g(r) − y(r)

y(r) = g(r) e

βu(r)

u(| |) u(r )

y(r) = + ρ 1 ∫ d r'   e

− β r r'

y(| rr' |) 1 −     e

− β '

− 1 y(r )   '

Analytic solution for c(r) and S(q) in the case of hard spheres Good approximation for short - range pair potentials only

is exact

PY approximation for c(r)

cavity function, continuous at r = σ

integral equation for y(r) or c(r < σ) = - y(r) :

OZ equation

σ

(40)

Analytic PY solution for the c(r) of a hard-sphere fluid

1 2

3 3

r

r

c(r ) ( ) 1 ( )

2

σ

   

< σ = − λ φ   + φ  + λ φ 

  σ  

 

See my lecture notes for details:

FFT

c

PY

(r > σ = ) 0

=0.49

φ

0.4 0.3

0.1

0.3

r / σ

1 2 3

u(r)

PY hard - sphere g(r) and S(q) excellent for

φ

< 0.4

φ

(41)

0.4

φ = 0.49

0.3

0.1

Analytic PY solution for the S(q) of a hard-sphere fluid

(42)

Additional approximate closure relations

Hypernetted chain approximation (HNC)

Rescaled mean spherical approximation

[ ] [ ]

PY

w(r) u(r)

c (r) = g(r) e −

−β

≈ g(r) − − β 1 w(r) + β u(r)

[ ]

c

HNC

(r) = − β u(r) ln g(r) − + g(r) 1 −

RMSA eff

c (r) = − β u(r) , r > σ > σ g(r = σ

eff+

) = 0

Good for soft, long-ranged pair potential such as Yukawa & Coulomb

Analytic solution for screened Coulomb potential

Accuracy of OZ integral schemes depends on u(r) and dimensionality

(43)

43

Thermodynamic inconsistency of integral equations

PY, HNC, RMSA etc. approximate the exact g(r):

Hybrid methods partially reinstall thermodynamic consistency Virial Compr. Energy

p ≠ p ≠ p

Example: hard spheres

id

p - 1 p

φ

(44)

Rogers-Young (RY) scheme: mixing of PY and HNC

[ ]

( )

RY

h(r) c(r)

u(r) f (r)

1

1

c (r) e e 1

f (r)

−β

+

= ⋅   −  

Compr Virial

T T

χ = χ

determines α

, r r

: 0 : ,

α α

→ ∞

HNC PY

f (r) = − 1 e

αr

Screened Coulomb potential:

Hard spheres near freezing:

(45)

45

• Rescaled mean spherical approximation (RMSA) :

u(r) ,

eff

c(r)

= −β r > σ > σ g(r = σ

eff+

) = 0

• Hypernetted chain approximation (HNC) u(r) (r)

c(r)

= e

β

⋅ e

γ

− γ (r) 1 − γ (r) : h(r) c(r) = −

• Percus - Yevick approximation (PY)

[ ]

e

u(r)

1 (r) (r)

c(r)

=

β

⋅ + γ − γ − 1

• Rogers - Young mixing scheme (RY): thermodynamically partially self-consistent

{ }

u(r) exp (r)f (r) f (r) 1 1

c(r)

= e

−β

⋅   

+ γ

   − γ (r ) − 1

f (r) = − 1 e

αr Compr

Virial

T T

χ = χ

determines α

: 0 :

α

→ ∞

α

HNC PY

Summary: Various closure relations

(46)

4. Literature

1. G. Nägele. Theories of Fluid Microstructures, appeared in Soft Matter: From Synthetic to Biological Materials, 39th IFF Spring School 2008, FZ Jülich Verlag (online verfügbar)

2. J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids, 3rd Edition, Elsevier Academic Press London (2006)

Referenzen

ÄHNLICHE DOKUMENTE

In Collaboration with Universities and Research Institutions February 14 – 25, 2011 • Jülich • Germany. • Polymers

The Jülich Soft Matter Days will be held at the Gustav- Stresemann-Institut, Bonn, Germany, from 11 to 14 November 2008.. It will start on Tuesday, 11 November 2008, with a

Turberfield (University of Oxford, United Kingdom), H.T.M. van den Ende (University of Twente, Enschede, The

- Modell dispersions and direct particle forces - Hydrodynamic interaction (HI).. - Dynamics on colloidal

Soft matter science nowadays requires an interdisciplinary approach connecting theoretical, computational and experimental physics, physical chemistry, material science and

The abstract can contain Figures, Tables and References, but the maximal length of the abstract should not exceed one DIN A4

The abstract can contain Figures, Tables and References, but the maximal length of the abstract should not exceed one DIN A4

- Modell dispersions and direct particle forces - Hydrodynamic interaction (HI).. - Dynamics on colloidal