• Keine Ergebnisse gefunden

Institute of Solid State Physics (IFF) Soft Matter Division

N/A
N/A
Protected

Academic year: 2022

Aktie "Institute of Solid State Physics (IFF) Soft Matter Division"

Copied!
161
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Dynamics of Dispersion Colloids

Gerhard Nägele

Research Centre Jülich

Institute of Solid State Physics (IFF) Soft Matter Division

E-mail: g.naegele@fz-juelich.de

International graduate school Konstanz – Strasbourg - Grenoble

Grenoble, February 28 – March 2, 2005

(2)

2

Overview

1. Introduction & motivation 2. Salient static properties 3. Dynamic light scattering

4. Theoretical description of colloid dynamics

5. Hydrodynamic mobility problem of many spheres 6. Basic properties of Smoluchowski dynamics

7. Short-time dynamics

8. Long-time dynamics

9. Concluding remarks

(3)

1. Introduction & Motivation

- Examples of colloidal dispersions

- Modell dispersions and direct particle forces - Hydrodynamic interaction (HI)

- Dynamics on colloidal time scales

2. Salient static properties

- Pair distribution function

- Static light scattering and structure factor - Methods of calculation

3. Dynamic light scattering

- Basic scattering theory - Dynamic correlation functions

4. Theoretical description of colloid dynamics

- Single-particle dynamics in very dilute dispersions - Colloidal time and length scales

- Generalized Smoluchowski diffusion equation for dense systems

5. Hydrodynamic mobility problem of many spheres

- General properties of hydrodynamic interaction - Method of induced forces

- Motion along a liquid-gas interface

6. Basic properties of Smoluchowski dynamics

- Fundamental solution and time correlation functions - Backward operator and eigenfunction expansion - Brownian dynamics simulations

- Projection operators and memory equations

7. Short-time dynamics

- Methods of calculation - Hydrodynamic function - Sedimentation

- Smoluchowski equation with incident fluid flow - Collective and gradient diffusion

- Rotational self-diffusion

8. Long-time dynamics

- Generalized hydrodynamics

- Mode coupling approximation of memory functions

- Application: non-exponential decay of dynamic structure factor

9. Concluding remarks

(4)

4

General literature

1. W.B. Russel, D.A. Saville, and W.R. Schowalter, Colloidal Dispersions (Cambrigde University Press, 1989)

2. J.K.G. Dhont, An Introduction to Dynamics of Colloids ( Elsevier, Amsterdam, 1996)

3. R. Pecora, Dynamic Light Scattering, (Plenum Press, New York, 1985)

4. G. Nägele, The Physics of Colloid Soft Matter: Lecture Notes 14 (Polish Academy of Sciences Publishing, Warsaw, 2004)

5. G. Nägele, On The Dynamics and Structure of Charge-Stabilized Colloidal Suspensions (Physics Reports 272, pp. 215-372, 1996)

6. R.M. Mazo, Brownian Motion: Fluctuations, Dynamics and Applications (Clarendon Press, Oxford, 2002)

7. R. Zwanzig, Non-Equilibrium Statistical Mechanics (Oxford University Press, 2001)

(5)

1. Introduction & motivation

- Examples of colloidal dispersions

- Modell dispersions and direct particle forces

- Hydrodynamic interaction (HI)

- Dynamics on colloidal times scales

(6)

6

Examples of colloidal dispersions

Definition: 1 nm <

∅ < 10 µ m

• Particle properties/interactions

Brownian erratic motion

Examples: micellar systems Beispiele:

microemulsions

Beispiele:

proteins

Beispiele:

viruses

Beispiele:

inorganic particles (goldsol, Silica, ...)

Solvent: H2O, ...

Industrial products: dispersion paints Industrielle Produkte:

pharmaceuticals

Industrielle Produkte:

food stuff

Industrielle Produkte:

cosmetics

Industrielle Produkte:

waste water

• Transport properties:

- diffusion coefficients - viscosities

- conductivities Theoretical

task:

(7)

Model dispersions in 3D

Charge-stabilized dispersions :

Sterically stabilized dispersions :

{ }

2

u (r)

el

∝ Q exp −κ r / r , r > σ

u(r) ≈ u (r)

el

I¾U

Q / e >> 1

• Range and strength of u(r) is tunable

r

σ

k T

u(r)

B

u (r)

el

u

vdW

(r)

r / σ

r / σ

u(r)

(8)

8

• Present lectures restricted on colloidal systems in fluid one-phase region

Phase behavior of colloidal hard-sphere dispersion

Pusey & van Megen Nature 320, 1986

(9)

Quasi-two-dimensional model dispersions

Colloidal spheres between two walls

Yukawa-type model potential (Chang & Hone, EPL 5, ´88)

Magnetic spheres at water-air interface

2

r

h 2

r r

r

u(r) e

Q , ( )

,

−κ π

< σ

> σ κ = ε

 

= 

 

2

0 eff 2

4

3

u(r) B

r

µ χ

= π

Well-characterized dipolar potential (Zahn & Maret, PRL 85, ´00)

(10)

10

Experimental realization: Brownian forces

Glass walls

Video microscopy

100 µ

m

σ = 1 µm and σ2 = h = 2 µm, φArea = 0.022

Courtesy: J.L. Arauz-Lara, Univ. of San Luis Potosi

Polystyrene spheres ( σ = 1 µ m)

Spacer spheres (h > σ )

(11)

σ = 1 µ

Colloidal particle dynamics determined by interplay of:

m and σ2 = h = 2 µm, φArea = 0.022

1. Direct particle interactions (DI)

2. Brownian erratic forces due to solvent molecules‘ bombardement

3. Hydrodynamic interactions through solvent (HI)

(12)

12

Hydrodynamic interaction (HI)

B

N

N

k T

1

1 ( )

=

= ∑

i j

i j

j

D r

v F

B

0

k T

= D

i i

v F

( generalized Stokes‘ friction law )

hydrodynamic mobility tensor (non-linear in rN)

V

i

F

i

V

i

F

i

F

j

B

0 0

k T

D 6

πη a

=

• Long-range dynamic many-body force

• Quasi-instantaneous & inertia-free on colloidal time scales

• Small-Reynolds-number creeping solvent flow

r

1

(13)

HI: Non-Brownian sedimentation of two small spheres

gravity

(14)

14

HI: Non-Brownian sedimentation of two small spheres

gravity

- fixed distance vector r

r

(15)

15

z/ σ

(-1.1 ,0 ,1.15) (-1.1, 0, 1.20)

x/ σ x/ σ

Asymmetric initial configuration of three spheres at z = 0

g

• Sensitive dependence on initial configuration for N > 2 → chaotic trajectories

(16)

16

HI: Non-Brownian sedimentation of many spheres

- meandering trajectories & fluctuating velocities

- hydrodynamic „diffusion“ due to HI

- existence & form of final stationary particle distribution P

stat

(r

N

) still under debate

-

slowly sedimenting colloidal particles →→→→ Brownian trajectories, Pstat(rN) existent

(17)

Dynamics on colloidal time scales

t

t

3

t

t

8

[ (t) (0) ]

2

6

r r

t / sec

D

S

D

L

B

0

M τ = 3

πη σ

2

0

I D

τ = σ

VKRUWWLPH ORQJWLPH

τ

τ '/6

'/6W RYHUGDPSHG/DQJHYLQ(T W JHQHUDOL]HG6PROXFKRZVNL(T

τ t τI t τI

PRPHPWXP UHOD[DWLRQ

(18)

18

Dynamics on colloidal time scales

• quasi-inertia free motion on coarse-grained colloidal time- and length scales

8

t

B

10

∆ >> τ ≈ VHF

4

B 0 B

x l D 10

∆ >> = τ ≈ σ

Rhodospirillum bacteria (length σ ≈ 5 µm)

“stopping distance”

(19)

Dynamics on colloidal time scales

Generalized Smoluchowski Eq.

DI H R

i i i i

M V (t) = = 0 F + F + K

N

N N N

i i

i 1

P( , t) ( ) P( , t) 0

t

=

∂ + ∇ ⋅     =

rv r r

Random force (solvent collisions)

PDF coarse-grained velocity from force balance

Dynamic simulations Overdamped Langevin-Eq.

Theoretical calculations

• pure configuration-space description for t >> τ

B

(20)

20

2. Salient static properties

- Pair distribution function

- Static light scattering and structure factor

- Methods of calculation

(21)

21

Pair distribution function

Canonical NVT-ensemble: N >> 1 spherical particles in volume V at temperature T

( ) ( ) ( ) ( )

N

(n)

1 n n 1 N

N

N

e

U

,..., N N -1 ... N - n 1 d ...d

+

Z

−β

ρ

r r

=

+ =

r r r

n out of N

probability d.f. of rN

joint d.f. for n << N particles at

{

1

}

n

,..., n =

r r r

( )

N

N 1 N ßU ßU

Z V, T = ∫ d ...d

r r

e

= ∫ d

r

e

( )N1

( ) r N

ρ = V = ρ

: average number density

( ) ( )

g r r , = g rr = g (r)

Define pair distribution function as:

( ) ( )

( ) ( )

(2)

1 2

N 1 2 (1)N (1)

1 2

N N

g , = ρ , 1

ρ ρ

r r r r

r r for r = r

12

“∞”

Isotropic fluid state (no crystal or external field) :

( )

N N

(

i j

)

N

( )

i j

i j i j

U u u r

< <

= ∑ − = ∑

r r r

assume pair-wise additivity

: NVT radial distribution function

r

12

r

2

r

1

(22)

22

( )

(2)

( ) ( )

N

N N 2 2 3 N

N

N N -1

U

(r) e

g r d ...d

Z ρ

−β

= =

ρ ρ ∫

r r r

Thermodynamic limit for macroscopic system :

General behavior of g(r) :

( )

id N

g r 1 1

= − N

ideal gas : U = 0 and ZN = VN

gN measures pair correlations relative to ideal gas

( ) ( )

( )

N

N 12 3 N N

N N -1

U

d g r d d ...d e

−β

/ Z N 1

ρ = = −

r

ρ ∫

r

r r r

1 2

1

V

d dr r

4πr2ρ gN is average particle number in shell [r,r+dr] ( i.e. g(r) is conditional pdf )

( )

N

N ,V

g r lim g ( r )

=

→ ∞ ρ = N/V fixed

• g(r) ≥ 0, g (r → ∞ ) = 1

• g(r) ≅ 0, when β u ( r ) >> 1

• g(r) = exp [- β u ( r ) ] for ρ → 0

• g(r) continuous where u(r) continuous

r

dr

(23)

2. coordination shell

( )

g r

1

1 2

r/ σ

correlation lengthξ(T)

1. coordination shell

-

jump at

r = σ

- g (r < σ ) = 0 since u (r < σ ) = ∞

- g (r ) = exp [- β u (r)] = θ (r - σ ) for ρ = 0 r/ σ

1

1 2

• Sketch of g(r) for soft pair potential • Sketch of g(r) for hard-sphere dispersion

• Undulations in g(r) more pronounced for higher density and lower temperature

(24)

24

Static light scattering and structure factor

• Scattering in homodyne mode: λ

L

= λ

vac

/n

s

= O( σ , ρ

-1/3

)

Detector

λ

L

k

i

ϑ L

q 4 sin 2 π ϑ

= λ laser

q k

f

• Assumptions in basic scattering theory (more rigorous: Maxwell equations)

→ point scatterers (Rayleigh) : σ << λL

→ single scattering (1. Born approximation)

→ no absorption

j

A 1

B ϑ

Quasi-elastic : f i L ph

2

k k 2 / ( h m M)

c ν

≈ = π λ = <<

Phase difference between j and 1 :

B1 A1 + =

kf

⋅ − ⋅

rj1 k ri j1

= ⋅

q rj1

Scattered el. field amplitude at detector : s 2 Nj 1

{ (

1

) }

L

j

E ( ) 1 exp i

R

=

∝ λ ∑

q r⋅ −r q

blue sky R >> scatt. volume size

r

j1

(25)

Time-averaged measured intensity : s s* T N

{ (

l j

) }

l, j 1 T

I(q) E E exp i

=

= ∝ ∑

q r

⋅ −

r

Ergodic system (fluid state) :

T N 1

T " "

lim ... ...

>>

→ ∞

=

l j 12 12 N

N i i i (N 2) U( )

12 N

l j

I(q) N e

N N(N 1) e

N N(N 1)V d e

d

e

−β

/ Z

∝ + ∑

q r

= + −

q r

= + − ∫

r q r

r r

N 12 2

1 g (r )

[ ]

V

{

i N

}

3

N 1 d e

g (r) 1 N (2 ) ( )

= + ρ ∫

r q r

− + ρ π δ

q

forward contribution (no correlation information)

Static structure factor in T-limit :

S(q) 1 d e

i

[ g(r) 1 ] lim 1 ( ) ( ) 0

N

= + ρ ∫

r q r

− =

δρ

q

δρ −

q

l

N N

i i 3

l

l 1 l 1

( ) d e

( ) e

(2 ) ( )

= =

 

 

δρ =

δ − − ρ =

− π ρδ

 

q r q r

q r r r q

Compressibility equation : q 0

( )

idTT B T

lim S q k T

p

χ

∂ρ

= χ =





p p

s

(N → ∞, V → ∞ , ρ = N/V fixed)

(26)

26

Remarks about ordering of T - limit and q → 0 limit

Periodic replication of system (scattering) volume V = L3 :

L

f (

r

+

n

L) = f ( )

r

vector with

components 0, ±1, ±2, ...

f ( )

r

= e

iq r

2 L

= π

q n

( )

3

i ,0

V

V δ

q

= ∫ d e

r q r

→ 2 π δ ( )

q

( )

3 3

1 1

F( ) d F( )

V 2

→ π

∑ ∫

q

q q q

»

Applications :

( )

6 2 2

( )

3

,0 ,0

2

2 2

( ) ( )

V V

π π

δ

q

→ δ

q

= δ

q

→ δ

q

2

N N

S (q) 1 ( )

= N δρ

q l

N

,0 l 1

( ) e

i

N

=

δρ

q

= ∑

q r

− δ

q

{ }

N idT N

q 0 q 0

T

lim S(q) lim limS (q) lim S (q 0) 0 0

→ ∞

= = χ ≠ = = =

χ

First T-limit in NVT ensemble then q → 0

Several wavelengths λ=2π/q should fit into V

qy

qx 2 / Lπ

( ) 2

3

V

= π

density of q points regular at q = 0

(27)

27

S(q) and g(r) for a charge-stabilized dispersion

sphere

NV

φ =

V

m m

q ≈ π 2 / r r

m

low compressibility

particle cage

(28)

28

Interpretation: diffusive Bragg scattering from particle density waves

4 n

s

q sin

2

π ϑ

= λ

s

2d sin

n 2

λ = ϑ

1. order constructive interference

d 2

q

≈ π

typical spatial resolution for selected q

ϑ

/ 2

ϑ

/ 2

λ

d

(29)

Point scatterers → → → → weakly scattering colloidal spheres with a = O( λ )

r

l

x

[

l

]

N i

s

l 1 x a

E ( ) d e

⋅ +

( )

= <

∝ ∑ ∫

q r x

ψ

q x x

i l

x a

N i l 1

d e ( )

e

<

=

 

 ψ 

 

x q x x

q r

p s

( ) ( ) ψ

x

= ε

x

− ε

P(q

I(q) ∝ N ) S(q )

a 2 i 0

a

0

d e ( )

d (

P( )

)

q

ψ

=

ψ

x q x x

x x

local

scattering strength

Single-particle form factor

isotropic spheres

Rayleigh-Gans-Debye (RGD) regime :

no phase difference of light through particle and solvent, respectively, i.e

Inherent assumptions :

p s

2 n π − n a / λ < 0.1

P(q = = 0) 1

P(q = ∞ = ) 0

(30)

30

Example: optically uniform colloidal spheres with Ψ = const

( )

2 1 2

3j (qa)

P(q) b(q)

qa

 

=   =

 

q σ ≈ 9

Large particles scatter more strongly in forward direction Formamplitude

(31)

Methods of calculation

• Computer simulations (Monte-Carlo, MD and BD)

• Ornstein-Zernike-type integral equation schemes

(32)

32 Introduce total correlation function :

h(r ) : g(r ) 1

12

=

12

− h(r )

12

→ 0 ,

for

r

12

→ ∞

Define direct correlation function c(r) through Ornstein-Zernike equation :

12 12 3 13 23

h(r ) = c(r ) + ρ ∫ d r c(r )h(r )

total correlations of 1 and 2

direct correlations

indirect correlations of 1 and 2 through particles 3,4,…

2 4

12 12 3 13 23 3 4 13 24 34

h(r ) = c(r ) + ρ ∫ d r c(r ) c(r ) + ρ ∫ d d c(r ) c(r ) c(r ) r r + 0(c )

+ +

= + ...

1 2

3 4

c

1 2

3 h c

1 2

c 2 1

i

ρ d

i

• = ∫ r

indirect correlations of 1 and 2 through two intermediate particles 3 and 4

General properties of c(r) :

c ) (r = h(r) = e

−βu(r)

− + ρ 1 O( )

c ) (r = −β u(r) , r →∞

valid for all densities

(33)

- Fourier-transformed OZ equation from convolution theorem :

S(q) = + ρ 1 ∫ d e r

iq r

h(r) = + ρ 1 h(q)

i

0

h(q) d e h(r) 4 dr r sin(qr) h(r) q

π

= ∫ r

q r

= ∫

h(q) = c(q) + ρ c(q) h(q)

- Solving for Fourier-transformed c(r) gives S(q) in terms of c(q) :

S(q) 1 0

1 c(q)

= ≥

− ρ

Closed integral equation for g(r) = h(r) –1 Ornstein-Zernike equation

+ approximate closure relation : c(r) = Functional of h(r’) & u(r’) + zero overlap condition (HC) : g(r < σ) = 0

- c(r) is more amenable to approximations than g(r)

(34)

34

Examples of important closure relations

• Rescaled mean spherical approximation (RMSA) :

u(r) ,

eff

c(r) = −β r > σ > σ g(r = σ

eff+

) = 0

• Hypernetted chain approximation (HNC)

u(r) (r)

c (r) = e

β

⋅ e

γ

− γ (r) 1 − γ (r) : h(r) c(r) = −

• Percus-Yevick approximation (PY)

[ ]

e

u(r)

1 (r) (r) c(r) =

β

⋅ + γ − γ − 1

• Rogers-Young mixing scheme (RY): thermodynamically partially self-consistent

{ }

u(r) exp (r)f (r) f (r) 1 1

c ( r ) = e

−β

⋅   

+ γ

   − γ (r ) − 1

f (r) = − 1 e

αr Compr

Virial

T T

χ = χ

determines α

: 0 : α → ∞ α →

HNC PY

(35)

& MSA

(36)

36

Example:

strongly coupled charge-stabilized colloidal spheres ( φ = 0.185)

• For each u(r), closures should be tested first against simulations

Results by Banchio & Nägele :

see in Lecture Notes 14, Polish Academy of Science Publishing, Warsaw (2004)

(37)

3. Dynamic light scattering

- Basic scattering theory

- Dynamic correlation functions

(38)

38

Basic scattering theory

L

q 4 sin 2 π ϑ

= λ

f i

= −

q k k

→ Maxwell equations for non-magnetic and linear dielectric media

→ Single scattering (1. Born approximation)

→ RGD regime (superposition + s-waves)

quasi-elastic

• Homodyne scattering set-up :

Photomultiplier at distance R >> VS

k

i

i V

ˆ = ˆ n n

k

f

ˆn

V

ˆn

H Laser

Polarizer

Analyzer

ϑ

(39)

39

• Scattered electric field strength at detector place :

p s

x a l

s

1

i

d e ( )

( )

 

= ε ∫

x q xε x

− ε

1B q

r

l

ε

p

ˆu

l

i

l

N

S 2 0 f f f i

l 1

l

ik R i

e ˆ ˆ ˆ ˆ

( ) e ( )

( )

R

=

∝ ⋅ − ⋅ ⋅

λ ∑

q r B

E q E n 1 k k q n

far-field electric field ⊥ propagation direction

form amplitude tensor of sphere l

• VV – geometry : measuring non-depolarized el. field comp.

• VH – geometry : measuring depolarized el. field comp

→→→→ rotational diffusion

( ) ( ) ( )

{ }

a p s l l p s l l

s l

V b ˆ ˆ ˆ ˆ

( )

= (q) ε − ε + ε − ε

ε

u u 1 u

B q u homog. sphere with single optical axis

pointing along unit vector uˆ l

form amplitude of isotrop & uniform sphere

• Optically isotropic sphere : ε = ε 1

→→→→ zero VH – singe scattering

(40)

40

Siegert relation: polarized scattering from isotropic & monodisperse colloidal spheres

Homodyne DLS: determines intensity autocorrelation function (IACF)

* *

I s s s s s s

g (q, t) = I ( , 0)I ( , t)

q q

= E ( , 0) E ( , 0) E ( , t) E ( , t)

q q

q q

* *

I s s s s

g (q, t) = E ( , 0) E ( , 0)

q q

E ( , t) E ( , t)

q q

* *

s s s s

E ( , 0) E ( , t) E ( , 0) E ( , t)

+

q q q q

* *

s s s s

E ( , 0) E ( , t) E ( , 0) E ( , t)

+

q q q q

E

s

t

Central limit theorem: - each cell includes many scatterers

- Es is complex central Gaussian random variable

> Correlation length

2

I s s s

g (q, t) = I ( )

q

+ 0 + E ( −

q

, 0) E ( , t)

q

translational invariance of homog. system time-indep. mean

in equilibrium isotropic

fluid phase

time average

(41)

1 1 2 2 n n 1 1 2 2 n n

1 2 n

i i i i i i

... ,0

e

k r

e

k r

... e

k r

= δ

k + + +k k

e

k r

e

k r

... e

k r

*

E s s

g (q, t) = E ( , 0) E ( , t)

q q

2 1/ 2

E I s

g (q, t) =



g (q, t) − I ( )

q 

E E s

ˆg (q, t) = g (q, t) / I ( )

q

ˆg (q, 0) 1

E

=

2

I I s

ˆg (q, t) = g (q, t) / I ( )

q

ˆg (q, 0)

I

= I ( )

s q 2

/ I ( )

s q 2

[ ]

2

I E

ˆ ˆ

g (q, t) = + 1 g (q, t)

ˆg (q, 0) 1

I

spatial homogeneity

j l j l j l

i i a i 2i

e

q r r⋅ +

= e

q r +a+r+

= e

q⋅ +r r

e

qa

= 0

Siegert relation for stationary, ergodic system ( time average → ensemble average ) el. field autocorrelation function (EFAC)

2 2 2

s s s s

0 ≤

I ( ) I ( )

= I ( ) − I ( )

q

qq q → in general, only valid that :

t

ˆg (q, t)I

1

2

(42)

42

Dynamic correlation functions

j l

N i (t) (0)

,0 j,l 1

1 1

lim ( , 0) ( , t) lim e N

S(q, t)

N N

=

 

 

= δρ − δρ =

− δ

 

q r r q

q q

l

N i

,0 l 1

( ) e

N

=

δρ

q

= ∑

q r

− δ

q

[ ]

S(q, 0)

i

S(q)

= = + ρ 1 ∫ d e

r q r

g(r) 1 −

[

1 2

] ( )

i (t) (0) i

d ,0 1 2

S (q, t) lim (N 1)e

N d e

lim V (t) (0 1

 

 

= − − δ = ρ

δ − + −

 

 

q r r q r

q r r r r

{ }

d i d

S (q , t) = ρ ∫ d e

r q r g (r,t)

− 1 g (r, 0)

d

= g(r)

• Homodyne DLS experiment + Siegert relation :

g (q, t)

E

∝ N P (q) S( q, t)

dynamic structure factor (t > τDLS ≈ 1 µsec)

S(q, t) = G(q, t) S (q, t) +

d split in self- and distinct parts

g (r, t):d distinct van Hove real-space function (2d – experiments)

(43)

- Self-dynamic scattering function G(q,t) :

[ ]

d 2 2 4

1 1

1

G(q, t) 1 1 q x (t) x (0) O(q )

2

α= α α α

= − ∑ − +

[

r1

(t) −

r1

(0) ]

2

/ d

[

1 1

]

2

W(t) 1 (t) (0)

= 2d

r

r

{

2W(t)

}

O(q4

G(q, t) = exp − q ⋅



1 +

QRQ*DXVVLDQWHUPVRI

)



( )

d / 2 2

s W(t)

r

g (r, t) 4 ex

p

(

W t)

4

 

= π

+

 

  QRQ*DXVVLDQWHUPV - Small-q expansion for isotropic system :

[

1 1

]

i (t) (

s

0) i

G(q, t) lim e

d e

g (r, t)

=

q r r

= ρ ∫

r q r g (r, ts )

= li

m δ − (

r r1

(t) +

r1

(0 )

self van Hove function (single-particle conditional pdf)

Mean squared displacement

d = 1, 2 and 3 (dimensionallity)

- Expansion in cumulant form :

Small in fluid phase but:

dynamic heterogeneities In colloidal glasses

(44)

44

Example: Quasi-2D dynamic structure factor of charged colloidal spheres

q

σσσσ

( Courtesy: J.L. Arauz-Lara, Univ. of San Luis Potosi )

S(q, t = = 0) S(q)

S (q ,t )

S(q, t → ∞ = ) 0

(LQIOXLGSKDVH

(45)

Example: Dynamic structure factor of 3D charge-stabilized dispersion

• Density autocorrelation function S(q,t) decays monotonically in t

• Valid for any regular autocorrelation function at colloidal time scales

(Banchio, Nägele & Bergenholtz, J. Chem. Phys. 113 (2000)

(46)

46

Example: Dynamic structure factor of 3D charge-stabilized dispersion

BD : Gaylor et al., J. Phys. A (1980)

Theory : Banchio, Nägele & Bergenholtz, J. Chem. Phys. (2000)

(47)

How to measure G(q,t) and W(t) using DLS ?

• Large-q measurement :

S(q, t) = G(q, t) S (q, t) +

d

≈ G(q, t)

S (q, 0)

d

= S(q) 1 − G(q, 0) = 1

• Binary mixture of, w/r to interactions, identical tracer and host spheres

g (q, t)

E

∝ G(q, t)

• DLS: typical resolution of correlation times

1 µ

VHF

< t <

VHFWRGD\V

(q > q )

m

q

m

q

1

S(q)

T H

( ρ ρ )

(48)

48

Example: Silica tracer spheres in index-matched PMMA sphere solution

(van Megen et al., J. Chem. Phys. 85 (1986))

• Plot - log G(q,t)/q2 versus q2 and extrapolate to q → 0 (then zero non-Gaussian contr.)

• Strong many-body influence of HI for

φ >

0.2

φ =

(49)

4. Theoretical description of colloid dynamics

- Single particle dynamics in very dilute dispersions

- Colloidal time and length scales

- Generalized Smoluchowski diffusion equation for dense systems

(50)

50

Single particle dynamics in very dilute dispersions

• Langevin equation for a single colloidal sphere :

F (t)

α F

= 0

t / B

F o

(t) = e

− τ

v v

B B

t o

0

t / (t u) /

(t) = e

τ

+ ∫ du e

τ

( ) / M

v v F u

8 B 10 sec

τ ≈

2

(t) F

v

2

v0

t

3k TB

M

B 0

Γ = k T ζ

Fluctuation-dissipation relation

( )

B B

0

2 2

2 2

F 0

t / 3 t /

(t) e

τ MΓ

1 e

τ

= +

ζ

v v 2 B

eq

3 k T

=

M

v equipartition

theorem

(t τ

B

) (t τ

s

)

0

d

M

d t

v (t) = −ζ v (t) + F (t)

Gaussian & Markovian random solvent forces

0

6

0

a

ζ = πη

v

−ζ

0v

F (t) F (t ')

α β F

= Γ δ δ − 2

αβ

(t t ')

isotropic white noise

B

M /

0

τ = ζ

relaxation timemomentum

(51)

51

0 0 eq 0, 0 F

... = ∫ ∫ d r d v P ( r v ) ...

- Ensemble of independent particles in equilibrium →→→→ stationarity in time

B 20

B

3/ 2 M

2k T eq 0, 0

1 M

V 2 k T

P ( ) e

π

 

=    

v

r v

v

(| t ' t '' |) 1 (t ') (t '')

φ − = d vv

velocity autocorrelation function (VAF)

B t / B

v 0

1 k T

3 M

(t) (t) e

− τ

φ = vv =

t

v 0

W(t) = ∫ du (t − φ u) (u)

(

t / B

)

B 2

0

0 B

k T t 2M

W(t) D t 1 1 e t

D (t )

τ − τ

 

 

=   − −   →    − τ

B

0 B

D = k T ζ

single-sphere VAF

t 0

0

(t) − = ∫ dt ' (t ')

r r v (

0

)

2 t t v

0 0

1 1

2d 2

W(t) = r (t) − r = ∫ ∫ dt ' dt ' ' φ (| t ' t '' |) −

Ornstein-Fürth formula for stationary system

s B

( τ t τ )

( τ

B

t)

single-sphere translational Stokes-Einstein relation

(52)

52

τ

D

W(t)

t

D 0

t 2 t

τ B

( ) l

B 2

D t

0

Single-sphere mean squared displacement (MSD)

(53)

- Displacement

r = r(t) – r0 is central Gaussian random variable w/r to

< ... >

( )

3/ 2

( )

2

4 W(t) P( , t) 4 W(t)

exp 

∆ = π  

 

r

r

- Pdf is fundamental solution of diffusion-like equation :

( )

P( ∆ r , t = = δ ∆ 0) r

* 2

P( , t) D (t) P( , t) t

∂ ∆ = ∇ ∆

r r

*

d

0 t / B

D (t) = d t W(t) = D   1 e −

− τ

 

( )

2

3 1/ 2

2

1 x

x

( x ) 2

P( , t) 2 exp

α α

α

α=

− ∆

σ

 

 

∆ = πσ  

 

 

r

2x

( x )

2

2W(t)

α α

σ = ∆ =

- Single-particle self-dynamic structure factor :

0 2

2 D t

i q W(t) q

G(q, t) = ∫ d( ∆ r )e

q r⋅∆

P( ∆ r , t) = e

→ e

& 0 B

t x D

∆ τB ∆ τ

(54)

54 Overdamped (positional) Langevin equation for a single particle

- Inertia-effects non-observable for times t >>

τ

B so that dv/dt

0

- Time required to diffuse a distance comparable to a = 100 nm :

2 0

3 I

a

D

10

sec

τ = ≈ τ

I

τ

B

Momenta relaxed long before observable change in particle configuration

v (t)

Bα

= 0

& 0 B

( t ∆ τ

B

∆ x D τ )

B 0

(t) = 1 (t) ≡ (t)

v ζ F v

Gaussian & Markovian (i.e. local in time) random velocity

B B

v (t) v (t ')

α β

= 2 D

0

δ δ −

αβ

(t t ')

white additive noise v

(t) 2 D

0

(t)

φ = δ

(55)

Overdamped (positional) Langevin equation for a single free particle

t

B B

0 0

(t) − = ∫ dt ' (t ') ≡ ∆ (t)

r r v rr

B

(t) = 0

B B

(t) (t) 2 D

0

(t)

rr = 1 δ

( ) 1

αβ

= δ

αβ

( u w )

αβ

= u w

α β

( )

3/ 2 B 2

B

0

0

( )

P( , t) 4 D t exp 4 D

t

 − ∆ 

∆ = π  

 

r

r

B 2

W(t) = ∆ ( r ) / 6 = D t

0

B 2 B

P( , t) D

0

P( , t) t

∂ ∆ = ∇ ∆

r r

B

0 2D t

B i B q

G(q, t) = ∫ d( ∆ r )e

q r⋅∆

P( ∆ r , t) = e

-

r

Bis Gaussian of zero mean and variance

2 D

0

1 δ (t)

MSD for t >> τB

Smoluchowski eq. for free particle

statistically equiv. to positional Langevin eq.

: = ⋅

T

u w u w

dyadic notation

(56)

56 delta

distribution

O t

τ

B

τ

I

O t

v

(t) φ

- Green-Kubo relation for free particle : 0 v

0

D dt (t)

=

∫ φ

τ

B

O t

τ

B

G(q, t)

O t

τ

I

τ

B coarse-graining

(57)

57 Retarded free particle Langevin equation

v

i

H

= −

i

F

i

F (t τ

s

)

t R

d

d t

(t u

M (t) du ) (u ) ( t)

= − ∫

−∞

γ − +

v v F

Retarded solvent response R

F (t)

α F

= 0

R R

F B

F (t) F (t ')

α β

= k T δ γ −

αβ

(| t t ' |)

Gaussian & non-Markovian random force

Friction force on sphere by surrounding solvent

- γ(t) from linearized Navier-Stokes equation of incompressible fluid

s 0 2

( , t)

p( , t) ( , t) t

ρ ∂ = − ∇ + η ∇

u r r u r ∇⋅ u r ( , t) = 0 (t τ =

c

a / c ≈ 10

10 sec)

s th 0

inertial force viscous force

Re v

ρ σ 1

= =

η

( )

T

( , t) = − p( , t) + η ∇ + ∇

0

   

σ r r 1 u u

s

( , t)

( , t) t

ρ ∂ =∇⋅

u r σ r

σσσσ(r,t) : Stress tensor of incompr. Newtonian fluid

(58)

58

0 s

2

t ( , t)

η

q ( , t)

ρ

∂ ω q = − ω q

t

H

(t) du (t u) (u)

−∞

= − ∫ γ −

F v

ˆ ( , t)⋅ ( ) σ r n r ˆ ( )

n r

[ ]

0

[ ]

t ( , t)

ηs

( , t)

ρ

∂ ∇ × u r = ∆ ∇ × u r

1

i

( , t) = 2 ∫ d e

q r

∇ × ( , t) ω q r u r

∇ → − i q q

2

∆ → −

1 t /

( , t

q = a

→ ω q ) / ( ω q , 0) = e

τη

s p s

0 2

B

9

a

2

η ρ

ρ

ρ

η

τ = =     τ

 

H

S

ˆ (t) = ∫ dS ( , t) ⋅ ( )

F σ r n r

fluid force/area on dS at r

Stokes-Boussinesq solution

vorticity (shear-wave) diffusion due to unsteady particle motion

viscous hydrodynamic relaxation time for unsteady particle disturbances

(59)

B 2

2

3/ 2 v

k T M

d 1 t

d t 9

(t) W(t)

η

π τ

 

φ = ≈  

 

1/ 2

0 0

2 t

W(t) D t 1 D t

η

π τ

   

 

≈ −   →

   

 

- Hydrodynamic long-time tails from Boussinesq solution for

t τ

η

Tail resolvable using DLS for micron-sized spheres

• Non-retarded Langevin-eq. applicable to colloids only for

• Non-retarded Langevin-eq. applicable to aerosols for

t τ ≈ τ

B η

t τ

B

τ

η

(60)

60

Colloidal time scales

τ

s

τ

c

τ ≈ τ

B η

τ

DLS

τ =

I

a / D

2 0

10

13

10

10

10

9

10

6

10

3

[ ] sec

t

molecular view

solvent compr.

matters: ∇⋅u 0

τ

c = a/c

- velocity relax. resolved - unsteady solvent flow:

- retarded HI /t u 0

quasi-inertia free (pure config.-space picture) :

- Many-particle Smoluchowski Eq.

- Overdamped Langevin Eq.

- Quasi-static creeping flow Eq.

structural relaxation time

B

M /

0

τ = ζ

transl. momentum relaxation time

( ζ = πη

0

6

0

a)

( )

2

s 0 s p B

a / 4.5 /

τ = ρ η =

η

ρ ρ τ

viscous relaxation time (vorticity diffusion)

(for aerosols: non-retarded Langevin-eq. for )

τ

η

τ

B

⇒ t ∼ τ

B

Interacting particles:

a → ξ φ ( ,...)

(interaction/correlation length)

Referenzen

ÄHNLICHE DOKUMENTE

500 cm/s. This was done by optimizing the thermal ox- ide passivation process and rear contact design. Further- more, edge recombination could be drastically reduced by replacing

ometry, the radius of curvature was very precisely ad- justable. Compared to the changes created by different substrate materials the influence of the particle deforma- tion results

In this Letter we directly measure hydrodynamic rotation-translation coupling by simultaneously determin- ing position and orientation fluctuations of a pair of spheri- cal

Wechselwirkungen zwischen den Teilchen lassen sich über weite Bereiche steuern, etwa durch ihre elektrische Ladung, durch äußere elektrische oder magnetische Felder oder durch

Eine Kraft von Körper A auf Körper B geht immer mit einer gleichgroßen aber entgegengesetzten Kraft von Körper B auf Körper A einher:... INSTITUTE OF EXPERIMENTAL PARTICLE

● The Lagrange density is covariant under global phase transformations with an according transformation rule:. ( Global Phase Transformation local

● These people and their groups are not just some guys among many others – these guys directly participated in the discovery of the Higgs boson in 2012 and are world leading

● Additional Higgs boson with same production cross section and as expected for the SM (for given mass value). JHEP 10