• Keine Ergebnisse gefunden

Stopping Density

N/A
N/A
Protected

Academic year: 2022

Aktie "Stopping Density"

Copied!
60
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

12th PSI Summer School on Condensed Matter Research

Depth dependent investigations of thin films and heterostructures with

polarized low energy muons

Elvezio Morenzoni Paul Scherrer Institute

CH-5232 Villigen PSI Switzerland

Generation of polarized low energy muons, beam line and instrument

Selected examples of investigations in near surface region, thin films and heterostructures (superconductivity, magnetism)

This lecture and a ETH/Univ. ZH course (Physics with muons) on http://people.web.psi.ch/morenzoni/

(2)

Thin films and Heterostructures

- Fundamental physics:

• coupling, proximity effects

• coexistence / competition of order parameters

• new electronic states (e.g. surfaces, interfaces)

• dimensional effects

• provide new insight into the intrinsic nature of the constituents

• some materials can be grown only as thin films

- Technological applications: Faster, smaller, more efficient devices, new functionalities

Physics characterized by spatially varying properties on nm (or sub nm) scale.

We need probes that can measure local magnetic (electronic) properties of these

regions and access buried layers ( LE- muons, -NMR,….).

(3)

0 50 100 150 200 0,00

0,01 0,02 0,03 0,04 0,05

29.4 keV 24.9 keV

20.9 keV 15.9 keV

6.9 keV 3.4 keV

Depth [nm]

Stopping Density

YBa 2 Cu 3 O 7 bulk

Implantation profiles and ranges

 For thin films studies we need muons with energies in the region of keV rather than MeV

 Tunable energy (E < 30 keV) allows depth-dependent SR studies ( ~ 2 – 300 nm)

bulk

thin films

heterostructures near surface regions,…

From π

decay at

rest

(4)

100 m Ag  500 nm s-Ne, s-Ar s-N 2

6 K

Generation of polarized epithermal muons by moderation

„Surface“

Muons

 4 MeV

 100% polarized

Source of low energy muons (E ~ 15 eV)

D. Harshmann et al., Phys. Rev. B 36, 8850 (1987) E. Morenzoni et al. J. Appl. Phys. 81, 3340 (1997).

T. Prokscha et al. Appl. Surf. Sci. (2001)

(5)

Mechanism

Escape of small fraction of muons before thermalization

Suppression of electronic loss processes for E µ º E g (wide band gap insulator)

Characteristics of epithermal muons

s-Ne s-Ar

s-N 2

Layer Thickness [nm]

Effici ency [a.u.]

L

epith Mu 4 5

4MeV

N (1 F )L

10 10

N R

 

    

 

Moderation efficiency:

R Stopping width of surface muons º100 m F Mu Muonium formation

Time [ s] 

A sy m m et ry AP(t)

E. Morenzoni, F. Kottmann, D. Maden, B. Matthias, M. Meyberg, Th. Prokscha, Th. Wutzke, U. Zimmermann, Phys.Rev.Lett. 72, 2793 (1994).

Polarization 100%  Large escape depth L (50-250 nm)

(6)

Low energy+ beam and instrument for LE-SR

~ 11000  + /s; accelerate up to 20 keV

~1.9 • 10 8+ /s

- UHV system, 10

-10

mbar - some parts LN

2

cooled

Polarized Low Energy Muon Beam

Energy: 0.5-30 keV

E, t: 400 eV, 5 ns Depth: ~ 2 – 300 nm Polarization: ~ 100 %

Beam Spot: ~ 12 mm (FWHM)

at sample:

up to ~ 4500  + /s Sample environment:

B = 0 – 0.3 T, B 0 – 0.03 T

(to sample surface)

T = 2.5 – 320 K

Beam spot at sample

Spin-rotator (E x B)

Conical lens Start (trigger) detector (10 nm C-foil)

Sample cryostat e

+

detectors Electrostatic mirror

Einzel lens

(LN

2

cooled) moderator

Einzel lens (LN

2

cooled) MCP detector

“surface” µ

+

beam, ~4 MeV

Spin

(7)

Muon Spin

B-Field E-Field

Moderator

Mirror

Sample Cryo

Muon Momentum

(10 nm)

Trigger detector

APD Positron Spectrometer

Low energy+ beam and instrument for LE-SR

(8)

LE- + Apparatus @ E4

Th. Prokscha, E. Morenzoni, K. Deiters, F. Foroughi, D. George, R. Kobler, A. Suter and V. Vrankovic Physica B 374-375, 460-464 (2006)

and Nucl. Instr. Meth. A 595, 317-331 (2008)

~6 •10 8+ /s total

~1.9 •10 8+ /s on LEM source

Because of low moderation

efficiency we need a high flux of “fast”

muons:  specially designed beam line

E4 at PSI

(9)

0 1 2 3 4 5 6 7 8 9 10 -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Muon Spin Polarisation

Time (s)

0 1 2 3 4 5 6 7 8 9 10

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Muon Spin Polarisation

Time (s)

0 1 2 3 4 5 6 7 8 9 10

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Muon Spin Polarisation

Time (s)

B(z)

0 z

Superconductor

 Magnetic field profile B(z) over nm scale

<B> vs <z>  B(z)

B ext

Depth dependent SR measurements

(z) B (z) loc

 

  

(10)

Simulating and testing stopping profiles of muons

YBa 2 Cu 3 O 7- δ

Stopping profiles calculated with the Monte Carlo code Trim.SP W. Eckstein, MPI Garching

Experimentally tested: E. Morenzoni, H. Glückler, T. Prokscha, R. Khasanov, H. Luetkens, M. Birke, E. M. Forgan, Ch.

Niedermayer, M. Pleines, NIM B192, 254 (2002).

(11)

Examples

Physical object: near surface region, thin film, heterostructure,….

System/Compound

Information and μSR tool used

(12)

Examples I

- Near surface region, thin films and heterostructures of unconventional superconductors - YBa 2 Cu 3 O 6+x and Ba(Co x Fe 1-x ) 2 As 2 crystals, La 2-x Ce x CuO 4 films, La 2-x Sr x CuO 4 heterostructures

- magnetic field profiles, magnetic penetration depth, anisotropy, superconducting gap, symmetry, spatial separation of magnetism and superconductivity, proximity effects

- Weak field parallel to surface, B appl < B c1 , Meissner state, muon spin perpendicular to B

(13)

Magnetic flux is excluded/expelled in the bulk of a superconductor (B appl <B c1 )

perfect diamagnetism

Diamagnetism and zero resistivity described by London equations

Meissner-Ochsenfeld effect

0 ( ) 0

   

B H M

Fritz and Heinz London,

Proc. Roy. Soc. A149, 71 (1935)

(14)

London equations

0 L 2

2 2

0 L 0 L

Well describe electrodynamics response of extreme Type II sc, (e.g. cuprates)

dj 1

1) E

dt

1 1

2) rotj B (j= A)

  

  

  

   

 

   

L

0 2

L appl

z *

appl L 2 0

0 s

From 2), rotB= j and rot(rotB) = grad divB B B 1 B

For B surface (x): ˆ

B(z)=B e (T) m (in "clean limit" >> ) e n (T)

 

     

   

      

 

L S

magnetic penetration depth (London)

m*, n effective mass and density of superconducting carriers

Magnetic field (and shielding current) penetrate the superconductor to a small

extent: magnetic penetration depth λ L (or λ )

(15)

Magnetic penetration depth

Dependence of magnetic penetration depth λ on T, B appl , orientation,

composition.. gives information about microscopic properties of superconductor (order parameter, gap symmetry, anisotropy,..)

Two complementary methods:

Determination from Vortex state (A. Amato talk) based on:

-theory describing vortex state (Ginzburg-Landau, London, …) relating measured field distribution p(B) (or its moments) with λ

-regular vortex lattice (symmetry)

-take into account effects of field, non-local, non-linear, influence of disorder -very efficient and quick

Determination from Meissner state:

-gives absolute value without assumptions on the sc state -needs good films or flat crystals

-measurements more time consuming

(16)

a ,  b anisotropy in YBa 2 Cu 3 O 6+x

~ 55 mm 2

samples produced by

R. Liang, W. Hardy, D. Bonn, Univ. of British Columbia

ext b

ext a

Field decay determined by shielding current

ˆ ˆ

flowing in a or b H a-axis ˆ H b-axis ˆ

 

 

 

 

Ultraclean YBa 2 Cu 3 O 6+x crystals (T c = 94.1 K, T c  0.1K @OP)

Detwinning factor > 95%

x=0.92 Optimally doped x=0.998 Ortho I

x=0.52 Ortho II Chain Oxygen x

(provide carriers to

CuO

2

planes)

(17)

appl ˆ

B   9.47mT a-axis

 T 110 K 

T 8 K 

µSR Spectra: A(t)=A 0 P(t)

(18)

B = 9.47 mT , T = 8 K 

ext

Field profiles

R. Kiefl et al. , Phys. Rev. B81, 180502(R) (2010)

B[G]

B = 4.68 mT , T = 5 K 

ext

Ortho I: YBa 2 Cu 3 O 6.998

YBa 2 Cu 3 O 6.92

(19)

S. Nandi et al., PRL 104, 057006 (2009)

An iron-based sc (122): Ba(Co x Fe 1-x ) 2 As 2

Ba(Co 0.074 Fe 0.926 ) 2 As 2

T c =21.7 K, ΔT c =0.8 K

(20)

Fermi surface and superconducting gap

From J. Paglione, R.L. Green, Nat. Phys. 2010

s +- s+/-

(21)

Superfluid density ρ(T)

S S

2 *

2 2

2

n (T)

Superfluid density : 1 ρ (T)

(T) m

λ (0) Δλ(T)

Normalized superfluid density: ρ(T)= (1+ ) Δ λ (T) λ(0)

 

2π 2 2 2

aa 2

bb 2

0 0

λ(T)=λ(T) λ(0)

cos (φ) ε +Δ (T,φ)

Ex.: 2D cylindrical Fermi surface: ρ (T) = 1 1 cosh ( )dεdφ

2πT sin (φ) 2T

 

        

2 2

ε +Δ (T,φ) : quasiparticle energy

2 2 k

ε=

2m*

(T, ): superconductin  

g gap

s wave gap:

(T, )= (T)

  

y x

d wave gap:

(T, )= (T)cos(2 ) tan k

k

   

 

(22)

Magnetic penetration depth

O. Ofer et al., Physical Review B 85, 060506(R) (2012)

Ba(Co 0.074 Fe 0.926 ) 2 As 2

(0) 250.2(2.6) nm

+ 3% Stopping profile uncertainty

 

Combination of LE-µSR and

microwave absorption (μW)

measurement  λ(0) , Δλ(T)

(23)

Data well fitted with two s-wave gaps (s+/-)

L B c

S B c

2 (0)

3.46(10) BCS ratio= 3.53

k T e

2 (0)

1.20(7) with 9.7(1) % weight k T

   

 

Superfluid density ρ(T)

(24)

Competition and separation of phases in La 2-x Ce x CuO 4

Nd 3+  Ce 4+ La 3+ Sr 2+

La 3+  Ce 4+ (thin film)

(25)

La 2-x Ce x CuO 4 thin film

0 10 20 30 40 50 60 70

0.0 0.2 0.4 0.6 0.8 1.0

Frequency (MHz)

Temperature (K)

x = 0.02 - 0.04, Antiferromagnetic

AF Order

x=0.135 superconducting (overdoped) no magnetism

x=0.135, OD

H. Luetkens, Y. Krockenberger et al.,

(26)

Phase diagram of La 2-x Ce x CuO 4

Center Surface Center

Surface

x=0.075 (underdoped)

0 1 2 3 4 5 6

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Asymmetry

Time (s)

0 1 2 3 4 5 6

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Asymmetry

Time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0.0

0.2 0.4 0.6 0.8

1.0 2.1keV

24.6keV

Muon spin polarization

Time (  s)

x=0.0825, OP

x=0.0825 (optimally doped)

Magnetic surface,

superconducting center.

Coexistence of both in the same sample.

Competing orders.

Several tests indicate that the formation of the magnetic layer is

intrinsic.

ZF

TF

(27)

La 1.84 Sr 0.16 CuO 4 46nm T c32 K

La 1.94 Sr 0.06 CuO 4 46nm T c < 5K

Giant proximity effect:

Field exclusion in a “non- superconducting” thick layer

embedded in two superconductors

c

N c '

B c

d 0.3 nm,

d v 3 nm

2 k (T T )

(for T 10K)

 

   

 

 

La 1.84 Sr 0.16 CuO 4 46nm T c32 K

E.Morenzoni., B. Wojek, A. Suter, T. Prokscha, G. Logvenov, I. Božovic, Nat. Commun. 2:272 (2011).

La 1.84 Sr 0.16 CuO 4 / La 1.94 Sr 0.06 CuO 4 / La 1.84 Sr 0.16 CuO 4

(28)

- Thin films (MBE) of diluted magnetic semiconductors, (GaMn)As

- Intrinsic spatial inhomogeneity (phase separation?) or homogeneous magneticground state?, Strength of ferromagnetic interaction

- Weak transverse field, zero field

Example II

(29)

Semiconductor, where small concentration of magnetically active element doped at a cation site.

Semiconducting (information processing) and ferromagnetic properties (storage)

 spintronics (see Talk T. Jungwirth)

DMS: diluted magnetic semiconductors

Ga 1-x Mn x As

Mn 2+ @ Ga 3+ site:

magnetic moment + hole

FM semiconductor

(H. Ohno, Science 281, 951 (1998))

Can be grown only as thin films, low temp. MBE

(30)

Electric field control of magnetism

Electric field control of magnetism, H. Ohno et al. Nature 408, 944 (2000)

Magnetization vector manipulation by electric fields, D. Chiba et al. Nature 455, 515-518 (2008)

(31)

Properties highly sensitive to preparation condition and heat treatment

 Nature of FM state: unavoidable and instrinsic strong spatial inhomogeneities or homogeneous ground state?

 Evolution from paramagnetic insulator to ferromagnetic metal

Spatially homogeneous ferromagnetism?

(32)

Determining the magnetic volume fraction

In case of two phases (e.g. a magnetic and a non-magnetic) the μSR signal will be:

S Mag S nonMag Bg

A(t)  f A G (t)  (1  f ) A G (t) A 

The magnetic fraction f can be easily determined in a wTF measurements

appl Mag

B  B (M)

T>T C f=0 (PM Phase, G nonMag (t) ≈ 1):

S Bg appl

A(t) A cos( Bt      ) A cos( B  t   ) B B appl B PM

= 0

   

T< T C :

When the applied field is larger than the internal static fields sensed by the muons, the amplitude of the asymmetry component oscillating in the applied field represents para- / non-magnetic volume (+ Bg)

osc S Bg appl

A (t) (1 f) A cos( Bt       ) A cos( B  t   )

(33)

Determining the magnetic volume fraction

T<T C T>T C

Weak Transverse Field 10mT

(34)

FM of properly grown samples is homogeneous

S. Dunsiger et al., Nature Materials 9, 299 (2010)

Magnetic volume fraction

(35)

- Buried or spacer layers

- Probing the electron polarization <s e (x)> in Fe/Ag/Fe and in an organic spin valve - Fourier transform of P(t) field distribution p(B)  spatial variation of electron polarization <s e (x)>

Examples III

?

Fe Ag Fe

x

?

(36)

Muons measure local fields generated by: moments, spins, (super)currents,..

Dipolar field from a localized moment:

Contact field (determined by electron spin polarization at muon position r=0):

Contributions to local field B µ

2

c 0 e B z

e 0

B 2 g s (0) A

3

( contact interaction H=A s s )

(Magnetized sphere M gives field B= 2 M) 3

      

 

 

0 i i i i i 2

dip i 5

i

0 i i B

dip 3 3 3

1

3( r ) r r

B (r )

4 r

[ ]

B T (typical 0.1 T,

4 r d [A ]

dominant term in magnetic materials)

     

 

   

 

 

 

 

(37)

Sources of electron polarization

-External field in simple metals Pauli paramagnetism of conduction electrons

-Magnetic moments (layers) interacting via polarization of conduction electrons

RKKY interaction

-Spin injection: Polarized electrons injected/tunneling from a FM into a non-magnetic layer

-….

(38)

RKKY interaction

(leading term for spherical FS.

Details depend on Fermi surface) Interaction between two moments via oscillating polarization of conduction electrons

Two magnetic layers: Integrate RKKY over interfaces  Oscillating polarization of the conduction electrons  Interlayer exchange coupling oscillates with thickness d

Muons probe the oscillating electron polarization of the nonmagnetic spacer

(Spin Density Wave) mediating the coupling between the FM layers.

(39)

Interlayer exchange coupling in Fe/Ag/Fe

Oscillating polarization of conduction electrons

H. Luetkens, J. Korecki, E. Morenzoni, T. Prokscha, M. Birke, H. Glückler, R. Khasanov, H.-H. Klauss, T. Slezak, A.

Suter, E. M. Forgan, Ch. Niedermayer, and F. J. Litterst Phys Rev. Lett. 91, 017204 (2003).

4nm 20nm 4nm

Oscillating polarization of conduction electrons <s z (x)>

produces an oscillating contact field B spin (x) ∂ <s z (x)>

The depth resolution of LE-µSR cannot resolve the oscillations (WL ~ 1 nm or less), but the oscillating

behavior is reflected in the field distribution p(B μ ) sensed by the muons.

Fe/Ag/Fe

Implantation profile of 3 keV muons

n(x) B µ (x)

(40)

Relation muon spin polarization - field distribution

In our case: TF θ=90, B μ =B ext +B spin (x) || x

A(t)  P (t) z   p(B ) cos( B t     )dB

Formula for “static” fields (A. Amato lecture):

P z (t) is the cosine Fourier transform of the magnetic field distribution

p(B μ ) can be obtained by fast Fourier transform, maximum entropy method, or modeled and fitted in time domain

2 2

P (t) z   p( B ) cos     sin  cos( B t      ) d   B

(41)

LE-SR on Fe/Ag/Fe: Time domain

Field distribution

A(t)  P (t) z   p(B ) cos( B t     )dB

B μ =B ext +B spin (x)

(42)

LE-µSR on Fe/Ag/Fe: Field domain

Alternating positive and negative B spin (x) contributions (contact field) Turning points of oscillations produce side bands to the B ext

B μ =B ext +B spin (x) B µ [mT]

B µ (x) p(B µ )

p(B µ )

H. Luetkens et al, Phys. Rev. Lett. 91 (2003) 017204.

(43)

H. Luetkens et al, Phys. Rev. Lett. 91 (2003) 017204.

LE-µSR on Fe/Ag/Fe: Field domain

Results:

- From p(B μ )  Oscillating electron spin polarization <s z (x)> within Ag

- <s z (x)> and IEC oscillate with the same period, determined by the Ag FS

- Attenuation of electron spin polarization:

significantly smaller than the one of IEC strength (beyond RKKY: confined electron states in a quantum well

model)

i

2

spin z i i i

i 1

B (x) s (x) C sin(q x ) 1

x =0.8(1)

 

   

eff

= 1.18 nm

eff

= 0.47 nm

q

x

(nm

-1

)

p(B µ )

B µ [mT]

(44)

Spacer:

organic semiconductor Alq3: C 27 H 18 N 3 O 3 Al

Magnetoresistance and Hysteresis

Probing spin injection in an organic spin valve

AP P

AP

R R

MR R

R R

  

A. Drew et al. Nature Materials 8, 109-114 (2009)

B appl

(45)

Giant magnetoresistance in organic spin valves

Z.H. Xiong et al.,Nature 427, 821 (2004)

Magnetoresistance vs T

AP P

AP

R R

MR R

R R

  

GMR:

1988: Discovered in metallic multilayers 2007: Nobel Prize A. Fert, P. Grünberg

1997: First application: read sensors of hard disks

Goal of experiment:

Better understand spin injection (e.g.

diffusion length) and its relation to MR in organic SV

MR vs thickness

(46)

I on

I off

Spin injection detected by shape

analysis of local field distribution p(B µ )

appl

-Injected spins have long spin coherence time ~10 -5 s >> τ µ

-In the organic material they produce static field B spin ∂ <s z (x)> that adds to B appl used to select spin valve state

-B µ is detected by muons stopped at various depths  p(B µ )

-The B spin component can be separated by switching on/off the injection with I (V) and changing its sign with respect to B appl

Principle of the LE-µSR experiment

Alq3

(47)

Magnetoresistance

Skewness field distributions: I on - I off

I on

I off p(B µ ) field distribution

The LE-µSR experiment

(48)

- Temperature dependence of spin diffusion length correlates with magnetoresistance - Polarization of injected carriers can be reversed by 1-nm thin polar LiF layer at the interface

A. Drew et al. Nature Materials 8, 109 (2009) L. Schultz et al. Nature Materials 10, 39 (2011)

Spin diffusion length in organic spin valve

Spin injection detected by shape analysis of local field distribution p(B µ )

First direct measurement of spin diffusion length in a working spin valve.

(49)

Example IV: Probing dynamics

Change in polarization P(t) is caused by:

1) Distribution of local fields p(B μ )  dephasing (“static” fields)

2) Exchange of energy between muon spin and the system under study (dynamics)

Dynamics: spin fluctuations, current fluctuations, molecular motion, muon diffusion,….

Up to now examples of category 1)

One example of 2)

(50)

Muon in a fluctuating environment

B µ = B ext + B fl (t)

Fluctuating term <B fl (t)>=0 but <ΔB i (t) 2 > ≠ 0

Zeeman splitting in B ext :

ext fl

H    B    (B   B (t)) s  

m= +1/2 m= -1/2

s

ext ext L

E 2 B 2s   B (neV- eV !)

        

(51)

Muon in a fluctuating environment

B µ = B ext + B fl (t)

Zeeman splitting in B ext :

ext fl

H    B    (B   B (t)) s  

m= +1/2 m= -1/2

ext ext L

E 2 B 2s   B (neV- eV !)

        

s

At t=0: P(0)=1 i.e. all muons in m=+1/2 state B fl (t) induces transitions between the Zeeman states

 muon spin relaxation P(t) P(0) e   t

(52)

Muon in a fluctuating environment

L L

2 i t i t

x x y y

1

1 ( B (t)B (t t ) e B (t)B (t t ) e )dt

T 2

    



   

          

 

B ext || ( )|| P 0 z 

The relaxation rate is a function of the field fluctuations.

Field fluctuations characterized by autocorrelation function.

(Redfield theory, see e.g. C. Slichter, Principles of nuclear magnetic resonance)

The longitudinal relaxation rate is proportional to the Fourier transform of the correlation function of the local field, evaluated at the Larmor frequency.

The muon spin relaxation is an intrinsically resonant phenomenon.

(In many cases the field correlation function <B i B i > reflects the electronic

spin autocorrelation function <S i S i >)

(53)

Correlation time

c

c

t

q q 2 q

t

q q q 2

B (t)B (t t ) B (0) e S (t)S (t t ) S (0) e

 

 

     

    

2 2 2 c

x y 2 2

L c

( B B )

 1 

       

  

In case of exponential autocorrelation function with one correlation time:

2 2 c t

2 2

L c

2 B P(t)=P(0)e 1

   

     

  

For fluctuating Gauss distributed fields (with width <ΔB µ 2 >) produced by fluctuating spins with a fluctuation time τ c

the muon spin relaxation rate is given by:

(54)

Slowing down of fluctuations

Large increase of λ Z (s μ ^ c) when T  T N + (57 K): critical slowing down of magnetic fluctuations ( λ Z ∂ τ c )

Anisotropy of λ Z (T) reflects anisotropy of fluctuations

(55)

Freezing in Spin Glasses

C. Mulder et al., PRB23, 1384 (1981)

meas t

r k t i i

i t

i

t t

average time

N 0 e

N S 1

spin impurity

S

0 S



Spin Glass: a system with disorder and frustration

Example: canonical Spin Glasses AuFe, CuMn, AgFe (1-5 at%)

Cooperative freezing at T f

with static moment formation, but no long range order

Randomness (site disorder) and oscillating RKKY interaction  competition, frustration

CuMn(1%)

(56)

Thickness dependence

P(t) P(0) e    ( t)

AuFe 3% CuMn 2%

Dimensional effects in spin glasses

Reduction of λ with thickness and….

(57)

P(t) P(0) e    ( t)

E. Morenzoni, H. Luetkens, A. Suter, Th. Prokscha, S. Vongtragool, F. Galli, M. Hesselberth, N. Garifianov, R. Khasanov Physical Review Letters 100, 147205 (2008)

AuFe 3%

AuFe(3%) 220 nm: depth dependence

5 K

Cooperative freezing at similar T f as in bulk but increasing dynamics on approaching the surface (length scale ~10 nm) and reduction of order parameter (static moment)

…..and depth

(58)

300μ

Polarized muons are sensitive local probes

of magnetic, superconducting and.. properties

Static and dynamic

Tunable low energy  depth dependent investigations

Range a few nm to a few hundreds of nm

Thin films, near surface regions, heterostructures

(59)

Thank you!

(60)

BOOKS

•A. Yaouanc, P. Dalmas de Réotier, MUON SPIN ROTATION, RELAXATION and RESONANCE (Oxford University Press, 2010)

•A. Schenck, MUON SPIN ROTATION SPECTROSCOPY, (Adam Hilger, Bristol 1985)

•E. Karlsson, SOLID STATE PHENOMENA, As Seen by Muons, Protons, and Excited Nuclei, (Clarendon, Oxford 1995)

•S.L. Lee, S.H. Kilcoyne, R. Cywinski eds, MUON SCIENCE: MUONS IN PHYSICS; CHEMISTRY AND MATERIALS, (IOP Publishing, Bristol and Philadelphia, 1999)

•INTRODUCTORY ARTICLES

•S.J. Blundell, SPIN-POLARIZED MUONS IN CONDENSED MATTER PHYSICS, Contemporary Physics 40, 175 (1999)

•P. Bakule, E. Morenzoni, GENERATION AND APPLICATIONN OF SLOW POLARIZED MUONS, Contemporary Physics 45, 203-225 (2004).

REVIEW ARTICLES, APPLICATIONS

•P. Dalmas de Réotier and A. Yaouanc, MUON SPIN ROTATION AND RELAXATION IN MAGNETIC MATERIALS, J. Phys. Condens. Matter 9 (1997) pp. 9113-9166

•A. Schenck and F.N. Gygax, MAGNETIC MATERIALS STUDIED BY MUON SPIN ROTATION SPECTROSCOPY, In: Handbook of Magnetic Materials, edited by K.H.J. Buschow, Vol. 9 (Elsevier, Amsterdam 1995) pp. 57-302

•B.D. Patterson, MUONIUM STATES IN SEMICONDUCTORS, Rev. Mod. Phys. 60 (1988) pp. 69-159

•A. Amato, HEAVY-FERMION SYSTEMS STUDIED BY µSR TECHNIQUES, Rev. Mod. Phys., 69, 1119 (1997)

•V. Storchak, N. Prokovev, QUANTUM DIFFUSION OF MUONS AND MUONIUM ATOMS IN SOLIDS, Rev. Mod. Physics, 70, 929 (1998)

•J. Sonier, J. Brewer, R. Kiefl, SR STUDIES OF VORTEX STATE IN TYPE-II SUPERCONDUCTORS, Rev. Mod. Physics, 72, 769 (2000)

•E. Roduner, THE POSITIVE MUON AS A PROBE IN FREE RADICAL CHEMISTRY,

Literature

Referenzen

ÄHNLICHE DOKUMENTE

These states are extended along the ribbon axis but localized near the (zigzag) edges, with the spin up channel localized at one edge and the down chan- nel on the opposite edge..

These states are extended along the ribbon axis, but localized near the (zigzag) edges, with the spin up channel localized at one edge and the down channel on the opposite edge..

In order to overcome the conductance mismatch problem, a Schottky barrier or a tunneling barrier insertion between the ferromagnetic metal and the semi- conductor producing an

The b-c junction is reverse biased with V bc ⬍ 0, raising the barrier and increasing the depletion layer width. The corresponding changes to the Fermi level E F are indicated.

Spin polarization clearly survives the depletion layer. This is not an ordinary spin injection in which certain number of spin-polarized electrons tunnel through a contact and the

From the evaluation of our data at RT, measured in samples grown by PLD, we obtain a mean propagation length of the order of 100 nm for thermally excited magnons, in agreement

In two-terminal spin valves it was shown that the noise depends on the relative magnetization angle in a different way than the conductance 13 and spin-flip scattering.. 14 –16

High-resolution images of the domain walls reveal that the wall spin structure is transformed from a vortex to a transverse configuration with subsequent pulse injections.. The