• Keine Ergebnisse gefunden

Übungen zu Theorie und Numerik partieller Differentialgleichungen

N/A
N/A
Protected

Academic year: 2021

Aktie "Übungen zu Theorie und Numerik partieller Differentialgleichungen"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universität Konstanz WS 10/11 Fachbereich Mathematik und Statistik

S. Volkwein, O. Lass, R. Mancini

Übungen zu Theorie und Numerik partieller Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 1 Submission: 13.12.2010, 12:00 o‘clock, Box 18

Exercise 1 (4 Points)

Let Ω ∈ Rn, n ∈ N, be a connected and bounded domain with C1 boundary ∂Ω. Let Dψ ={u∈C( ¯Ω); u=ψ on ∂Ω}. We consider the differential operator L:

L:C2(Ω)∩D0 −→C(Ω) , Lu=−∆u . Show:

i) hLu, vi=hu, Lvifor u, v ∈C2(Ω)∩D0, ii) L is positive definite.

The scalar product of two function u and v onΩ is defined by hu, vi=

Z

uvdx .

Exercise 2 (4 Points)

Consider the linear problem

½ −u00(x) +b(x)u0(x) +c(x)u(x) = f(x) for all x∈(0,1),

u(0) =α, u(1) =β, (1)

where b, c, f are continuous functions on [0,1]⊂ R with c > 0 and α, β are real scalars.

Discretize (3) using the step sizeh= N1,N ∈N, and central/symmetric difference appro- ximations for u00(x) und u0(x). Present the linear system. What are the conditions that the coefficient matrix of the obtained linear system is strictly diagonal dominant? What happens if u0(x) is approximated as follows:

u0(x)≈





u(x+h)−u(x)

h if b(x)<0, u(x)−u(x−h)

h if b(x)≥0.

(2)

Remark: The approximation (2) is called upwind scheme. This kind of discretization is often used in the context of convection dominated equations.

(2)

Hint: Recall that a matrixA= ((aij))∈RN×N is strictly row diagonal dominant if

N

X

j=1,j6=i

|aij|<|aii| for all i∈ {1, . . . , N}.

The matrix A is called row diagonal dominant if

N

X

j=1,j6=i

|aij| ≤ |aii| for all i∈ {1, . . . , N} holds (see Lecture Notes Numerik I, page 16).

Exercise 3 (4 Points)

We cosider the following elliptic problem in divergence form:

¡a(x)v0(x)¢0

=d(x) for x∈Ω = (0,1), (3a) where a ∈ C1(Ω) with a(x) ≥a > 0 for all x∈ Ω and d ∈C(Ω). Together with (3a) we suppose Dirichlet boundary conditions

v(0) =α, v(1) =β (3b)

with α, β ∈R. The goal is to obtain a symmetric coefficient matrix when discritizing (3) by finite differences.

Discretize the interval Ω using the equidistant grid xi =ih, 0 ≤ i ≤ n+ 1, with the mesh sizeh= 1/(n+1),n∈N. Approximate the outer derivative of(av0)0 at the grid point xi by symmetric difference quotients using the intermediate grid points xi±1/2 =xi±h/2, i= 1, . . . , n. Write ai =a(xi),di =d(xi)for i= 0, . . . , n+ 1 and ai±1/2 =a(xi±h/2) for i = 1, . . . , n. Discretize the first derivative of v in the symmetric difference for (av0)0 by central differences. What are the equations that you derive for the approximation of (3)?

Compose the coefficient matrix explicitly.

Referenzen

ÄHNLICHE DOKUMENTE

Don’t forget to lable the plots (title, xlabel, ylabel, zlabel, ... Document your code well and write a report including

Notice that using sparse matrices and avoiding unnecessary loops speeds up the running time of the program and reduces the needed processor memory

Use the help function by typing “help &lt;functionname&gt;” in the Matlab con- sole for getting important information about all functions you do

Hint: For needed definitions see the lecture notes on Numerik gewöhnlicher Differential- gleichungen by

Universität Konstanz WS 10/11 Fachbereich Mathematik und StatistikS. ,

Using piecewise linear and globally continuous nodal basis functions on a uniform mesh of size h = 1/N , N ≥ 2, write down the finite element approximation to this problem if p and

Universität Konstanz WS 10/11 Fachbereich Mathematik und

Solve (1) by using the Partial Differential Equation Toolbox in Matlab using the graphical user interface pdetool.. Follow the steps Draw, Boundary, PDE, Mesh